
Customer: Skies Verse
Date: 25 July, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Skies Verse

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20; ERC721; ERC1155; Staking;

Platform EVM

Language Solidity

Methodology Link

Website https://skiesverse.com/

Changelog
27.04.2023 – Initial Review
30.05.2023 - Second Review
22.06.2023 - Third Review
25.07.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://skiesverse.com/


Table of contents
Introduction 5
Scope 5
Severity Definitions 8
Executive Summary 9
Risks 10
System Overview 11
Checked Items 13
Findings 16

Critical 16
C01. Funds Lock 16
C02. Data Consistency 16
C03. Denial of Service 17
C04. Funds Lock 17
C05. Funds Lock 18
C06. Unauthorized Access 18
C07. Funds Lock 19
C08. Wrong Logic 19

High 20
H01. Highly Permissive Role Access 20
H02. Highly Permissive Role Access 20
H03. Undocumented Functionality 21
H04. Arbitrary “From” 21

Medium 21
M01. Best Practice Violation 21
M02. Usage of Built-in Transfer 22
M03. Contradiction 22
M04. Missing Validation 22
M05. Inconsistent Data 23
M06. Missing Validation 23
M07. CEI Pattern Violation 24

Low 24
L01. Unused Variable 24
L02. Floating Pragma 24
L03. Style Guide Violation 25
L04. Redundant Import 25
L05. Functions That Can Be Declared External 25
L06. Inefficient Gas Model 26
L07. Using Storage Instead Of Memory 26
L08. Naming Convention 26
L09. Contradiction 27
L10. No Messages In Require Conditions 27
L11. Redundant Block 27
L12. Misleading Error Messages 28
L13. Unused Imports 28

www.hacken.io
3



L14. Unused Argument 28
L15. Variables That Should Be Declared Constant 28
L16. Commented Code Parts 29
L17. Redundant Mathematical Operation 29

Disclaimers 30

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Skies Verse (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://gitlab.com/galaxy31/skiesverse-contracts

Whitepaper Not provided.

Functional
Requirements Not provided.

Technical
Documentatio
n

Not provided.

Commit ee3ffca19675c88bd96fe6bdcea7c94fdce6c233

Contracts File: contracts/PoolGateway.sol
SHA3: 255ae8c436e241ed32f4f394d725e04b277cf6989863ca89a54c32a3d37546cb

File: contracts/Armor.sol
SHA3: fb1d811175104f87d1ce4d4ebd7fa28187e6a6122ba2041ad6dbee8d0e4a0965

File: contracts/Hero.sol
SHA3: e5ef44eb6941f03e9dcdc9ab3fef436e631d75694994e5f849080b0c8d142719

File: contracts/Weapon.sol
SHA3: 856cd836c0160f3dc8895c0977cd64f7a97d6248ffaa550e68f5effc7ff96016

File: contracts/Potion.sol
SHA3: 8fa5d81887a640f4d28ba5ba0c40c2e4bc4ecf3f9a42c21c6bbfab72c363e3ee

File: contracts/Adaran.sol
SHA3: 51a574c03a7dde781ddd8fd1bae73afbbdd9d57d86e53de00f85e90e6dde907d

File: contracts/Nonces.sol
SHA3: b74b03338215b42848123c385f49900b7e4413801ff6b52a83222d7f0eea384c

File: contracts/Skies.sol
SHA3: 2350c6d6aa9a4370611f30cb296932df978b0b50edd7aa5cb6e5b5504ac26457

Second review scope

Repository https://gitlab.com/galaxy31/skiesverse-contracts

Whitepaper Not provided.

www.hacken.io
5



Functional
Requirements Not provided.

Technical
Documentatio
n

Not provided.

