
Customer: Soilfarm
Date: 03 August, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Soilfarm

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Tags Fungible Token; Vesting; Staking; Yield Farming; Centralization;
Signatures

Platform EVM

Language Solidity

Methodology Link

Website https://soil.co/

Changelog
02.06.2023 – Initial Review
03.07.2023 - Second Review
03.08.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://soil.co/


Table of contents
Introduction 5
System Overview 5
Executive Summary 7
Risks 8
Checked Items 9
Findings 12

Critical 12
C01. Signed Message Replay Attack; Irrevocable Signed Message 12
C02. Funds Lock; Data Consistency; 12

High 13
H01. Highly Permissive Role Access 13
H02. Highly Permissive Role Access 14
H03. Hidden Fees 14
H04. Data Consistency; Highly Permissive Role Access 15
H05. Funds Lock; Highly Permissive Role Access 15
H06. Hidden Fees 16
H07. Data Consistency; Fund Lock; Highly Permissive Role Access 16
H08. Coarse-Grained Access Control 17
H09. Coarse-Grained Access Control 18
H10. Data Consistency 19

Medium 19
M01. Highly Permissive Role Access 19
M02. Data Consistency 20
M03. Requirements Violation 20
M04. Race Condition 21
M05. Integer Overflow/Underflow 21
M06. Data Consistency 22
M07. Redundant Code 23
M08. Data Consistency 23

Low 24
L01. Data Consistency 24
L02. Missing Events on Critical State Updates 25
L03. Missing Validation 25
L04. Non-Finalized Code 26

Informational 26
I01. State Variables Can Be Declared Immutable 26
I02. Redundant Code 26
I03. Out-Of-Bounds Array Access 27
I04. Style Guide Violation 27
I05. Inefficient Gas Model - Counter Increment 28
I06. Missing Zero Address Validation 28
I07. Unused Identifier 28
I08. Redundant Import 29

Disclaimers 30

www.hacken.io
3



Appendix 1. Severity Definitions 31
Risk Levels 31
Impact Levels 32
Likelihood Levels 32
Informational 32

Appendix 2. Scope 33

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Soilfarm (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Soilfarm is a DeFi system aiming to provide users the ability to lend money
to selected traditional funds, then yield SOIL tokens and USDC. Apart from
that users will be able to buy SOIL tokens and stake them to receive more.
To be able to join a pool or stake, users must complete KYC approval from
the backend app. Then, for every action backend signature must be obtained.
Smart contracts are not responsible for calculating the rewards.

The files in the scope:
● SoilToken.sol — ERC-20 token that features burn and snapshot

functionalities. All initial supplies are minted to predefined
addresses during the construction phase for initial holders. It does
not permit any additional minting.

● Staking.sol — the Staking contract is a smart contract designed for
staking and unstaking SOIL tokens, as well as claiming rewards and
performing administrative functions. The contract allows users to
stake their SOIL tokens, earn rewards, and withdraw their staked
tokens along with the rewards. For every non-administrative function,
the user has to provide a signature as a parameter in the function.
The signature is generated in the backend, and smart contract checks
if the provided signature is signed by the backend signer.

● Vesting.sol — token holder contract that releases tokens based on
parameters provided by the admin that created it (the address for
which vesting is created, amount of locked tokens, unix timestamp
from which tokens are releasing, time between release intervals,
amount of tokens released per interval, boolean indicating whether
withdrawing on demand by admin is enabled)

● PoolsContract.sol — the pools contract is designed to allow users to
gain rewards in USDC tokens and potentially in SOIL tokens by
depositing to the pool. Pools are updatetable for the admin role. In
order to withdraw from the pool users must wait a specified amount of
time by the admin, unless early withdrawals are enabled. Just like in
staking contracts, users have to provide signatures generated by the
backend server as the parameter in the function call.

● ProtocolSettings.sol — provides an access control system to the
protocol.

● VerifySignatureSystem.sol — provides signature verification to the
protocol.

www.hacken.io
5



Privileged roles
● DEFAULT_ADMIN_ROLE: super admin that can grant and revoke roles. This

role can call withdrawFunds function and withdraw all deposited funds
by users in the Pools Contract.

● ADMIN_ROLE: this role is able to perform any action with an onlyAdmin
modifier (creating pools, updating pools, withdraw collected fees
from pools, update backend signer, disable and enable staking, unlock
vested tokens in vesting on demand, send rewards to pool and staking
contract).

● TokenSpender: address that can create vaults in vesting and from
which vested tokens come from.

● Backend Signer: the address which the signatures provided by the user
should come from.

● Rewards Holder Wallet: address that holds the rewards for Pools and
Staking users.

● Soil Token Owner: The only role that can update a list of
snapshooters.

● Snapshooter: Has the permission to make a snapshot on soil token.

