
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Leech Protocol
Date: 17 Aug, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Leech
Protocol

Approved By Oleksii Zaiats | SC Audits Head at Hacken OÜ

Tags ERC20 token; Yield Aggregator

Platform EVM

Language Solidity

Methodology Link

Website https://website.com

Changelog
31.07.2023 – Initial Review
09.08.2023 - Second Review
17.08.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://website.com


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C02. Signed Message Replay Attack 10

High 11
H01. Front-Running; Sandwich Attack 12

Medium 12
M01. Missing Validation 12
M02. Checks-Effects-Interactions Pattern Violation 13
M03. Redundant Modifier 13
M04. Uninitialized Implementation
M05. Highly Permissive Admin Access 14

Low 14
L01. Missing Zero Address Validation 14
L02. Redundant Import 14
L03. Missing Events 15
L04. Funds Lock 16

Informational 17
I01. Natspec Mismatch 17
I02. Public Functions That Should Be External 17
I03. Public Functions That Should Be Internal; Best Practice Violation 17
I04. Redundant Variable Value Assignment 18
I05. Typos 18
I06. Redundant Code 19
I07. Inconsistency in Errors 19

Disclaimers 21
Appendix 1. Severity Definitions 22

Risk Levels 22
Impact Levels 23
Likelihood Levels 23
Informational 23

Appendix 2. Scope 24

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Leech Protocol (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

Leech Protocol is a cross-chain yield aggregator. It allows users to
deposit funds into different pools with underlying yield-generating
strategies. It has the following contracts:

● LeechRouterOptimism — a contract that users use to make deposits and
withdrawals to preferred pools.

● LeechRouterBase — The Router is the main protocol contract, for user
interactions and protocol automatizations.

● StrategyVelodrome — FarmLeech Protocol farming strategy for
Velodrome.

● BaseFarmStrategy — Base farming strategy.
● Helpers — Leech Protocol helpers and utilities.

Privileged roles
BaseFarmStrategy and StrategyVelodromeFarm are using OwnableUpgradeable to
restrict access. Contract owner can:

● Sets paths for token swap.
● Sets fee taken by the Leech protocol.
● Sets the treasury address.
● Sets the controller address.
● Sets slippage tolerance.

LeechRouterBase and LeechRouterOptimism are using AccessControlUpgradeable
to restrict access.
Addresses with ADMIN_ROLE can:

● Move liquidity to the new strategy.
● Move liquidity to another blockchain.
● Change strategy.
● Change address of validator, finalizer, transporter and treasury.
● Set a new pool, strategy and router.
● Set withdrawal delay.
● Unpause contract.
● Change Uniswap based router.
● Ban and unban given address.
● Set deposit token and minimal value that should be deposited.

Addresses with PAUSER_ROLE can pause a contract.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The code follows style guides and best practices.
● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage).

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

31 July 2023 4 5 6 3

09 Aug 2023 3 0 0 0

17 Aug 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● Iterating over a dynamic array populated with custom tokenId can lead
to Gas limit denial of service if the number of tokenId goes out of
control.

● The multisig ADMIN role can perform migrations at any time without
restrictions. This is part of the business logic of the protocol.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

C02. Signed Message Replay Attack

Impact High

Likelihood High

The LeechRouterBase contract is not utilizing EIP712 for signatures
and deadlines. The current implementation of signed messages lacks
mechanisms to prevent replay attacks.

Without a standard such as EIP712, signed messages can potentially be
reused on other chains (replay attacks).

This can result in the execution of a signed transaction when it is
not desired by a signer.

Path: ./router/LeechRouterBase.sol : checkWhitelist();

Recommendation: implement EIP712 for signatures in the protocol.
EIP712 offers a standard way to structure data and generate
signatures, which would significantly enhance the security of the
contract by protecting it from replay attacks. Add nonce and chainId
parameters to each signature, which will highly increase security.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Mitigated (The customer has explained that the possibility of
replaying doesn’t pose a threat to their business logic, as it is by should
be possible to “replay” the message within the given timeframe)
High

H01. Front-Running; Sandwich Attack

Impact High

Likelihood Medium

The minimum return amount is not specified, or 0 is specified as a
minimum value during operations with the swap router.