Commit 4f3590a33038b6e79ae896d9644a1ceff3e9d261and

Contracts File: contracts/PoolGateway.sol
SHA3: ff7a34da10a038f2c3a432e25889bc0f9a6763e5f2dbe8a6f089b2959d9da991

File: contracts/Armor.sol
SHA3: bd06435652bc31803cc4dc56cacc3092f7b6317ea5565de860e40765068fb3cd

File: contracts/Hero.sol
SHA3: cd6b64977d801b8b888ec3175569df01416e20a56b2da28e9142569f311c3af8

File: contracts/Weapon.sol
SHA3: 351fad49b8b3641c68016d7c6cdfcdac8ff1d285fecf4a3fde49684d3197c62c

File: contracts/Potion.sol
SHA3: ce55f6defa004a47ffdc2fd5d29ddb00d88f082cb37886953938b358048644e5

File: contracts/Adaran.sol
SHA3: fd93e60337a3938ec5ec005b5f83aafc2430a26cf728b198160b18f50ed79e19

File: contracts/Nonces.sol
SHA3: 2f4e8315c471ef355af41ec48f18fc2001d781dde8d0b8c7c99747e1b6f08370

File: contracts/Skies.sol
SHA3: 16afc30f182f3d29778b163f34cd627982a8382265486f4b4ef4ce4494286771

Third review scope

Repository https://gitlab.com/galaxy31/skiesverse-contracts

Whitepaper https://docs.google.com/presentation/d/1KwbpaH-VYhEYkWt9Z5QgxSTQZ5M_gG
zcBq91EaQaj18/edit?usp=sharing

Functional
Requirements

https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/3a4e5f78e72e74
f08bee6a8aa529930a9e7ebfb5/docs/Skies.docx

Technical
Documentatio
n

https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/3a4e5f78e72e74
f08bee6a8aa529930a9e7ebfb5/docs/Skies.docx

Commit 3a4e5f78e72e74f08bee6a8aa529930a9e7ebfb5

Contracts File: contracts/PoolGateway.sol
SHA3: 9461b6064177cc18aa720a08d707336aa7bc1f3eef293119c3369668898923c1

File: contracts/Armor.sol
SHA3: 2f95c6da0de60795271523b3ba0316d6b34646631972679ed8f1b3ed447c5de0

File: contracts/Hero.sol
SHA3: 289e3ed42a8c196b3fca9801dc804b927add78ff61bd23d0ef391af694eb6c3a

www.hacken.io
6

https://docs.google.com/presentation/d/1KwbpaH-VYhEYkWt9Z5QgxSTQZ5M_gGzcBq91EaQaj18/edit?usp=sharing
https://docs.google.com/presentation/d/1KwbpaH-VYhEYkWt9Z5QgxSTQZ5M_gGzcBq91EaQaj18/edit?usp=sharing
https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/3a4e5f78e72e74f08bee6a8aa529930a9e7ebfb5/docs/Skies.docx
https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/3a4e5f78e72e74f08bee6a8aa529930a9e7ebfb5/docs/Skies.docx
https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/3a4e5f78e72e74f08bee6a8aa529930a9e7ebfb5/docs/Skies.docx
https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/3a4e5f78e72e74f08bee6a8aa529930a9e7ebfb5/docs/Skies.docx


File: contracts/Weapon.sol
SHA3: c91c8026f9404b10e3fb843456b5089de09c1bf01aab63dcfb9b962d61c26b73

File: contracts/Potion.sol
SHA3: cf04276e4ec0dc674de0b17407344672ecc401216dc835a5c58ca3c538fba996

File: contracts/Adaran.sol
SHA3: d1f43ef76323f029f60eade9a2c2d3449e27d4144dd707fa25b0ec7f1b01aafa

File: contracts/Nonces.sol
SHA3: 9c4b2497fac5c82f61510bc98906662e4b850f5aca8b7bb5f1f5c1bd27aa399e

File: contracts/Skies.sol
SHA3: 1053f02e3dc30a7bce224802dd847f01e27b534d3e6a7f709d85da65bce85cea

Fourth review scope

Repository https://gitlab.com/galaxy31/skiesverse-contracts

Whitepaper Whitepaper.pdf

Functional
Requirements

https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/bd9a5456337272
438a342c798b8afd940a9bd8da/docs/Skies.docx

Technical
Documentatio
n

https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/bd9a5456337272
438a342c798b8afd940a9bd8da/docs/Skies.docx