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements have some gaps:
○ Project overview is provided with roles and use cases.
○ Tokenomics is provided.

● Technical description is robust:
○ Dev env instructions are provided.
○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Solidity Style Guide violations.
● Project contains redundant functionality.

Test coverage
Code coverage of the project is 97.71% (branch coverage), with a mutation
score of 53.31%.

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is partially missing.
● Interactions with several users are tested thoroughly.
● Low test mutation score indicates the code logic is not validated

well by tests, and that the tests would not catch code changes.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.9.The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

02 June 2023 3 8 9 1

03 July 2023 1 0 4 1

03 August 2023 0 0 0 0

Risks

● The contract design provides administrators with a significant degree
of control over contract operation. If the keys of these admin
accounts are compromised, the operation of the contract, including
user funds and important parameters, could be affected.

● The project's contract design shows a high degree of centralization.
This centralization means that control over key operations and
parameters is vested in a few accounts or roles. The risks associated
with such centralization include potential misuse of power, single
points of failure.

● Part of the project's functionality, particularly the creation of
signatures and rewards calculation, is handled off-chain and was not
part of the audit. As a result, the security of these off-chain
components cannot be verified.

● The contract architecture currently lacks a reentrancy guard for
operations that interact with tokens. While this might not pose a
direct threat with the current tokens supported, it could potentially
be a security concern if the contract is updated to support other
token standards, such as ERC777.

● The security of the funds in the system depends on the out-of-scope
legal process.

www.hacken.io
8



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
9



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
10

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11



Findings

Critical

C01. Signed Message Replay Attack; Irrevocable Signed Message

Impact High

Likelihood High

The protocol's pool and staking contracts, which inherit from
VerifySignatureSystem, are not utilizing EIP712 for signatures and
deadlines. The current implementation of signed messages lacks
mechanisms to prevent replay attacks and does not offer a mechanism
for message expiration.

Without a standard such as EIP712, signed messages can potentially be
reused on other chains (replay attacks).

This can lead to unauthorized execution of smart contract functions,
manipulation of the contract's state and data, or compromise of the
integrity and security of the contract's operations.

The signature revoke issue arises when a contract lacks functionality
that allows revoking a signed message.

This can result in the execution of a signed transaction when it is
not desired by a signer.

Paths: ./contracts/Staking.sol : claimRewards(), stakeSOIL(),
restakeRewards(), unstakeSOIL()

./contracts/PoolsContract.sol : deposit(), withdraw(), claimRewards()

./contracts/VerifySignatureSystem.sol : verifySignature()

Recommendation: implement EIP712 for signatures in the protocol.
EIP712 offers a standard way to structure data and generate
signatures, which would significantly enhance the security of the
contract by protecting it from replay attacks. Also, consider adding
an expiration timestamp (deadline) to the signed messages to ensure
that they cannot be used indefinitely, further increasing the
robustness of the protocol.

Found in: a3d764b

Status: Fixed (Revised commit: 7ec15f8)

C02. Funds Lock; Data Consistency;

Impact High

Likelihood High

The unstakeSOIL function of the Staking.sol contract includes an
erroneous double deduction of the amountOfRewards variable. This

www.hacken.io
12



leads to a significant over-decrement of reward tokens, which in
turn, could potentially lock the incorrectly deducted rewards within
the contract.

If a user unstakes and the reward amount is deducted twice from
amountOfRewards, the remaining balance of reward tokens in the
contract may not be accurate. This could lead to a situation where
the "double-spent" rewards remain locked within the contract, leaving
them inaccessible to users who should be entitled to claim them. This
might cause significant disruption to the contract's operation.

Paths: ./contracts/Staking.sol : unstakeSOIL()

Recommendation: revise the unstakeSOIL function to ensure that the
rewards are deducted from amountOfRewards only once during each
unstaking operation. This correction ensures the accurate tracking of
reward token balances within the contract, preventing potential
locking of reward tokens.

Found in: 7ec15f8

Status: Fixed (Revised commit: d71b55e)

High

H01. Highly Permissive Role Access

Impact High

Likelihood Medium

The function adminWithdraw grants the administrator the ability to
withdraw up to 30% of SOIL tokens from the staking contract,
excluding the collected fee. This capability does not update user
amounts. Consequently, users who unstake after an admin withdrawal
may not be able to retrieve their staked tokens fully or at all,
depending on the sequence and timing of unstaking transactions. As
all tokens (excluding fee) belong to users who staked them, this
functionality is unclear.

Admin misuse of this function can lead to financial loss for users
who may not be able to retrieve their staked tokens. The potential
for loss could result in eroded trust and reputational damage to the
platform.