This may lead to unexpected token loss and wrong swap rates during
the interaction with the system.

Paths:

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol : _deposit(),
_withdraw();

./router/LeechRouterOptimism.sol : _swap();

./router/LeechRouterBase.sol : crosschainDeposit();

www.hacken.io
10



Recommendation: specify the minimum amount manually or use oracles to
calculate the minimum amount or use newer versions of the DEXs.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit: 2f79620)

Medium

M01. Missing Validation

Impact Medium

Likelihood Medium

It is considered that the project should be consistent and contain no
self-contradictions.

According to docs the value protocolFee should be lower than MAX_FEE
value (12%). However, in the initialize() the validation is missed.

According to docs the value slippage should be lower than DENOMINATOR
value and greater than 0. However, in the initialize() the validation
is missed.

This may lead to unexpected value processed by the contract.

Path: ./strategies/VelodromeFarm/StrategyVelodromeFarm.sol :
initialize();

Recommendation: implement the validations of protocolFee and slippage
in initialize().

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
5202e8ca796e989437d07e390b7db7aef7dce5ac)

M02. Checks-Effects-Interactions Pattern Violation

Impact Medium

Likelihood Medium

The Checks-Effects-Interactions pattern is violated. During the
functions, some state variables are updated after the external calls.

Paths: ./strategies/BaseFarmStrategy.sol : deposit()

./router/LeechRouterBase.sol : finalizeDeposit(),
finalizeWithdrawal();

www.hacken.io
11



Recommendation: implement the functions according to the
Checks-Effects-Interactions pattern or use reentrancy locks.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
eea595310c0937e654acb446fc3276350497edf4)

M03. Redundant Modifier

Impact Medium

Likelihood Medium

The withdrawal mechanisms, withdraw() and crosschainWithdraw(), in
LeechRouterBase.sol do not need to be payable since they do not
expect to receive any native coins in transactions.

Path: ./router/LeechRouterBase.sol : withdraw();

Recommendation: remove payable modifiers.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
eea595310c0937e654acb446fc3276350497edf4)

M04. Uninitialized Implementation

Impact Medium

Likelihood High

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

It is not recommended to leave an implementation contract
uninitialized. An uninitialized implementation contract can be taken
over by an attacker.

This may lead to the attacker taking over the contract and impacts
the proxy.

Paths:

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol : constructor();

./router/LeechRouterOptimism.sol : constructor();

www.hacken.io
12



Recommendation: follow common best practices, invoke the
_disableInitializers function in the constructor to automatically
lock the contract when it is deployed.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
eea595310c0937e654acb446fc3276350497edf4)

M05. Highly Permissive Admin Access

Impact High

Likelihood Medium

ADMIN role can perform migrations anytime without notifying anyone.

If a key leak were to occur, the potential consequences could be
significant, potentially leading to security breaches and undermining
the overall integrity of the system.

Paths: ./router/LeechRouterBase.sol: migration(),
crosschainMigration();

Recommendation: to ensure transparency and accountability, it is
advised to provide a comprehensive explanation of highly-permissive
access in the system's public documentation. This would help to
ensure that users are fully informed of the implications of such
access and can make informed decisions accordingly.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Mitigated (The functionality and its necessity for the
business logic was explained in the protocol documentation)

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths:

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol : initialize();

./router/LeechRouterOptimism.sol : initialize();

Recommendation: implement zero address checks.

www.hacken.io
13



Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

L02. Redundant Import

Impact Low

Likelihood Medium

The contract BaseFarmStrategy inherits OpenZeppelin’s IERC20 but it
is already part of SafeERC20.

