
Customer: Gotbit
Date: 09 June, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Gotbit

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type Bridge

Platform EVM

Language Solidity

Methodology Link

Changelog
22.05.2023 – Initial Review
07.06.2023 - Second Review
09.06.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C01. Funds Lock; Denial of Service 10

High 10
H01. Token Supply Manipulation 10
H02. Undocumented Functionality 11
H03. Inconsistent Data 11
H04. Funds Lock 12
H05. Inconsistent Data 12

Medium 13
M01. Inconsistent Data 13
M02. Inconsistent Data 13
M03. Coarse-grained Access Control 14
M04. Undocumented Functionality 14
M05. Highly Permissive Role Access 15
M06. Denial of Service 15

Low 15
L01. Contradiction 15
L02. Contradiction 16
L03. Contradiction 16
L04. Missing Validation 17

Informational 17
I01. Inefficient Gas Model 17
I02. Typos In Natspec 17
I03. Inefficient Gas Model 18
I04. Naming Convention 18

Disclaimers 19
Appendix 1. Severity Definitions 20

Risk Levels 20
Impact Levels 21
Likelihood Levels 21
Informational 21

Appendix 2. Scope 22

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Gotbit (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The audit of the scope consists of a bridge contract for ERC20 transfers
between chains. The aim is to implement a bridge that provides transfers
both between EVM chains and from EVM to non-EVM chains and vice versa.

The system works using signature verification using the EIP712 standard.
The transactions are signed by a relayer to be ready for fulfillment.

The files in the scope:
● BridgeAssist.sol - The bridge contract that records requests for

sending tokens between chains, and fulfills requests if signed by the
relayer.

Privileged roles
● Relayer: is the backend contract address, which is used for signing

transactions to fulfill.
● DefaultAdmin: can grant/revoke all roles, can set fee, feeWallet,

limitPerSend, pause/unpause contract and withdraw tokens from
contract.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● Description of the development environment is given.
● NatSpec is present.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions by several users are not tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

The system users should acknowledge all the risks summed up in the risks
section of the report.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

22 May 2023 4 6 5 1

07 June 2023 0 0 0 0

09 June 2023 0 0 0 0

Risks

● The project is highly centralized, with a Relayer role that controls
the release of funds on each chain. If the private keys of the
Relayer are lost or there is malicious intent, the protocol could be
vulnerable to attack.

● The fulfill() function has the whenNotPaused modifier, if the
contract is paused, users will not be able to receive their funds.

● There is a withdraw() function for the Admin role to withdraw any
tokens from the contract, including the token that is bridged. If
compromised, all tokens stored inside bridge contracts will be lost.

● The bridge fee can be changed between sending and fulfilling and has
an upper limit of 99.99%. This may lead to the losses of funds during
bridging.

● The chains have to be manually whitelisted by the admin and can be
removed at any moment, rendering all pending transactions
unclaimable.

● The bridge supports fee on transfers tokens and reflective tokens
only if the bridge is excluded from the fees.

● The fee can be changed at any time by the owner, transfers that are
already started, but not completely fulfilled will have the new fee
value applied.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

C01. Funds Lock; Denial of Service

Impact High

Likelihood High

There is no validation when setting up a new chain in the addChains()
function to prevent the exchangeRate from being 0,

if this happens, in the send() function, there will be a division by
0 and the transaction will revert, causing a Denial of Service,

if this happens, in the fulfill() function, there will be a
multiplication by 0, and the amount received by the user will be 0.

Path:
./contracts/BridgeAssist.sol : addChains()

Recommendation: Check that the exchangeRate is not 0.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

High

H01. Token Supply Manipulation

Impact High

Likelihood Medium

The default admin role can withdraw any sent ERC-20 tokens from the
BridgeAssist contract at any time.

If the tokens are withdrawn this way after a fulfillment is confirmed
from another chain, the tokens will be duplicated across chains.

This can lead to token supply manipulation.

Path:
./contracts/BridgeAssist.sol : withdraw()

www.hacken.io
10



Recommendation: The tokens should not be withdrawable outside of
bridge transaction fulfillment.

Found in: 2f76331

Status: Mitigated (with Customer notice: it is a centralized
solution, to be used, user needs to trust it)

H02. Undocumented Functionality

Impact High

Likelihood Medium

It is not documented how the tokens that will be transferred to the
users when bridged are added to the bridge contract.

This can lead to unexpected behavior, and the safety of the process
cannot be validated.

Path:
./contracts/BridgeAssist.sol : fulfill()

Recommendation: Document how the tokens will be added in the
destination chain contract.

Found in: 2f76331

Status: Mitigated (It is the responsibility of the project to make
sure there is always enough liquidity on the bridge to sustain
demand.