Path: ./contracts/Staking.sol : adminWithdraw()

Recommendation: remove mentioned functionality, as its potential for
misuse poses unnecessary risk. If administrative withdrawals are
necessary, such functionality must transparently reflect and update
user balances, ensuring users can retrieve their staked tokens fully.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

www.hacken.io
13



H02. Highly Permissive Role Access

Impact High

Likelihood Medium

The withdrawFunds function is designed to allow an admin role to
withdraw all funds deposited by users. This functionality is highly
sensitive as it deals with the transfer of assets that belong to the
users of the contract. Having an admin role with this level of access
can pose a significant risk if the account associated with the role
is compromised.

If the account with admin privileges is compromised, malicious actors
could drain the contract of its assets, causing significant financial
damage to users and potentially irreparable harm to the trust and
reputation of the project.

Path: ./contracts/PoolsContract.sol : withdrawFunds()

Recommendation: remove the withdrawFunds function. This approach
reduces potential security risks and aligns with the principle of
least privilege, considering users have already paid fees during
contract interactions.

Found in: a3d764b

Status: Mitigated (the withdrawFunds function can only be executed by
a Super Admin role, which is secured through a multi-signature.
Furthermore, all user funds are safeguarded under a Loan Agreement.
Each user signs this agreement with the Soil protocol, providing an
additional layer of legal protection for the deposited assets.)

H03. Hidden Fees

Impact High

Likelihood Medium

The current system calculates staking, unstaking, and reward claim
fees off-chain, which are then validated using a backend-generated
signature. Users can potentially be charged multiple fees during a
single stake operation, creating unpredictability in the overall cost
of using the platform.

This design can lead to unexpectedly high cumulative fees for users,
significantly reducing their earnings from staking and undermining
the profitability of using the platform. This could harm the
project's reputation and user trust.

Path: ./contracts/Staking.sol : stakeSOIL(), unstakeSOIL(),
claimRewards()

Recommendation: provide a publicly available document detailing the
fee system and off-chain aspects of the project to ensure
transparency and trustworthiness. Implement on-chain fee limits

www.hacken.io
14



within the fee handling function to prevent excessive charges. Also,
consider consolidating fees into a single charge either at the
staking or withdrawal stage to enhance user-friendliness and cost
predictability.

Found in: a3d764b

Status: Mitigated (The fee now applies only in the deposit function
of the pool contract and stakeSOIL contract, providing a more
predictable fee structure. According to the updated documentation for
staking fees - “Fees in the Staking contract are taken in the Soil
tokens. Administrator sets the amount of USDC, which will be taken
from user worth of SOIL tokens. Every time a user wants to stake,
backend checks the current USDC to SOIL exchange ratio and, based on
that, calculates the amount of soil tokens taken from user as a
fee.”)

H04. Data Consistency; Highly Permissive Role Access

Impact High

Likelihood Medium

The Staking contract does not record data related to the amount of
tokens deposited by a user. This leads to a situation where it is
possible to withdraw the entire staking balance to any address given
a valid signature provided by the backend. As a result, this could
potentially lead to loss of user funds.

Path: ./contracts/Staking.sol : stakeSOIL(), unstakeSOIL(),
restakeRewards()

Recommendation: create a struct that holds user data. This data
should be validated and updated with user interactions with the
contract, such as staking, unstaking, and restaking rewards. This
would provide an additional layer of security and help to prevent
unauthorized withdrawals.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

H05. Funds Lock; Highly Permissive Role Access

Impact High

Likelihood Medium

The current design allows an admin to block or unblock any user with
the toggleBlockUser function. If a user is blocked, they are unable
to withdraw their vested tokens from all vaults assigned to them,
potentially leading to an indefinite lock of their funds.

If the admin blocks a user, the user loses access to their vested
tokens, leading to potential fund loss. Given that the contract lacks

www.hacken.io
15



a mechanism for forcibly withdrawing tokens from a blocked vault,
this could mean irreversible loss of funds.

Path: ./contracts/Vesting.sol : toggleBlockUser()

Recommendation: a robust governance mechanism should be in place for
admin actions. It could be beneficial to establish a well-documented
policy outlining the reasons and scenarios for blocking users. In
addition, the ability to block a user could be set at the vault
creation level, so only specific vaults can be blocked, rather than
an entire user account. This would offer more granularity and control
over the blocking process, while still providing necessary
administrative controls.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

H06. Hidden Fees

Impact High

Likelihood Medium

The current design of the pool contract applies fees at various
transaction stages: deposit, withdrawal, reward claim, and upgrading
to a pool with higher yield. These fees are predefined within the
contract. The cumulative nature of these fees throughout multiple
transactions can lead to an increased cost burden on the users.

The multiplicative fee structure may result in unexpectedly high
total fees for the users. This can significantly reduce the profits
they receive from participating in the pools, impacting the overall
appeal of the pool system. The unpredictability of the total fees can
potentially harm user trust and tarnish the project's reputation.