The contract StrategyVelodromeFarm inherits OpenZeppelin’s IERC20 but
it is already part of BaseFarmStrategy.

The contract StrategyVelodromeFarm inherits OpenZeppelin’s SafeERC20
but it is already part of BaseFarmStrategy.

The contract LeechRouterBase inherits OpenZeppelin’s IERC20 but it is
already part of SafeERC20.

The contract LeechRouterBase inherits OpenZeppelin’s Initializable
but it is already part of AccessControlUpgradeable.

The contract LeechRouterOptimism inherits OpenZeppelin’s IERC20 but
it is already part of LeechRouterBase.

The contract Helpers inherits OpenZeppelin’s IERC20 but it is already
part of SafeERC20.

The redundancy in inheritance and import can lead to unnecessary gas
consumption during deployment and potentially impact code quality.

Paths:

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol : *;

./strategies/BaseFarmStrategy.sol : *;

./router/LeechRouterOptimism.sol : *;

./router/LeechRouterBase.sol : *;

./libraries/Helpers.sol : *;

Recommendation: remove redundant import and inheritance to save Gas
on deployment and increase the code quality.

www.hacken.io
14



Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

L03. Missing Events

Impact Low

Likelihood Medium

Events for critical state changes should be emitted for tracking
things off-chain.

Paths:

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol : setRoutes(),
_withdraw(), _deposit();

./strategies/BaseFarmStrategy.sol : setFee(), setTreasury(),
setController(), setSlippage(), migrate();

./router/LeechRouterOptimism.sol : setRoutes();

./router/LeechRouterBase.sol : migration(), crosschainMigration(),
migrateAllocations(), finalizeCrosschainMigration(), setValidator(),
setFinalizer(), setStrategy(), setPool(), setRouter(),
setTransporter(), setWithdrawDelay(), switchWhitelistStatus(),
setUniV2(), setTreasury(), setBanned(), setDepositToken();

Recommendation: create and emit related events.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

L04. Funds Lock

Impact Low

Likelihood Medium

The contract accepts token deposits but lacks a withdrawal mechanism,
which can result in funds being locked in the contract. The deposit()
function in the LeechRouterBase.sol contract accepts native tokens
however, the function is not designed to process the native tokens
this will lead the sent amount to be stuck in the contract.

This may lead to imbalances and miscalculations in the project.

Path: ./router/LeechRouterBase.sol: deposit();

www.hacken.io
15



Recommendation: remove the payable modifier from this function so
that it will not accept native tokens.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit: 2f79620)

Informational

I01. Natspec Mismatch

setDepositToken() and pause() functions’ NatSpec descriptions are
different than the implementation

Path: ./router/LeechRouterBase.sol : setDepositToken(), pause();

Recommendation: update the NatSpecs.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

I02. Public Functions That Should Be External

Functions that are only called from outside the contract should be
defined as external. External functions are much more gas efficient
compared to public functions.

Paths:

./strategies/BaseFarmStrategy.sol : deposit(), withdraw(),
quotePotentialWithdraw();

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol :
quotePotentialWithdraw();

./router/LeechRouterOptimism.sol : initialize();

Recommendation: make these functions external.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

I03. Public Functions That Should Be Internal; Best Practice Violation

Functions that are only called inside the contract should be defined
as internal. Internal functions are much more Gas efficient compared
to public functions.

Path: ./router/LeechRouterBase.sol : initialize();

Recommendation: make this function internal. Change name of
LeechRouterBase initialize() function to __LeechRouterBase_init().

www.hacken.io
16



Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Reported

I04. Redundant Variable Value Assignment

The withdrawDelay value assignment of 0 is redundant in initialize().
Default value of uint is 0.

Path: ./router/LeechRouterBase.sol : initialize();

Recommendation: remove redundant variable value assignment.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

I05. Typos

There is a typo in NatSpec's description of setTreasury() in
BaseFarmStrategy. It says tresury, however, it should be treasury.

