
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Parallax
Date: 03 Aug, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Parallax

Approved By Oleksii Zaiats | SC Audits Head at Hacken OÜ

Tags ERC-20 compliant token

Platform EVM

Language Solidity

Methodology Link

Website https://parallaxfinance.org

Changelog 31.07.2023 – Initial Review
03.08.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://parallaxfinance.org/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10
Low 10

L01. Missing Zero Address Validation 10
Informational 10

I01. Outdated Solidity Version 10
Disclaimers 11
Appendix 1. Severity Definitions 12

Risk Levels 12
Impact Levels 13
Likelihood Levels 13
Informational 13

Appendix 2. Scope 14

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Parallax (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Parallax is the meta-strategy hub that provides supercharged yields with
the following contracts:

● Plx.sol — The Plx smart contract is an ERC-20 compliant token with
additional functionality for managing tokenomic categories and roles
for minting and burning tokens. The sum of tokens must not exceed the
MAX_TOTAL_SUPPLY. The service will call the 'mint' method daily to
release new tokens according to the tokenomics.
PLX is the native token for all Parallax Finance products. PLX
holders should be able to add the token as liquidity to liquidity
pools so that they are eligible to receive in exchange such tokens
that can be locked using Parallax in order to obtain benefits from
the Parallax Finance.
It has the following attributes:

○ Name: Parallax Token
○ Symbol: PLX
○ Decimals: 18
○ Total supply: 100m tokens

Privileged roles
● The DEFAFULT_ADMIN_ROLE role is able to:

- withdraws an ERC-20 token that accidentally ended up on this
contract and cannot be used in any way.
- grants role to account. If account had not been already granted
role.
- revokes role from account

● The BURNER_ROLE role is able to burns tokens.
● The MINTER_ROLE role is able to mint tokens.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed.
● Technical description is a bit inaccurate.
● NatSpec covers most of the code.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The code is structured and function/contract interactions are clear.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Since the audit Lines of Code do not exceed 250, this does not affect
the score.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

31 Jul 2023 1 0 0 0

03 Aug 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● Iterating over a dynamic array populated with custom categoryIds can
lead to Gas limit denial of service if the number of tokenomics
categoryIds goes out of control.

● The upgradeable nature of the contracts puts the user funds at risk
in case of a logic upgrade.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are used without checking against the possibility
of being 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./contracts/ERC20/Plx.sol: __Plx_init_unchained() function.

Recommendation: Implement zero address validations.

Found in: 7fbdd3f1d3e

Status: Fixed (Revised commit: ce36065d8a9)

Informational

I01. Outdated Solidity Version

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version. Using an old version for deployment prevents access to new
Solidity security checks.

Path: ./contracts/ERC20/Plx.sol

Recommendation: Deploy with any of the following Solidity versions:
0.8.19 or 0.8.20

Found in: 7fbdd3f1d3e

Status: Mitigated (We leave the current stable version of Solidity.)

www.hacken.io
10



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
11



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
12



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
13



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/browse/contra
cts/ERC20/Plx.sol

Commit 7fbdd3f1d3e

Whitepaper Not provided

Requirements https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/browse

Technical
Requirements https://parallaxfinance.org/token-deck.pdf

Contracts File: ./contracts/ERC20/Plx.sol
SHA3: 49aa6ea0a6c4579738ebc7c3f14df6b5be67e0adcfb2546444c9eb432a62bbd6

Second review scope

Repository https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/commits/ce360
65d8a95490264f215230c46816c87382444#contracts/ERC20/Plx.sol

Commit ce36065d8a9

Whitepaper Not provided

Requirements https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/browse

Technical
Requirements https://parallaxfinance.org/token-deck.pdf

Contracts File: contracts/ERC20/Plx.sol
SHA3: 7c84da4528691017c0a5d23dbfb13d22667147a24b0bb47e39b100eb2f50b7b7

www.hacken.io
14

https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/browse/contracts/ERC20/Plx.sol
https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/browse/contracts/ERC20/Plx.sol
https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/browse
https://parallaxfinance.org/token-deck.pdf
https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/commits/ce36065d8a95490264f215230c46816c87382444#contracts/ERC20/Plx.sol
https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/commits/ce36065d8a95490264f215230c46816c87382444#contracts/ERC20/Plx.sol
https://bitbucket.ideasoft.io/projects/PAR/repos/orbital/browse
https://parallaxfinance.org/token-deck.pdf