Commit bd9a5456337272438a342c798b8afd940a9bd8da

Contracts File: contracts/PoolGateway.sol
SHA3: e739da7f300dd41e3aa4e1ebd77dc8b6e9293823c916182f56a901712d5b9a26

File: contracts/Armor.sol
SHA3: 8c565cfb70152a905b57d955d907517f8a7e67d38065fff36a3e1d8c4d581c4c

File: contracts/Hero.sol
SHA3: 570e5d3fd4b7c15482b56df744bc8033143b1c95da642bff4f58cd92c9eae674

File: contracts/Weapon.sol
SHA3: 1dd3684bb521341a237ef409713ce251425dac2e28566a54aeb6c067b12ba17f

File: contracts/Potion.sol
SHA3: 48a74902d600d535d214bfde1c1246f7cf75b13ec5b09bc97849ccb8cd6f5181

File: contracts/Adaran.sol
SHA3: e7c978f20a6a90a0b9cec9d2135510285340be8a5f6f83bf5a992ec502f60c0b

File: contracts/Skies.sol
SHA3: 8d493e11050be76e083acffdff5030a5b1e20a9bca5a4dd57c3c41e6d28d299d

www.hacken.io
7

https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/bd9a5456337272438a342c798b8afd940a9bd8da/docs/Skies.docx
https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/bd9a5456337272438a342c798b8afd940a9bd8da/docs/Skies.docx
https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/bd9a5456337272438a342c798b8afd940a9bd8da/docs/Skies.docx
https://gitlab.com/galaxy31/skiesverse-contracts/-/blob/bd9a5456337272438a342c798b8afd940a9bd8da/docs/Skies.docx


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
8



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● Development environment is described.
● NatSpec is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.

Test coverage
Code coverage of the project is 95.37% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score
As a result of the audit, the code contains 3 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

The system users should acknowledge all the risks summed up in the risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

27 April 2023 13 6 2 6

30 May 2023 1 2 3 3

22 June 2023 4 2 0 1

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


25 July 2023 3 0 0 0

Risks

● Most of the interactions with the various ERC721, ERC20, ERC1155, and
PoolGateway contracts involve a certain middleman who has the role of
the SIGNER. If the address with this role loses access to their
wallet, most of the interactions with the protocol will be rendered
impossible to perform.

● There are upgradable contracts in the protocol; it is impossible to
assure that this audit will still be valid for any version with code
that differs in any way from this audit.

● The owner can set himself as a _deposit_allowed address and withdraw
user funds that have been approved to the contract.

www.hacken.io
10



System Overview

Skies Verse is a mixed-purpose system with the following contracts:
● Adaran (Token) — A custom ERC20 token that allows minting by approved

signers, based on EIP-712 signatures. It has the following
attributes:

○ Name: Adaran
○ Symbol: ADR
○ Decimals: 18
○ Total supply: Unlimited

● Armor — An ERC721 token contract that allows minting of unique Armor
tokens for ethers or Skies tokens, using EIP-712 signatures from
approved signers. It also includes base token URI management.

● Hero — An ERC721 token contract that allows minting of unique Hero
tokens for ethers or Skies tokens, using EIP-712 signatures from
approved signers. It also includes base token URI management.

● Nonces — An abstract contract that provides nonce functionality for
EIP-712 signatures, keeping track of nonces for each address and
providing the DOMAIN_SEPARATOR.

● PoolGateway — A contract that allows users to stake Skies tokens and
earn rewards. The contract handles deposits, withdrawals, and reward
calculations, while managing the staking pools.

● Potion — An ERC1155 token that has the following attributes:
○ Name: Potion
○ Symbol: PTN

● Skies — An ERC20 token contract used for various purposes, including
staking in the PoolGateway and minting Armor and Hero tokens. It has
the following attributes:

○ Name: Skies
○ Symbol: SKS
○ Decimals: 18
○ Total supply: Depending on the constructor arguments.

● Weapon — An ERC721 token contract that allows minting of unique
Weapon tokens for ethers or Skies tokens, using EIP-712 signatures
from approved signers. It includes base token URI management.