Customer response: "Funds are added to the bridge by transferring
them to the contract address. If there is not enough funds on the
contract, receiving funds will be impossible. The admins are supposed
to keep enough liquidity on the both end of the bridge so that this
does not happen.")

H03. Inconsistent Data

Impact High

Likelihood Medium

In the setFees() function, it is possible to change the fulfillment
fee value after a transaction has already been sent from the
originating chain.

The user will be affected by the new fee and is unable to estimate
the fee that should be paid.

This can lead to a loss of trust in the bridge system.

www.hacken.io
11



Path:
./contracts/BridgeAssist.sol : setFees()

Recommendation: Transactions that are started before the setFees()
call should not pay the new fee amount.

Found in: 2f76331

Status: Mitigated (Issue is documented as intended behavior. This is
mentioned in the Risk section.

Customer response: "The program should be able to take fees on
sending and receiving funds. The fees should be changeable by the
admin and unlimited (up to 99.99%). The recipient of the fees should
be configurable by the admin as well. In case the fees are changed by
the admin between sending and fulfilling a transaction, new fees
should be used to make fee revenue more predictable.")

H04. Funds Lock

Impact High

Likelihood Medium

The variable fromChain can be modified with the removeChains()
function before calling the fulfill() function, so that a valid
transaction would fail on the destination chain.

This will lead to funds being locked on the originating chain.

Path:
./contracts/BridgeAssist.sol : fulfill(), removeChain()

Recommendation: Document the behavior or implement a system of
pending transactions that will not allow the default admin to remove
a chain that has a pending transaction.

Found in: 2f76331

Status: Mitigated (Issue is documented as intended behavior. This is
mentioned in the Risk section.)

H05. Inconsistent Data

Impact High

Likelihood Medium

the variable exchangeRate could be changed from when a transaction is
sent to when a transaction is received, the user will not be able to
estimate the received amount this way.

www.hacken.io
12



Path:
./contracts/BridgeAssist.sol : fulfill(), addChains(),
removeChains();

Recommendation: Transactions that are started before the change in
the exchangeRate should not use the new value.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

Medium

M01. Inconsistent Data

Impact Low

Likelihood High

The function performs division before multiplication during the fee
calculation.

This leads to the loss of precision.

Path:
./contracts/BridgeAssist.sol : send()

Recommendation: Perform the multiplication before the division to
avoid the loss of precision.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

M02. Inconsistent Data

Impact Low

Likelihood High

The event SentTokens is emitted in the send() function, but the
provided data is not in line with the data stored in the Transaction
struct. The event emits (amount - currentFee) * exchangeRate as
amount, but the amount stored in the Transaction struct is amount -
currentFee.

This inconsistency is not documented as desired behavior and can lead
to incorrect data being emitted.

Path:
./contracts/BridgeAssist.sol : send()

www.hacken.io
13



Recommendation: Fix the discrepancy between the variables and the
emitted event, or document this as intended.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

M03. Coarse-grained Access Control

Impact Medium

Likelihood Medium

The critical functions of the contract, such as token withdrawals and
system property modifications, are accessible to the default admin.

Unauthorized access to these functions would be considered a security
breach within the contract.

Path:
./contracts/BridgeAssist.sol

Recommendation: It is recommended to implement a multiple signature
scheme for the admin role to enhance security measures. This scheme
would require multiple admin approvals before any critical action can
be executed, providing an extra layer of protection against
unauthorized access.

Found in: 2f76331

Status: Mitigated (It is recommended in the documentation that the
admin address should be a multi-sig wallet.

Customer response: “We advise the admin role be only given to
multisig wallets like Gnosis Safe for security reasons.”)

M04. Undocumented Functionality

Impact High

Likelihood Low

The exchangeRate is a variable that significantly alters how many
tokens are received with the bridge, but the functionality is not
documented.

Path:
./contracts/BridgeAssist.sol

Recommendation: Document the use and requirements of the exchangeRate
variable.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)
www.hacken.io

14



M05. Highly Permissive Role Access

Impact High

Likelihood Low

There are 2 fees retained from the original transaction of the user,
one on the send transaction and one on the fulfilled transaction,
both fees can go up to 99.99%, assuming that exchangeRate is 1:1 in
both chains, the received amount could be 0.00000001% of the original
amount.

Path:
./contracts/BridgeAssist.sol : setFee()

Recommendation: Put a reasonable boundary to the fees.

Found in: 2f76331

Status: Mitigated (Issue is documented as intended behavior. This is
mentioned in the Risk section.)

M06. Denial of Service

Impact High

Likelihood Low

There is a possibility that the token of the bridge could have fees
on transfer implemented in its contract.

This may result in Denial of Service when bridging and data
inconsistency.

