
Customer: SatoshiPay
Date: 28 July, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for SatoshiPay

Approved By Oleksii Zaiats | Head of Solidity SC Auditor department at Hacken OU

Type ERC20 token;

Platform EVM

Language Solidity

Methodology Link

Website https://pendulumchain.org/

Changelog 07.07.2023 – Initial Review
28.07.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://pendulumchain.org/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10
Low 10

L01. Floating Pragma 10
L02. Missing Zero Address Validation 10
L03. Variables That Can Be Set Immutable 11
L04. Missing Events 11

Informational 12
I01. Solidity Style Guide Violation: Naming mismatch 12
I02. Functions That Should Be External 12
I03. Solidity Style Guide Violation: Order Of Layout 12
I04. Inefficient Gas Modeling 13
I05. Redundant Function Virtualization 13
I06. Solidity Style Guide: mixedCase in State Variables Names 13

Disclaimers 15
Appendix 1. Severity Definitions 16

Risk Levels 16
Impact Levels 17
Likelihood Levels 17
Informational 17

Appendix 2. Scope 18

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by SatoshiPay (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

● ERC20Wrapper – this contract implements openzeppelin's IERC20 and
IERC20Metadata interfaces. It is able to communicate with the chain
extensions directly, without the need to have a second wrapper
contract implemented in ink! This purpose of this contract is to
allow our wrapped tokens to satisfy IERC20 so that other Solidity
contracts can use them the same way as any other IERC20 token.

● PriceOracleWrapper – this contract provides the function that is
expected by Nabla's IPriceOracleGetter interface. It calls the 1200
chain extension which fetches a price feed from the chain. The inputs
blockchain and symbol are the keys to query a particular price feed.

● IPreceOracleGetter – an interface which contains a function that
returns token price in USD.

Privileged roles
● Contracts have no privileges roles.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● Functional requirements are not provided:
○ Project overview is detailed.
○ Use cases are described and detailed.
○ All interactions are described.

● Technical description is inadequate:
○ Run instructions are provided.
○ Technical specification is provided.
○ NatSpec is partially missing.

Code quality
The total Code Quality score is 8 out of 10.

● Best practice violations.
● Insufficient Gas modeling.
● Solidity Style Guide violations.

Test coverage
Code coverage of the project is 0.0% (branch coverage).

● Tests are not provided.
● Project has less than 250 lines of code, the lack of tests will not

affect score, although it’s recommended to include tests.

Security score
As a result of the audit, the code contains 1 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.5. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Review date Low Medium High Critical

6 July 2023 4 0 0 0

28 July 2023 1 0 0 0

Risks

No potential security risks were found during the audit research.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Not

Relevant

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Not
Relevant

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed

L02, I01,
I02, I05,

I06

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

L01. Floating Pragma

Impact Medium

Likelihood Low

Contracts should be deployed with the same compiler version and flags
that they have been tested with thoroughly. Locking the pragma helps
to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Path:
./price-oracle-wrapper/interfaces/IPriceOracleGetter.sol

Recommendation: it is recommended to lock the pragma version in all
contracts as stated by SWC-103.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Fixed (Revised commit:
b54848f713f5e8f6b64b585dee2d9be8715f47ed).

L02. Missing Zero Address Validation

Impact Low

Likelihood Low

Additional checks against the 0x0 address should be included in the
reported functions to avoid unexpected results.

Paths:

./price-oracle-wrapper/price-oracle-wrapper.sol :
getOracleKeyAsset(), getOracleKeyBlockchain(), getOracleKeySymbol(),
getAssetPrice();

www.hacken.io
10

https://swcregistry.io/docs/SWC-103


./erc20-wrapper/erc20-wrapper.sol : balanceOf(), transfer(),
allowance(), approve(), transferFrom();

Recommendation: it is recommended to add zero address checks.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Reported (Revised commit:
b54848f713f5e8f6b64b585dee2d9be8715f47ed). (Several functions still
need to be improved)

L03. Variables That Can Be Set Immutable

Impact Low

Likelihood Low

Use the immutable keyword on the state variables to limit changes to
its state and save Gas.

Paths:

./erc20-wrapper/erc20-wrapper.sol : _name, _symbol, _decimals,
_variant, _code, _issuer;

Recommendation: consider using the keyword immutable for said
variable.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Fixed (Revised commit:
b54848f713f5e8f6b64b585dee2d9be8715f47ed).

L04. Missing Events

Impact Low

Likelihood Medium

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Paths:

./erc20-wrapper/erc20-wrapper.sol : transfer(), transferFrom(),
approve();

Recommendation: consider emitting events in said functions.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Fixed (Revised commit:
b54848f713f5e8f6b64b585dee2d9be8715f47ed).

www.hacken.io
11



Informational

I01. Solidity Style Guide Violation: Naming mismatch

Files names should be the same as smart contracts naming.

Paths:
./price-oracle-wrapper/price-oracle-wrapper.sol;

./erc20-wrapper/erc20-wrapper.sol;

Recommendation: change the name of the files to match the names of
the smart contracts.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Reported

I02. Functions That Should Be External

Public functions that are not called from inside the contract should
be declared external to save Gas.