There is a typo in NatSpec's description of protocolFee in
BaseFarmStrategy. It says comission, however, it should be
commission.

There is a typo in comments of deposit() in BaseFarmStrategy. It says
allcation, however, it should be allocation.

There is a typo in NatSpec's description of routes in
StrategyVelodromeFarm. It says exchnage, however, it should be
exchange.

There is a typo in variable names used in _deposit() in
StrategyVelodromeFarm. It says swapedAmounts, however, it should be
swappedAmounts.

There is a typo in variable names used in _swap() in
LeechRouterOptimism. It says swapedAmounts, however, it should be
swappedAmounts.

There is a typo in NatSpec's description of enabled() in
LeechRouterBase. It says exlude, however, it should be exclude.

There is a typo in comments in crosschainDeposit() in
LeechRouterBase. It says transtorder, however, it should be
transporter.

There is a typo in NatSpec's description of withdraw() ,
finalizeWithdrawal() and crosschainWithdraw() in LeechRouterBase. It
says withdrwalas, however, it should be withdrawals.

www.hacken.io
17



There is a typo in NatSpec's description of setBanned() in
LeechRouterBase. It says addess, however, it should be address.

There is a typo in NatSpec's description and variable names used in
_swap() in LeechRouterBase. It says swapedAmounts, however, it should
be swappedAmounts.

There is a typo in NatSpec's description of withdraw() ,
finalizeWithdrawal() and crosschainWithdraw() in ILeechRouter. It
says withdrwalas, however, it should be withdrawals.

There is a typo in NatSpec's description of WithdrawCompleted and
CrosschainWithdrawCompleted in ILeechRouter. It says completeing,
however, it should be completing.

There is a typo in the PercentExeedsMaximalValue event name in
Helpers. It says PercentExeedsMaximalValue, however, it should be
PercentExceedsMaximalValue.

Paths:

./strategies/BaseFarmStrategy.sol : setTreasury(), protocolFee,
deposit();

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol : routes,
_deposit();

./router/LeechRouterOptimism.sol : _swap();

./router/LeechRouterBase.sol : enabled(), crosschainDeposit(),
withdraw(), finalizeWithdrawal(), crosschainWithdraw(), setBanned(),
_swap();

./router/ILeechRouter.sol : withdraw(), finalizeWithdrawal(),
crosschainWithdraw(), WithdrawCompleted, CrosschainWithdrawCompleted;

./libraries/Helpers.sol : PercentExeedsMaximalValue;

Recommendation: fix typos.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

I06. Redundant Code

The contract inherits OpenZeppelin’s AccessControlUpgradeable but
there is a custom role based mechanism implemented to restrict
access.

The redundancy in code can lead to unnecessary gas consumption during
deployment and potentially impact code quality.

Path: ./router/LeechRouterBase.sol : onlyFinalizer();

www.hacken.io
18



Recommendation: create FINALIZER_ROLE using AccessControlUpgradeable.

Found in: f1019667115308f0945d38120d9af9c88c853501

Status: Reported

I07. Inconsistency in Errors

There is inconsistency in returned error types.

Inside setSlippage(), if _slippage parameter is bigger than
DENOMINATOR value, then transaction is reverted with SlippageTooHigh
error.

Inside initialize(), if the slippage parameter is bigger than the
DENOMINATOR value, then the transaction is reverted with BadAmount
error.

Paths:

./strategies/BaseFarmStrategy.sol : setSlippage();

./strategies/VelodromeFarm/StrategyVelodromeFarm.sol : initialize();

Recommendation: fix the mismatch between errors used in the same
check.