Path: ./contracts/PoolsContract.sol: deposit(), withdraw(),
claimRewards(), upgradeToPoolWithHigherYield()

Recommendation: to enhance transparency and improve user experience,
the consolidation of fees into a single charge is recommended. This
could be implemented either at the deposit stage, withdrawal stage.
Additionally, a fee can be defined for every specific pool and be
settled during pool creation without possibility to update it or with
max limit of fee for fee. Further, a comprehensive documentation
detailing the fee structure and the rationale behind it could add
value to the project.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

H07. Data Consistency; Fund Lock; Highly Permissive Role Access

Impact High

www.hacken.io
16



Likelihood Medium

The smart contract currently allows an admin to alter parameters of a
pool, such as periods and early withdrawal settings, through the
updatePool function. If these adjustments occur after users have
deposited funds, it may lead to unintended outcomes:

● Fee Misapplication: If the period length is reduced, users who
initially deposited with an expectation of a fixed lock-in
duration could now face an early withdrawal fee.

● Fund Lock: If the isEarlyWithdrawalEnabled parameter is changed
to false, users may be prevented from withdrawing their funds
until the newly set period ends.

These unpredicted changes can lead to users losing funds due to
unanticipated fees or being unable to access their deposits. Such
situations could undermine trust in the platform and lead to
potential financial losses for users.

Additionally, there is no check in the current signature for pool
updates and deadlines, and as a result, any signature created for the
pool before an update will be valid.

Path: ./contracts/PoolsContract.sol : updatePool()

Recommendation: disallow updates to a pool once it is open for
deposits. This can be achieved by adding a condition in the
updatePool function to check whether the pool's start time has
already passed, as in require(currentPoolInfo.startTime >
block.timestamp, "Pool has already started and cannot be updated").
This would prevent any changes to the pool that could negatively
affect the users once they have started interacting with it.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

H08. Coarse-Grained Access Control

Impact High

Likelihood Medium

The staking, pools, and vesting contracts are all controlled by a
single administrative role. This means that the same account has the
ability to change critical parameters, conduct administrative
withdrawals, and manage other sensitive operations across all these
contracts. This level of access concentration can present significant
risks if the admin account is compromised.

In the event that the admin account is compromised, an attacker could
potentially exploit this administrative power across multiple
contracts, leading to severe disruptions in operations, alteration of
critical contract parameters, and potential loss of user funds across
the entire platform. Furthermore, this level of access concentration

www.hacken.io
17



presents a single point of failure, further increasing the potential
damage that could be inflicted by a malicious actor.

Paths: ./contracts/PoolsContract.sol

./contracts/Vesting.sol

./contracts/Staking.sol

Recommendation: consider adopting a more fine-grained access control
strategy. By segregating roles and responsibilities, the potential
damage from a compromised account can be significantly reduced. For
example, having separate administrative roles for each contract
(staking, pools, and vesting) can help limit the scope of actions
that a single account can perform. Moreover, implementing
multi-signature controls for sensitive operations can also provide an
additional layer of security.

Found in: a3d764b

Status: Mitigated (All of the admins will be using multisig wallet)

H09. Coarse-Grained Access Control

Impact High

Likelihood Medium

The claimRewards function in both the Staking contract and the Pool
contract uses an off-chain generated signature for authorization,
which is verified by the verifySignature function. This function
transfers the rewards from rewardsHolderWallet to the user. In the
event that the backend server is compromised, the attacker can drain
all rewards that rewardsHolderWallet has approved for the contract by
creating valid signatures and claiming rewards.

A successful compromise of the backend server could lead to a total
loss of all approved rewards in the rewardsHolderWallet. This could
significantly undermine the profitability of using the platform and
harm the project's reputation and user trust. It could also disrupt
the normal operation of the staking and pooling contracts and lead to
a potential halt in these functionalities.

Paths: ./contracts/PoolsContract.sol : _claimRewards()

./contracts/Staking.sol : claimRewards(), restakeRewards(),
unstakeSOIL()

Recommendation: consider implementing a limit on the maximum amount
of rewards that can be claimed in a single transaction. This would
act as a safeguard by limiting the potential loss in the event of a
backend compromise.

Additionally, consider a design where the staking and pool contracts
hold a predefined amount of rewards. The contracts could have a

www.hacken.io
18



mechanism to add more rewards as needed, but any excess would be held
outside of the contract. This would further limit potential losses.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

H10. Data Consistency

Impact High

Likelihood Medium

The 'claimRewards' function in the staking contract does not update
the 'amountOfRewards' state variable, which could lead to
discrepancies in reward tracking.

Since 'amountOfRewards' is a central variable to keep track of the
available rewards in the contract, not updating it during the
'claimRewards' operation might result in inaccurate reward
distribution. This can lead to scenarios where the contract thinks it
has more rewards available than it actually does

Path: ./contracts/Staking.sol : claimRewards()

Recommendation: modify the 'claimRewards' function to decrement the
'amountOfRewards' state variable by the claimed amount. This would
ensure that the contract's state accurately reflects the actual
number of rewards available.