Privileged roles
● Armor, Hero, Weapon, Potion contracts: Only the admin can change the

base token URI (Role: DEFAULT_ADMIN_ROLE).
www.hacken.io

11



● PoolGateway contract: Only the admin can add or remove roles for the
Developer and Signer role (Role: DEFAULT_ADMIN_ROLE).

● Adaran, Armor, Hero, Weapon, Potion contracts: Only approved signers
can mint tokens using EIP-712 signatures (Role: SIGNER).

● PoolGateway contract: Only the developer can withdraw fees (Role:
DEVELOPER)

● PoolGateway contract: Only approved signers can interact with the
functions spendTokens(), getTokens() and addStake()

Recommendations
● In the poolGateway contracts token1 and token2 in the initialize()

function are misleading names, it is possible to change them with
more meaningful names.

● There are typos in the code. It says _withdrawed, TokensSpended and
TokensWithdrawed; however, it should be _withdrawn, TokensSpent and
TokensWithdrawn, it is recommended to fix the typos.

www.hacken.io
12



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
13

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
14

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not Relevant

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
15



Findings

Critical

C01. Funds Lock

In the function finishStake() there is a require statement that will
eventually cause funds lock, stakes[msg.sender][id].finish_amount +
_staked <= _totalSkiesBalance * STAKING_POOL / 100, in this statement
the variable finish_amount + _staked needs to be equal or less than
_totalSkiesBalance multiplied by STAKING_POOL and divided by 100.

finish_amount is defined in the function addStake(), and it is equal
to amount multiplied by the reward decided for that stake,
_totalSkiesBalance is a sum of all the amounts added by the
addStake() function, it is important to note that there is no
subtraction to the _totalSkiesBalance when the various stakes are
finished, _staked is a variable to which no value is assigned, so it
is equal to 0, and STAKING_POOL is a constant that is equal to 50.

In the requirements, it is stated that the amount multiplied by the
reward, called finish_amount, needs to be less than 50% of the total
staked amount, this will eventually lead to funds lock, because if
_totalSkiesBalance is high enough as a value, this will allow users
to withdraw the tokens summed with the interest accrued with the
stake, but the rewards might come from other users staked token, when
those are finished, users will not be able to withdraw their original
amount anymore, causing funds lock.

Path:
./contracts/PoolGateway.sol : finishStake()

Recommendation: Use a different logic in the finishStake() function
that will prevent users from being able to withdraw other users’
Skies token.

Remove the increment of _totalSkiesBalance in addStake() and check
that there are enough finish tokens in addStake() instead of
finishStake()

Found in: ee3ffca

Status: Fixed (Revised commit: 3a4e5f7)

C02. Data Consistency

There are flaws in the cash flow system within smart contracts, which
can result in issues with token transfers both between and within
contracts.

The amounts deposited to the PoolGateway contract from other
contracts are not tracked in the _totalSkiesBalance variable,

www.hacken.io
16



resulting in the contract not being able to track the earned tokens
correctly.

The amount of tokens staked by the users is not tracked inside the
_staked variable. This results in a lack of validation of
user-deposited funds and unauthorized extraction of the users' funds
from the contract.

The amount of rewards given to users is not tracked in the _rewarded
variable. This results in an inability to track rewards paid to users
and limits the overall rewards given to the required 20% of the
earned tokens.

There is also a lack of tracking of the staking rewards given to the
users, leading to an incorrect calculation of the funds that should
be used for the staking rewards, and should be limited to 50% of the
earned tokens.

The cash flow system is full of invalid calculations based on the
invalid values from the global variables.

Path:
./contracts/PoolGateway.sol

Recommendation: Update the cash flow system of the PoolGateway
contract to meet the requirements and prevent the extraction of funds
belonging to the stakers.

Found in: ee3ffca

Status: Fixed (Revised commit: 3a4e5f7)

C03. Denial of Service

In the getTokens() function of the PoolGateway contract, the
safeTransferFrom is used incorrectly.

The safeTransfer function should be used instead, as the
safeTransferFrom requires the approval of the funds before transfer,
and this is not done inside the contract.