Paths:

./erc20-wrapper/erc20-wrapper.sol : name(), symbol(), decimals(),
totalSupply(), balanceOf(), transfer(), allowance(), approve(),
transferFrom();

./price-oracle-wrapper/price-oracle-wrapper.sol :
getAnyAssetSupply(), getAnyAssetLastUpdateTimestamp();

Recommendation: consider changing the function visibility to
external.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Reported

I03. Solidity Style Guide Violation: Order Of Layout

Inside each contract, library or interface, use the following order:
1. Type declarations
2. State variables
3. Events
4. Errors
5. Modifiers
6. Functions

a. constructor
b. initializer (if exists)
c. receive function (if exists)
d. fallback function (if exists)
e. external
f. public

www.hacken.io
12



g. internal
h. private

Path:

./price-oracle-wrapper/price-oracle-wrapper.sol

Recommendation: change order of layout to fit Official Style Guide.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Fixed (Revised commit:
b54848f713f5e8f6b64b585dee2d9be8715f47ed).

I04. Inefficient Gas Modeling

Inside loop the value of oracleKeys.length taken every loop
iteration. Declaring a variable equal to the length of the list
before the loop will reduce the gas consumption when deploying a
smart contract.

Path:

./price-oracle-wrapper/price-oracle-wrapper.sol : constructor();

Recommendation: declare variable above loop to decrease .

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Reported

I05. Redundant Function Virtualization

The following functions are marked as virtual in the code, but never
being overridden. Virtual functions are much more Gas expensive
compared to default functions.

Paths:
./erc20-wrapper/erc20-wrapper.sol : name(), symbol(), decimals();

Recommendation: make these functions non-virtual.

Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Reported

I06. Solidity Style Guide: mixedCase in State Variables Names

Local and State Variable names should be mixedCase: capitalize all
the letters of the initialisms, except keep the first one lower case
if it is the beginning of the name.

Path:

./price-oracle-wrapper/price-oracle-wrapper.sol : _oracleByAsset;

Recommendation: follow the official Solidity guidelines.
www.hacken.io

13

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#function-names


Found in: db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Status: Reported

www.hacken.io
14



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
15



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
16



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
17



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/pendulum-chain/pendulum-ink-wrapper

Commit db10871f6ec81d74e0afe9e1e49b8f2e143aadc5

Whitepaper https://pendulum.gitbook.io/pendulum-docs/learn/litepaper

Requirements https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/REA
DME.md

Technical
Requirements

https://docs.google.com/document/d/1kS6S7uf0VvkPbM2xT4z4ipWd7lwdGxT2GL
9pu2EneNc/edit?usp=sharing

Contracts File: ./erc20-wrapper/price-oracle-wrapper.sol
SHA3: f99d95d4c813f813592f11079169d7277f078ea0aa4a9b2f68b5a1ba88246613

File: ./price-oracle-wrapper/erc20-wrapper.sol
SHA3: bcd0ce6b7a6712ed13cd34b4a0b9b8306a1cba9ff2007864e5f4a6de0863e2af

File: ./price-oracle-wrapper/interfaces/IPriceOracleGetter.sol
SHA3: 7c79418c642529bddfb8c10f04a56d8bc6237620a21fa3c0bebcd7250c2d7bc9

Second review scope

Repository https://github.com/pendulum-chain/pendulum-ink-wrapper

Commit b54848f713f5e8f6b64b585dee2d9be8715f47ed

Whitepaper https://pendulum.gitbook.io/pendulum-docs/learn/litepaper

Requirements https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/doc
s/OVERVIEW.md

Technical
Requirements

https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/doc
s/OVERVIEW.md

Contracts File: ./erc20-wrapper/erc20-wrapper.sol
SHA3: b2bee305d9a10ba38d023aa5a69a92d2e9743ab344c3f17a37adbf79cf789d0f

File: ./price-oracle-wrapper/price-oracle-wrapper.sol
SHA3: 0a95a1b7b5f28189d8f6c97dbd00ae6dfefecd671d9a72c36b0d7a8726e4e2f7

File: ./price-oracle-wrapper/interfaces/IPriceOracleGetter.sol
SHA3: 43d9c97e09aabb2cffff2cb4e9bb380f2e82fa5742b8dd598988b3db4fac3930

www.hacken.io
18

https://github.com/pendulum-chain/pendulum-ink-wrapper
https://pendulum.gitbook.io/pendulum-docs/learn/litepaper
https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/README.md
https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/README.md
https://docs.google.com/document/d/1kS6S7uf0VvkPbM2xT4z4ipWd7lwdGxT2GL9pu2EneNc/edit?usp=sharing
https://docs.google.com/document/d/1kS6S7uf0VvkPbM2xT4z4ipWd7lwdGxT2GL9pu2EneNc/edit?usp=sharing
https://github.com/pendulum-chain/pendulum-ink-wrapper
https://pendulum.gitbook.io/pendulum-docs/learn/litepaper
https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/docs/OVERVIEW.md
https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/docs/OVERVIEW.md
https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/docs/OVERVIEW.md
https://github.com/pendulum-chain/pendulum-ink-wrapper/blob/master/docs/OVERVIEW.md