Found in: cd03b51

Status: Fixed (Revised commit: 7ec15f8)

Medium

M01. Highly Permissive Role Access

Impact Medium

Likelihood Medium

The function updateLockoutTime provides the ability to modify the
lockout time for unstaking. This change is applied not only to future
stakers but also to those who have already staked their tokens.
Importantly, this function does not impose any restrictions on the
newly assigned lockout time.

This lack of restriction allows for potential manipulation of the
lockout period. Existing stakers could unexpectedly find themselves
subject to extended lockout periods, restricting their ability to
unstake their tokens as planned.

Path: ./contracts/Staking.sol : updateLockoutTime()

Recommendation: restrict the application of updateLockoutTime solely
to future stakes and establish a maximum limit for the lockout time

www.hacken.io
19



period. This would provide protection for existing stakers and
prevent potential misuse of the function.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

M02. Data Consistency

Impact Medium

Likelihood Medium

Each time a user stakes, the lastDepositTime for that user is updated
to the current block timestamp. Consequently, even for the user's
initial stake that was made a significant duration ago, the user must
wait until the end of the unlock period to make a withdrawal. This
system may discourage users from making new deposits if they want to
maintain the possibility of unstaking within a predefined time frame.

If users find the current staking system inconvenient, they may
choose not to use the system, leading to a decrease in user
engagement and possibly affecting the platform's overall usage and
liquidity.

Path: ./contracts/Staking.sol : stakeSOIL()

Recommendation: consider implementing a feature that allows users to
have multiple stakes with distinct unlock periods. This change could
improve the user experience by offering more flexibility in managing
their stakes. It would permit users to unstake their initial deposits
according to their original schedules, even if they make new stakes
later.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

M03. Requirements Violation

Impact Medium

Likelihood Medium

If the block.timestamp is within the first release interval, i.e.,
block.timestamp - userVault.releaseFrom is less than
userVault.releaseInterval, the code incorrectly allows tokens to be
unlocked. This is contrary to the documentation, which states that
tokens should not be unlockable before the first interval of token
release has passed.

This is due to the following line in the code:

spendableIntervals = (block.timestamp - userVault.releaseFrom +
userVault.releaseInterval) / userVault.releaseInterval;

www.hacken.io
20



A user can unlock tokens immediately when the releaseFrom timestamp
is reached, and throughout the first interval, which is contrary to
the expected behavior. This could potentially disrupt the planned
token release schedule.

Path: ./contracts/Vesting.sol : _vaultInfo()

Recommendation: to maintain clarity and consistency, ensure that the
documentation aligns with the current implementation. If the tokens
are intended to be unlocked as soon as the releaseFrom timestamp is
reached, update the documentation accordingly to reflect this
behavior. Alternatively, if the documentation's indication that
tokens should not be unlockable until a full releaseInterval has
passed is correct, then the code should be updated to match this
description.

Found in: a3d764b

Status: Mitigated (The token release mechanism is designed to begin
unlocking tokens as soon as the 'releaseFrom' timestamp is reached.)

M04. Race Condition

Impact High

Likelihood Low

The deposit, withdraw, claimRewards and upgradeToPoolWithHigherYield
functions in the pool contract deduct a fee (poolsContractFee) from
the deposited amount. The admin can change this fee at any time via
the changePoolsContractFee function.

When a user initiates a deposit transaction, they consider the
current fee. However, the admin could change the fee before the
transaction processes. This could lead to the user depositing a
different amount than intended or even transaction failure due to
checks within the deposit function.

Path: ./contracts/PoolsContract.so : changePoolsContractFee()

Recommendation: consider a mechanism that prevents sudden fee changes
and max fee limit, ensuring users have sufficient notice before a new
fee applies.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

M05. Integer Overflow/Underflow

Impact High

Likelihood Low

www.hacken.io
21



The current logic in the withdraw function may incorrectly allow a
user to initiate a withdrawal where the total fee (base and early
withdrawal fees) exceeds the withdrawal amount.

If a user tries to withdraw their funds early, and the total fees
exceed the withdrawal amount, the operation would fail due to a
SafeMath underflow error (Solidity version 0.8.0 and above). This can
lead to a situation where the user may not be able to withdraw their
funds early.