This function will always revert with insufficient allowance when
called leading to Denial of Service.

Path:
./contracts/PoolGateway.sol : getTokens()

Recommendation: Use safeTransfer.

Status: Fixed (Revised commit: 4f3590a3)

C04. Funds Lock

In the permitMintForEthers() function, users can transfer more ETH
than required; however, those funds are locked inside the contract

www.hacken.io
17



and are lost, as only the value amount is forwarded to the _pool
address.

Additionally, there is no refund function that will allow users to
withdraw their funds in case of overpayment.

Paths:
./contracts/Armor.sol : permitMintForEthers()
./contracts/Hero.sol : permitMintForEthers()
./contracts/Weapon.sol : permitMintForEthers()

Recommendation: Validate strictly that msg.value == value, or
implement a refund system for users who transferred more than
required.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

C05. Funds Lock

In the permitMint() function, the Skies tokens are transferred
directly to the PoolGateway contract using the safeTransferFrom
function.

This transfer is not accounted for in any way in the PoolGateway
contract, and the _totalSkiesBalance variable is not updated by the
earned amount.

The transferred Skies tokens will be locked inside the PoolGateway
contract.

Paths:
./contracts/Potion.sol : permitMint()
./contracts/Armor.sol : permitMint()
./contracts/Hero.sol : permitMint()
./contracts/Weapon.sol : permitMint()

Recommendation: Interact with the PoolGateway contract directly,
implement a deposit function that will update the storage variables
with occurred earnings.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

C06. Unauthorized Access

In the finishStake() function, there is no update on the amount of
withdrawn funds, and any user who deposited to the staking can run
this function with the same id parameter an unlimited number of
times.

This results in the possibility of draining all the Skies tokens from
the PoolGateway contract.

www.hacken.io
18



Path:
./contracts/PoolGateway.sol : finishStake()

Recommendation: Mark user stakes as withdrawn when the finishStake()
function is called to prevent unlimited withdrawals.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

C07. Funds Lock

There are 3 ways of depositing Skies token into the contract:
addStake(), spendTokens(), depositToken(), when creating a stake the
totality of the amount of the stake is added to _totalSkiesBalance,
from the _totalSkiesBalance it is possible to withdraw only 50% from
the function finishStake(), this assumes that the flow of funds will
remain constant with the 3 ways of depositing tokens.

If the flow of funds does not remain constant the users will not be
able to finish their stake because the variable _totalSkiesBalance
will not increment.

The users deposited funds should not be mixed in with the
withdrawable rewards and there should be a way for users to withdraw
their tokens safely at the end of the stake even if there are no
rewards.

Path:
./contracts/PoolGateway.sol : finishStake();

Recommendation: Change the logic of the contract from a
_totalSkiesBalance to a system with multiple variables that represent
diverse kinds of Skies token, for example, a variable to keep track
of the staked tokens, a variable to keep track of the rewards that
arrive with depositTokens(), and during the flow of the contract do
not allow anyone, but the user that deposited to withdraw the Skies
tokens.

Found in: 4f3590a3

Status: Fixed (Revised commit: 3a4e5f7)

C08. Wrong Logic

When adding a stake it is taken into account amount * reward / 100 +
_unstaked +_stakingPoolLocked <= _stakingPool this way the rewards
and staking pool token are mixed up in the calculation to stake, it
should be checked if there are enough reward tokens to be given, not
if there are enough tokens stake to be withdrawn.

Path:
./contracts/PoolGateway.sol : addStake(), finishStake();

www.hacken.io
19



Recommendation: Check if there are enough token to reward the stake
and do not touch or modify the staked pool; if a user deposits there,
he should just be able to withdraw from there, no calculations should
be performed on that pool.

Found in: 3a4e5f7

Status: Fixed (Revised commit: bd9a545)

High

H01. Highly Permissive Role Access

In the getTokens() function in the PoolGateway contract, if it works
correctly after the fix to the C03 issue, the role SIGNER can sign a
transaction to transfer funds belonging to the stakers.