Found in: 5202e8ca796e989437d07e390b7db7aef7dce5ac

Status: Fixed (Revised commit:
21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7)

www.hacken.io
19



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
20



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
21



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
22



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Leech-Protocol/leech-contracts/tree/feature/dev-aud
it

Commit f1019667115308f0945d38120d9af9c88c853501

Whitepaper https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view
?usp=sharing

Requirements https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-aud
it/docs/SC_documentation.md

Technical
Requirements

https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-aud
it/docs/SC_documentation.md

Contracts File: contracts/interfaces/ILeechRouter.sol
SHA3: 1578cfa57394754f617c492b293eed42bfb29c11a47928ce00de216c72b795fb

File: contracts/interfaces/ILeechTransporter.sol
SHA3: f7f9952d85bca717533ef93bf533572586710d09e81ae8a179d8a95b01c3f3b3

File: contracts/interfaces/IRouterVelodrome.sol
SHA3: 1b82704c8ffe94f9a1b734002f9d5deb3068dccf37e75ae440906af9a6a880c7

File: contracts/interfaces/IStrategyMasterchefFarmV2.sol
SHA3: 396e11e844f7b8ba8a555a8d107fbfc1806e73b72fb382b509489cb5bf57ee0a

File: contracts/libraries/Helpers.sol
SHA3: 84bba73e8e3687fdac5c86a301b63fc8fc34d66b0fb2c02bb26c83df94c41581

File: contracts/router/ILeechRouter.sol
SHA3: 729d05390ef98c39faabca9793923af4b6999a45e330783ff6e023c61b0f6e23

File: contracts/router/LeechRouterBase.sol
SHA3: 33e827f8a9be224cd988f492f89d89e07437b7aef0956325883e70551da7bc0f

File: contracts/router/LeechRouterOptimism.sol
SHA3: 41b8df5da0462f259c5285503900b1b86fcce84a0a2ccc822d59a2507d614813

File: contracts/strategies/BaseFarmStrategy.sol
SHA3: 883405390d27d2d8d1a367da03daa0c099b335ada020ed26c6162020fb8cc692

File: contracts/strategies/VelodromeFarm/IGauge.sol
SHA3: 233d8f9e595f4f0ffd16226111e4c215fa386eebdb79ed0e531d8537987e235d

File: strategies/VelodromeFarm/IVelodromePair.sol
SHA3: ecc5c6733d8c43eaa9d2c7896c70fe4e6f425601be3307b27c02d1b491d4e17f

File: contracts/strategies/VelodromeFarm/StrategyVelodromeFarm.sol
SHA3: cdb3b2755d3201c93f5d1ced7668d3fa127cf183866bf11391bb77685fab9fa7

www.hacken.io
23

https://github.com/Leech-Protocol/leech-contracts/tree/feature/dev-audit
https://github.com/Leech-Protocol/leech-contracts/tree/feature/dev-audit
https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view?usp=sharing
https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view?usp=sharing
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md


Second review scope

Repository File: leech-contracts.zip
SHA3: 2f796208115b3d7eb49c18a6229122823172c895e241a8efc7de13585e9af683

Commit -

Whitepaper https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view
?usp=sharing

Requirements https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-aud
it/docs/SC_documentation.md

Technical
Requirements

https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-aud
it/docs/SC_documentation.md

Contracts File: interfaces/ILeechRouter.sol
SHA3: 1578cfa57394754f617c492b293eed42bfb29c11a47928ce00de216c72b795fb

File: interfaces/ILeechTransporter.sol
SHA3: f7f9952d85bca717533ef93bf533572586710d09e81ae8a179d8a95b01c3f3b3

File: interfaces/IRouterVelodrome.sol
SHA3: 0eadbc5ae1627ff67add07e4e7be6653130263df34ae75bdb344e1d78f6e75e0

File: interfaces/IStrategyMasterchefFarmV2.sol
SHA3: 396e11e844f7b8ba8a555a8d107fbfc1806e73b72fb382b509489cb5bf57ee0a

File: libraries/Helpers.sol
SHA3: 84bba73e8e3687fdac5c86a301b63fc8fc34d66b0fb2c02bb26c83df94c41581

File: router/ILeechRouter.sol
SHA3: 3f565388e39fd4da65b7cd9e50d3c90c9a1e6ccb066296b9fc5310c990e2707a