Path: ./contracts/PoolsContract.so : withdraw()

Recommendation: update the condition to account for the total fee
(chargedFee) rather than just the base fee (poolsContractFee), as
shown below:

require(amountToWithdraw > chargedFee, "Amount must be greater than
fees");

This modification will ensure the correct fee is considered when
checking if the withdrawal amount is greater than the applicable
fees, whether it is an early withdrawal or not.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

M06. Data Consistency

Impact High

Likelihood Low

The contract exhibits inconsistencies in fee deductions across the
withdraw, claimRewards and upgradeToPoolWithHigherYield functions.
For withdraw and upgradeToPoolWithHigherYield, fees are deducted from
the amount being withdrawn or moved, but not from the rewards being
claimed. Conversely, in the claimRewards function, the fee is
deducted directly from the rewards.

This inconsistency in fee deduction can lead to confusion for users
and could potentially affect the total amount they expect to receive
from a transaction. The inconsistency also brings a level of
unpredictability to the user experience, which can affect user trust
and contract engagement.

Path: ./contracts/PoolsContract.so : withdraw(), claimRewards(),
upgradeToPoolWithHigherYield()

www.hacken.io
22



Recommendation: given the impact on user expectations, it is
recommended to implement a consistent approach to fee deductions
across all functions. In this case, not deducting the fee from the
rewards would be a beneficial approach, considering the stated fixed
APRs. Alongside this, it is essential to provide detailed public
documentation explaining the fee structures, calculations, and the
impact on rewards and withdrawals.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

M07. Redundant Code

Impact Low

Likelihood High

The deposit function in the Pool contract, the createVault function
in the Vesting contract, and the stakeSOIL function in the Staking
contract all contain redundant lines of code that manually verify the
sufficient token allowance and balance.

The unnecessary checks add computational complexity to the contract,
leading to higher Gas costs for users. Additionally, the superfluous
code reduces the overall clarity and efficiency of the contract.

Paths: ./contracts/PoolsContract.so : deposit()

./contracts/Vesting.sol : createVault()

./contracts/Staking.sol : stakeSOIL()

Recommendation: the redundant balance and allowance checks should be
replaced with token.safeTransferFrom(tokenSpender, address(this),
amount); line. The safeTransferFrom function inherently handles these
checks, eliminating the need for additional manual verification and
improving the overall efficiency of the contract.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

M08. Data Consistency

Impact Medium

Likelihood Medium

The createVault function in the smart contract accepts parameters
amount and tokensAmountPerInterval but does not enforce that the
amount is a multiple of tokensAmountPerInterval or that
tokensAmountPerInterval is less than or equal to the amount.

This can lead to a vault being created where the total amount of
tokens is not divisible by the amount released per interval, causing
irregular distribution schedules and potential confusion.

www.hacken.io
23



Additionally, it can create situations where tokensAmountPerInterval
is greater than the total amount of tokens in the vault. This would
result in the entire vault being depleted in the first release, and
no tokens would be available for subsequent releases.

Path: ./contracts/Vesting.sol : createVault()

Recommendation: add a requirement in the createVault function to
ensure that amount is a multiple of tokensAmountPerInterval and that
tokensAmountPerInterval is not greater than the amount. This would
enforce a consistent and intuitive distribution schedule for all
vaults.

Found in: a3d764b

Status: Mitigated (A check has been implemented to ensure that
tokensAmountPerInterval cannot exceed the total amount. This
adjustment still allows for the possibility of unlocking all tokens
in a vesting period, if tokensAmountPerInterval equals the total
amount to be vested.)

Low

L01. Data Consistency

Impact Low

Likelihood Low

The function unlockTokensOnDemand allows an admin to unlock any
number of unclaimed tokens for a user without considering the
releaseFrom time and the number of releaseInterval passed. This
implies that tokens can be unlocked for a user before their
appropriate release time, contradicting the vesting schedule.

Such an implementation may lead to a situation where tokens are
released prematurely before the appropriate vesting period. It also
breaks the consistency of the vesting schedule, where tokens are
meant to be released in defined intervals.

Path: ./contracts/Vesting.sol : unlockTokensOnDemand()

Recommendation: modify the unlockTokensOnDemand function to only
allow the unlocking of tokens that are due for release based on the
releaseFrom time and releaseInterval.

This could be achieved by first calculating the amount of
releaseInterval that has passed since the releaseFrom time and then
allowing the admin to unlock only up to the calculated number of
tokens. This way, the function respects the vesting schedule and
maintains fairness across all users.

Found in: a3d764b

Status: Mitigated (This functionality will be reserved only for
vaults that are meant to be created for liquidity group)

www.hacken.io
24



L02. Missing Events on Critical State Updates

Impact Low

Likelihood Medium

Critical state changes should emit events for tracking things
off-chain.

This can lead to inability for users to subscribe events and check
what is going on with the project.

Path: ./contracts/ProtocolSettings.sol : updateBackendSigner()

Recommendation: emit events on critical state changes.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

L03. Missing Validation

Impact Medium

Likelihood Low

The project should be consistent and contain no self contradictions.