There is no validation check that prevents the withdrawal of funds
that were staked in the PoolGateway or the staking rewards given.

Only funds collected as payments in the system and less than 20% of
the REWARD_POOL threshold, in the case of Skies token, should be able
to be withdrawn in the getTokens() function.

Path:
./contracts/PoolGateway.sol : getTokens()

Recommendation: Add proper validation to the getTokens() function to
limit the amount of rewards distributed to no more than 20% of
collected earnings as in the requirements.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

H02. Highly Permissive Role Access

In the withdrawSkies() function in the PoolGateway contract, the
DEVELOPER role can withdraw funds that belong to the stakers.

The _totalSkiesBalance variable is increased inside the addStake()
function by the amount of stakers' deposited funds. The calculations
of the DEVELOPER's earnings inside the withdrawSkies() function are
done based on the incorrect value of the _totalSkiesBalance,
resulting in the ability to withdraw more than was actually collected
from earnings.

Path:
./contracts/PoolGateway.sol : withdrawSkies()

Recommendation: Fix the flaws in the cash flow system and update the
_totalSkiesBalance correctly. Privileged roles of the system should
have no access to user-deposited funds or given rewards for staking.

www.hacken.io
20



Found in: ee3ffca

Status: Fixed (Revised commit: 3a4e5f7)

H03. Undocumented Functionality

The functions spendTokens() and getTokens() are not documented but
are vital for the normal flow of the contract

Path:
./contracts/PoolGateway.sol : spendTokens(), getTokens();

Recommendation: Document the functionalities or remove them.

Found in: 4f3590a3

Status: Mitigated (They will be needed to update the backend, it is
not possible to ensure fully the functionality in the scope of this
audit)

H04. Arbitrary “From”

An argument of the function depositToken() is the address from which
the tokens are being transferred, since there is no restriction to
who can call that function, if a user has approved the tokens to be
spent on the contract, the tokens could be sent from his address to
the contract and withdrawn as rewards by other users/developer
address.

Path:
./contracts/PoolGateway.sol : depositToken();

Recommendation: The NFT contracts that call depositToken() should be
the only contracts that can call depositToken(), the user should call
a function inside the NFT contract that should receive the tokens and
subsequently send it to PoolGateway.sol

Found in: 4f3590a3

Status: Mitigated (The arbitrary “from” is mitigated, the owner of
the contract can still set himself as a rightfully “from” address and
withdraw funds, it is up to the owner to not attack maliciously the
contract, added as a risk also.)

Medium

M01. Best Practice Violation

In the initialize() function, the AccessControlUpgradeable.sol is
never initialized.

All upgradeable contracts should be initialized properly.

When working with upgradable smart contracts, it is best practice to
use _disableInitializers() in the implementation constructor.

www.hacken.io
21



Path:
./contracts/PoolGateway.sol

Recommendation: Initialize the AccessControlUpgradeable inside the
initialize() function of the PoolGateway.sol contract. Add a
constructor() with _disableInitializers() function inside.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

M02. Usage of Built-in Transfer

The built-in transfer and send functions process a hard-coded amount
of Gas. In case the receiver is a contract with receive or fallback
function, the transfer may fail due to the “out of Gas” exception.

Path:
./contracts/PoolGateway.sol : withdrawEthers()

Recommendation: Replace transfer and send functions with call.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

M03. Contradiction

According to the NatSpec comment of permitMint() the to parameter
should be different from the 0 address. However, in the function, the
validation is missed.

According to the NatSpec comment of permitMint() the value parameter
should be different from 0. However, in the function, the validation
is missed.

This can lead to unexpected value processed by the contract.

Path:
./contracts/Adaran.sol : permitMint()

Recommendation: Implement the validations according to the NatSpec
comment.

Found in: ee3ffca

Status: Fixed (Revised commit: 3a4e5f7)

M04. Missing Validation

In spendTokens() the from parameter should be equal to _msgSender().
However, in the function, the validation is missed.

In spendTokens() the value parameter should be higher than 0.
However, in the function, the validation is missed.

www.hacken.io
22



This can lead to unexpected value processed by the contract.