Path:
./contracts/BridgeAssist.sol

Recommendation: Ensure that the token used for bridging does not have
fee-on-transfers or reflection tokens.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

Low

L01. Contradiction

Impact Low

Likelihood Medium

The variable limitPerSend and its usage is never documented.

www.hacken.io
15



Path:
./contracts/BridgeAssist.sol

Recommendation: Remove the functionality or mention it in
documentation.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

L02. Contradiction

Impact Low

Likelihood Medium

The usage of the type string for variables that are referring to
addresses is never documented.

Path:
./contracts/BridgeAssist.sol

Recommendation: Remove the functionality or mention it in
documentation.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

L03. Contradiction

Impact Low

Likelihood Low

According to the NatSpec of the functions getUserTransactions() and
getUserTransactionsAmount() they should return the transactions and
amount of bridge transactions sent by `user` that have been sent from
or fulfilled on the current chain.

However, in the implementation, only the sent chain is returned, not
the fulfilled chain.

Path:
./contracts/BridgeAssist.sol : getUserTransactions(),
getUserTransactionsAmount()

Recommendation: Fix the mismatch.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

www.hacken.io
16



L04. Missing Validation

Impact Low

Likelihood Medium

In the function addChains() two arrays are passed as arguments; if
the length of both arrays is not the same, the transaction will
revert.

Path:
./contracts/BridgeAssist.sol : addChains()

Recommendation: Check that the two arrays passed have the same
length.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

Informational

I01. Inefficient Gas Model

In the send() function it is performed a division amount /
exchangeRate and then it was performed a multiplication amount *
exchangeRate.

Path:
./contracts/BridgeAssist.sol : send()

Recommendation: By doing the division after the multiplication line
it is possible to avoid doing the multiplication altogether.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

I02. Typos In Natspec

There is a typo on line 335 in the NatSpec. It says standart,
however, it should be standard.

Path:
./contracts/BridgeAssist.sol

Recommendation: Fix typos.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

www.hacken.io
17



I03. Inefficient Gas Model

In the send() function block.timestamp it is saved both in the event
emitted and in the transactions mapping, this is a waste of Gas since
this information is available in the block information and can be
retrieved off-chain.

In the fulfill() function block.timestamp is saved in the event
emitted.

Path:
./contracts/BridgeAssist.sol : send(), fulfill()

Recommendation: Remove the block.timestamp variable.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

I04. Naming Convention

The TRANSACTION_TYPE_HASH variable is misleading and reduces code
readability, the proper naming convention when working with the
EIP712 is to name them with function name + TYPEHASH for example
FulfillTx should be FULFIL_TX_TYPEHASH

Path:
./contracts/BridgeAssist.sol

Recommendation: Change the name of the variable.

Found in: 2f76331

Status: Fixed (Revised commit: f205b8a)

www.hacken.io
18



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
19



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
20



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
21



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/GotBit/bridge

Commit 2f7633185cf94c002480c0700942992551492dfe

Functional
Requirements https://github.com/GotBit/bridge/blob/main/contracts/README.md

Contracts File: BridgeAssist.sol
SHA3: 68c2636439c26eb5521d7913e0ce23dc0a050da2c4b31b6b97660af7ce231786

Second review scope

Repository https://github.com/GotBit/bridge

Commit f205b8a2df5f1fdebc5291a1a61f99689d428374

Functional
Requirements https://github.com/GotBit/bridge/blob/main/contracts/README.md

Technical
Requirements

https://github.com/GotBit/bridge/blob/main/contracts/README.md

Gotbit Ethereum Bridge Technical Requirements.pdf
SHA3: e4ca7a85468033289468bc6069060fa2d8323cff3cd0d043883420daedcc8eb3

Contracts File: contracts/BridgeAssist.sol
SHA3: fad27bfe6252199b85a0f269f75f5ae580968a02dd26da7d096537f1e3d0a68e

Third review scope

Repository https://github.com/GotBit/bridge

Commit 82eb229f24dbb0d9a30203886420d6bc62cedf95

Functional
Requirements https://github.com/GotBit/bridge/blob/main/contracts/README.md

Technical
Requirements

https://github.com/GotBit/bridge/blob/main/contracts/README.md

Gotbit Ethereum Bridge Technical Requirements.pdf
SHA3: e4ca7a85468033289468bc6069060fa2d8323cff3cd0d043883420daedcc8eb3

Contracts File: contracts/BridgeAssist.sol
SHA3: de0ec97b064c9f0e5ee334e10cd6d7475418ff5740434c13116df0b0ffd61c16

www.hacken.io
22

https://github.com/GotBit/bridge
https://github.com/GotBit/bridge/blob/main/contracts/README.md
https://github.com/GotBit/bridge
https://github.com/GotBit/bridge/blob/main/contracts/README.md
https://github.com/GotBit/bridge/blob/main/contracts/README.md
https://github.com/GotBit/bridge
https://github.com/GotBit/bridge/blob/main/contracts/README.md
https://github.com/GotBit/bridge/blob/main/contracts/README.md