File: router/LeechRouterBase.sol
SHA3: dc4c462607030e4076dba30c0c59692abe249b12ed41acb03fae380eaf3c56dc

File: router/LeechRouterOptimism.sol
SHA3: e79f20701c9a960ed66b0af02f0fb324bd3af800b2268be4425edaaf746c40de

File: strategies/VelodromeFarm/IGauge.sol
SHA3: 233d8f9e595f4f0ffd16226111e4c215fa386eebdb79ed0e531d8537987e235d

File: strategies/BaseFarmStrategy.sol
SHA3: 883405390d27d2d8d1a367da03daa0c099b335ada020ed26c6162020fb8cc692

File: strategies/VelodromeFarm/IVelodromePair.sol
SHA3: ecc5c6733d8c43eaa9d2c7896c70fe4e6f425601be3307b27c02d1b491d4e17f

File: strategies/VelodromeFarm/StrategyVelodromeFarm.sol
SHA3: bcd05698b964917e9ad9981847436a789eb08f4320dceb9f1fcaeeb9c323f9e6

Third review scope

Repository File: leech-contracts.zip
SHA3: 21decfda4f6de62f3a0113a4ca9c810025f464da280d015b2c17f511b9bb0fa7

Commit -

www.hacken.io
24

https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view?usp=sharing
https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view?usp=sharing
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md


Whitepaper https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view
?usp=sharing

Requirements https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-aud
it/docs/SC_documentation.md

Technical
Requirements

https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-aud
it/docs/SC_documentation.md

Contracts File: interfaces/ILeechRouter.sol
SHA3: 181a3b51376b0e0f0cc091d8b10076133b1e4c91e8fb01a0b8167d880873f247

File: interfaces/ILeechTransporter.sol
SHA3: 8896d8f2389d284a9a34ecda221830874360ab9dcf342ca6eee91bd7b2811fe7

File: interfaces/IRouterVelodrome.sol
SHA3: 6d4689ce40729b74616100aabf560f060520cd79812f5feffe0dc681f9ee16ae

File: interfaces/IStrategyMasterchefFarmV2.sol
SHA3: 542d0e929ec3496b8ab5358ed8b21c30632bd5f47b51bbe81e81495eb4b72f1d

File:libraries/Helpers.sol
SHA3: e764e5d9eb18fb415d8f793b0cab62d1f63a293d7d822964af4bdf9b5e1bd460

File: /router/ILeechRouter.sol
SHA3: afa38549352ac00f277697d5232a63cf90ec319d6e548390ccdd36cae2cf060a

File: router/LeechRouterBase.sol
SHA3: af8d4ceaf73ad0e97b35e69e0b764215535860273c54d1faee22eea3b9621a39

File: router/LeechRouterOptimism.sol
SHA3: e78a6750b02475649e163fd9e9d1cc7f8ec73f39294ff10138384e30b222c6f8

File: strategies/VelodromeFarm/IGauge.sol
SHA3: 20f4c8826086592814a9181381968dbd1d09fad93508ba0fa385e36558939e81

File: strategies/BaseFarmStrategy.sol
SHA3: a15de9a52cfb0b2ae96f0426975ed451ad5dd4fcb39c482ffd7ad86517c076aa

File: strategies/VelodromeFarm/IVelodromePair.sol
SHA3: 14e483b333b865f8e766b03c6bad7b5acdba2174b84edca209cdcfb549e4b07a

File: strategies/VelodromeFarm/StrategyVelodromeFarm.sol
SHA3: a068d5c6dd46d7b6ea0d82e017d7d645d7faa3ca495b5cb911a8fe58c077ccff

www.hacken.io
25

https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view?usp=sharing
https://drive.google.com/file/d/1P4bDeogfeWANMeTuXz1EeqgtLUwnMEUi/view?usp=sharing
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md
https://github.com/Leech-Protocol/leech-contracts/blob/feature/dev-audit/docs/SC_documentation.md