Path:
./contracts/PoolGateway.sol : spendTokens()

Recommendation: Implement missing validations.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

M05. Inconsistent Data

Value used in the event TokensSpended is the function parameter from
but in the safeTransferFrom the _msgSender() is used. There is not
any validation of from parameter and these two values can be
different.

This may lead to wrong assumptions on the front-end about the current
contract state.

Path:
./contracts/PoolGateway.sol : spendTokens()

Recommendation: Keep the data emitted in the events with the data
present in the functions.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

M06. Missing Validation

In addStake() the user parameter should be different from the 0
address. However, in the function, the validation is missed.

In addStake() the start parameter should be lower than the end
parameter. However, in the function, the validation is missed.

In the addStake() function, there is no validation to check if there
are sufficient rewards to distribute for the stake being added.

This can lead to unexpected value processed by the contract.

Path:
./contracts/PoolGateway.sol : addStake()

Recommendation: Implement missing validations. Consider adding
(amount * (100 + reward) / 100) - amount + _stakeRewarded <=
_totalSkiesBalance * STAKING_POOL / 100 to ensure that there are
enough tokens for rewards, where _stakeRewarded is a helper global
variable to track stake rewards gifted.

Found in: ee3ffca

Status: Fixed (Revised commit: bd9a545)

www.hacken.io
23



M07. CEI Pattern Violation

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The Checks-Effects-Interactions pattern is violated. During the
functions, some state variables are updated after the external calls.

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during implementation of new functionality.

Paths:
./contracts/PoolGateway.sol : addStake(),

./contracts/Armor.sol : permitMint(), permitMintForEthers(),

./contracts/Hero.sol : permitMint(), permitMintForEthers(),

./contracts/Weapon.sol : permitMint(), permitMintForEthers()

Recommendation: Follow common best practices, and implement the
functions according to the Checks-Effects-Interactions pattern.

Found in: 3a4e5f7

Status: Fixed (Revised commit: bd9a545)

Low

L01. Unused Variable

The variables _adaran_token, REWARD_POOL and _rewarded are never
used.

Path:
./contracts/PoolGateway.sol

Recommendation: Remove unused variables or update the code with
missed functionality.

Found in: ee3ffca

Status: Fixed (Revised commit: 3a4e5f7)

L02. Floating Pragma

The project uses floating pragmas ^0.8.0.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Paths:
./contracts/PoolGateway.sol
./contracts/Armor.sol
./contracts/Adaran.sol

www.hacken.io
24



./contracts/Potion.sol

./contracts/Weapon.sol

./contracts/Hero.sol

./contracts/Nonce.sol

./contracts/Skies.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L03. Style Guide Violation

The provided projects should follow the official guidelines.

Paths:
./contracts/PoolGateway.sol
./contracts/Armor.sol
./contracts/Adaran.sol
./contracts/Potion.sol
./contracts/Weapon.sol
./contracts/Hero.sol

Recommendation: Follow the official Solidity guidelines.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L04. Redundant Import

The import of Initializable.sol is unnecessary for the contract.

Initializable is already inherited by AccessControlUpgradeable and
EIP712Upgradeable.

Path:
./contracts/PoolGateway.sol

Recommendation: Remove the redundant import.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L05. Functions That Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Path:
./contracts/PoolGateway.sol : initialize()

www.hacken.io
25

https://github.com/ethereum/solidity/releases
https://docs.soliditylang.org/en/v0.8.13/style-guide.html


Recommendation: Use the external attribute for functions never called
from the contract.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L06. Inefficient Gas Model

The variable _staked is declared and used in the function
finishStake(), but no value is assigned to it.

Path:
./contracts/PoolGateway.sol

Recommendation: Remove the variable or assign it a value.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L07. Using Storage Instead Of Memory

Using the local storage variable will not allocate memory for its
value but instead will make calls to the storage each time accessing
it.