According to the implementation of SoilToken constructor(), it
accepts arrays without length restriction. If the array has more than
255 elements, it will revert (counter in loop has max value of 255).

According to the implementation of PoolsContract createPool() and
updatePool(), these functions accept arrays without length
restriction. If the array periods[] has more than 255 elements, it
will revert (counter in loop inside _validatePoolInfo() has max value
of 255).

This may lead to unexpected value processed by the contract.

Paths:

./contracts/SoilToken.sol : constructor(),

./contracts/PoolsContract.sol : createPool(), updatePool(),

Recommendation: provide documentation, comments and identifiers in
code consciously, implement the validations.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

www.hacken.io
25



L04. Non-Finalized Code

Impact Low

Likelihood Low

The production code should not contain any functions, variables or
commented code parts that are being used solely in the test
environment.

Path: ./contracts/Vesting.sol : withdraw()

Recommendation: remove commented code.

Found in: cd03b51

Status: Fixed (Revised commit: 7ec15f8)

Informational

I01. State Variables Can Be Declared Immutable

The protocolSettings variable’s value is set in the constructor. This
variable can be declared immutable

Path: ./contracts/Vesting.sol

Recommendation: declare mentioned variable as immutable.

Found in: a3d764b

Status: Fixed (Revised commit: 7ec15f8)

I02. Redundant Code

The _vaultInfo function presents a redundancy in the check for
userVault.unclaimedAmount == 0. The first instance of this check
appears at the function's beginning, prompting an immediate return if
userVault.unclaimedAmount == 0 is true. However, a subsequent check
for the same condition surfaces within an if block: if
(block.timestamp >= userVault.releaseFrom). Given that the function
would have already existed at the initial check, this second
evaluation is unnecessary, constituting redundant code.

Users may incur slightly higher gas costs when interacting with the
contract due to the additional computation required by the redundant
check.

Path: /contracts/Vesting.sol : _vaultInfo()

Recommendation: remove the second check for userVault.unclaimedAmount
== 0 from the function.

Found in: a3d764b

www.hacken.io
26



Status: Fixed (Revised commit: 7ec15f8)

I03. Out-Of-Bounds Array Access

The function _vaultInfo can potentially be called with an index that
is out of bounds for the vaults[userAddress] array. This will result
in a "revert" error which is thrown by Solidity when attempting to
access an array index that does not exist. This can disrupt the flow
of contract operations and lead to a failed transaction.

This issue occurs because there is no check in the _vaultInfo
function to ensure that the given index is within the bounds of the
vaults[userAddress] array.

Path: /contracts/Vesting.sol : _vaultInfo()

Recommendation: add a check in the _vaultInfo function to verify the
index is within the length of the vaults[userAddress] array. If the
check fails, the function can revert with an appropriate error
message. This will ensure that all function calls to _vaultInfo are
valid and will not result in a failed transaction.

Found in: a3d764b

Status: Fixed (Revised commit: 7ec15f8)

I04. Style Guide Violation

The provided projects should follow the official guidelines.

Inside each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be grouped according to their visibility and
ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Within a grouping, place the view and pure functions last.

It's best practice to cover all functions with NatSpec annotation and
to follow the Solidity naming convention. This will increase overall
code quality and readability.

Paths: ./contracts/PoolsContract.sol

www.hacken.io
27



./contracts/Vesting.sol

./contracts/Staking.sol

Recommendation: follow the official Solidity guidelines.

Found in: a3d764b

Status: Fixed (Revised commit: 7ec15f8)

I05. Inefficient Gas Model - Counter Increment

To save some gas, increment operation of the counter inside for loop
can be done at the end of the loop in an unchecked{} code block. It
omits overflow checks and saves Gas. This can be safely used when
overflow is not possible.

Paths: ./contracts/SoilToken.sol : constructor(),
updateWhitelistOfSnapshooters(),

./contracts/Vesting.sol : withdraw(),

Recommendation: put the post-iteration increment operation at the end
of the loop inside an unchecked{} code block.

Found in: a3d764b

Status: Reported

I06. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path:

./contracts/PoolsContract.sol : constructor(),

Recommendation: implement zero address checks.

Found in: a3d764b

Status: Fixed (Revised commit: cd03b51)

I07. Unused Identifier

The variable softCap inside the PoolInfo struct is never used.

Path:
./contracts/SoilToken.sol,

Recommendation: remove unused variable from struct.

Found in: a3d764b

www.hacken.io
28

https://docs.soliditylang.org/en/v0.8.17/style-guide.html


Status: Mitigated (softCap is used for off-chain operations)

I08. Redundant Import

The PoolsContract and Staking contracts are importing the deprecated
draft-EIP712.sol instead of the final version of EIP712.sol.