Path:
./contracts/PoolGateway.sol : finishStake()

Recommendation: Use memory for a local variable to save Gas and then
change updated values to the state at the end of the function.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L08. Naming Convention

The _PERMIT_TYPEHASH variables are misleading and reduce code
readability, the proper naming convention when working with the
EIP712 is to name them with function name + TYPEHASH for example
permitMint should be PERMIT_MINT_TYPEHASH, spendTokens
SPEND_TOKENS_TYPEHASH. Those names are too similar and can be
mistaken.

Paths:
./contracts/PoolGateway.sol
./contracts/Armor.sol
./contracts/Adaran.sol
./contracts/Potion.sol
./contracts/Weapon.sol
./contracts/Hero.sol

Recommendation: Give variables more meaningful names to increase
readability.

www.hacken.io
26



Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L09. Contradiction

NatSpec is contradicting the code; a lot of NatSpec comments refer to
the owner’s approval, when in fact, it is the signer's approval.

Paths:
./contracts/Weapon.sol : permitMintForEthers(), permitMint()
./contracts/Potion.sol : permitMint()
./contracts/Armor.sol : permitMintForEthers(), permitMint()
./contracts/Adaran.sol : permitMint()
./contracts/Hero.sol : permitMintForEthers(), permitMint()

Recommendation: Fix the contradiction in the NatSpec.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L10. No Messages In Require Conditions

The require condition can be used to check for conditions and throw
an exception if the condition is not met. It is possible to provide a
message string for require. Without providing a string argument to
require, it will revert with empty error data, not even including the
error selector.

Paths:
./contracts/Armor.sol : permitMintForEthers()
./contracts/Hero.sol : permitMintForEthers()
./contracts/Weapon.sol : permitMintForEthers()

Recommendation: Some require statements are missing error messages.
This makes code harder to test and debug.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L11. Redundant Block

The usage of virtual is unnecessary in some functions.

Paths:
./contracts/Hero.sol : _baseURI(), tokenURI(), supportInterface()
./contracts/Armor.sol : _baseURI(), tokenURI(), supportInterface()
./contracts/Potion.sol : _baseURI(), uri(), supportInterface()
./contracts/Weapon.sol : _baseURI(), tokenURI(), supportInterface()

Recommendation: Remove the redundant code block.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)
www.hacken.io

27



L12. Misleading Error Messages

A message in a require condition is misleading.

This makes code harder to test and debug.

Path:
./contracts/Adaran.sol : permitMint()

Recommendation: Refactor the message in the require conditions to fit
code behavior.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L13. Unused Imports

The import of Ownable.sol is unnecessary for the contract.

Path:
./contracts/Nonces.sol

Recommendation: Remove the redundant import.

Found in: ee3ffca

Status: Fixed (Revised commit: 4f3590a3)

L14. Unused Argument

Inside addStake() there is a check require(user == _msgSender(),
"Illegal sender"); that checks if the passed address is equal to
msg.sender. If this check is present, then user argument is
redundant, because the same value can be accessed with _msgSender().
Unused arguments should be removed from the contracts. This will help
lower the Gas cost.

Path:
./contracts/PoolGateway.sol : addStake()

Recommendation: Remove redundant argument.

Found in: 3a4e5f7

Status: Fixed (Revised commit: bd9a545)

L15. Variables That Should Be Declared Constant

State variables that do not change their value should be declared
constant to save Gas.

Path:
./contracts/Potion.sol : name, symbol

Recommendation: Declare the above-mentioned variables as constants.

www.hacken.io
28



Found in: 3a4e5f7

Status: Reported

L16. Commented Code Parts

In the contract Skies lines 167-169 are commented parts of code.

This reduces code quality.

Path:
./contracts/Skies.sol : lock()

Recommendation: Remove commented parts of code.

Found in: 3a4e5f7

Status: Reported

L17. Redundant Mathematical Operation

The mathematical operation require(paymentPlan <= paymentPlans.length
- 1) is redundant. The same check can be performed without
mathematical operation: require(paymentPlan < paymentPlans.length)

Path:
./contracts/Skies.sol : planNotRevoked()

Recommendation: Remove redundant mathematical operations.

Found in: 3a4e5f7

Status: Reported

www.hacken.io
29



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
30