Paths: ./contracts/PoolsContract.sol

./contracts/Staking.sol

Recommendation: replace the deprecated draft-EIP712.sol with the
final EIP712.sol

Found in: cd03b51

Status: Fixed (Revised commit: 7ec15f8)

www.hacken.io
29



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
30



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
31



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
32



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop
/

Commit a3d764b2c01dcafcbf8fde5b248d76920779cd48

Whitepaper

Requirements NatSpec

Technical
Requirements

File: Soil functional and technical requirements.docx
SHA3: 69e2a989583458146e89a43055ba1db6054184ac799d9884f01dc17048ff9c56

Contracts File: PoolsContract.sol
SHA3: af0d8233c6eab53fec9e10055905ba3471861c6f99ffd23977e8b3eadd1ba6df

File: ProtocolSettings.sol
SHA3: f12680f7e113b9dbb1328f86a93d00111ee8d2145b1376cf98c1ea85b67b6313

File: SoilToken.sol
SHA3: c457c78c50ad2282dfcc2abcd3ddde08b6e0f527e18e24930998752d388b6a51

File: Staking.sol
SHA3: e402ff8958b339c7e8760798bad399cdb7dba8f270038cc40328e6c18fe064ca

File: VerifySignatureSystem.sol
SHA3: 5a3e0ebf721c87c4061e351fe66efc1e5bd60f9e3d3dc260ceff6a2995ffb0be

File: Vesting.sol
SHA3: e3ee37c0246452d99b0524d942642376663060d8a228e1f00288b384925752e9

Second review scope

Repository https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop
/

Commit cd03b51f3ac3be0937d7a5f3e761890b7a3c0b2d

Whitepaper Link

Requirements NatSpec

Technical
Requirements

File: Soil functional and technical requirements.docx
SHA3: fdf6b93a65a6934fd3b58ca30c53b7a10f93854056c9e04251e959f285d39a3a

Contracts File: PoolsContract.sol
SHA3: edc3c9bb46dc3c79e293949d7bb219a68d385215a8c380e4b4ce6a835073f81f

File: ProtocolSettings.sol
SHA3: f3fff2f8ec374a57bd233fdb2d403be33a161529d5ed301b17fc164d05d30d31

File: SoilToken.sol

www.hacken.io
33

https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop/
https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop/
https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop/
https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop/
https://docsend.com/view/bvmug7hb67ws3igm


SHA3: aa3349690e31aef6df2fcc04e4b1b71b0e2ea605d77141f103e2a6ae1380ac5b

File: Staking.sol
SHA3: 742ef1ae19727e8f5b0893b55bc64b2b395b5799127a4d5d464fd4f8cdc5ce4d

File: VerifySignatureSystem.sol
SHA3: 1718e130a068fb562e10f5f00d5649e69bf1a3dc3eb2564c49e3c6bbb368433a

File: Vesting.sol
SHA3: bb233d1a455401bad0ab3ea8449c6dbe012121a4402ebc43b9f6e02842ae6c60

Third review scope

Repository https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop
/

Commit d71b55edbf34fb3e1e94f3a991aa5b8440cbc299

Whitepaper Link

Requirements NatSpec

Technical
Requirements

File: Soil Staking Fee Docs.pdf
SHA3: dec8247dfcbc0457208bdb3f13980403172636df460841ca8266bb066f143602

File: SOIL_General Loan Terms_230516.docx
SHA3: 3b67e226a66dd2d9153de97684a8c9be9e929221d83fcab3011ebee116f974e2

File: Soil functional and technical requirements.pdf
SHA3: f3eff92ecac619cdfbbd4f52119498f06c04c95296a203ad929327f64ca8adc4

File: Tokenomics.pdf
SHA3: 6f251c44af46ca101e752b004f1ee58e162c11dc08cd3a33680d723299a0faf8

Contracts File: PoolsContract.sol
SHA3: bdf1e2fad973991d970dc3f08b2488cc04a4556022c1dff918f3015941f0c627

File: ProtocolSettings.sol
SHA3: 23596d95f90b7929da875c761fd08b95b0917b4a193a1d09f7ef30596cecc0d7

File: SoilToken.sol
SHA3: 2da58aeea54c59e02a269c37a5ae3732c5e771fc6c06ccb62fef4aad18e45082

File: Staking.sol
SHA3: e2777c1b27567e276ca82ca9cdb15c33f9bac86967849ab24bbee8409eb7627a

File: VerifySignatureSystem.sol
SHA3: 756cb67d55ab82e4ac8ea45464d534c6f588c971963f8fea23ce5c8eac2bbf13

File: Vesting.sol
SHA3: 3e0a2b6e7e21c2a4d392eb7f687ccc3741c7bec3ba99e4ea3f5df94262ab2a80

www.hacken.io
34

https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop/
https://gitlab.nextrope.com/client/soil/soil-blockchain/-/tree/develop/
https://docsend.com/view/bvmug7hb67ws3igm

