
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Warped Games
Date: 07 July, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Warped
Games

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Tags ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website http://warped.games/

Changelog 21.06.2023 – Initial Review
07.07.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
http://warped.games/


Table of contents
Introduction 4
System Overview 4
Executive Summary 7
Checked Items 8
Findings 11

Critical 11
C01. Denial of Service 11

High 11
H01. Front Running 11
H02. Denial Of Service 12

Medium 12
M01. Data Consistency 12
M02. Data Consistency 12
M03. Requirement Violation - Data Consistency 13
M04. Missing Event 13
M05. Unchecked Transfer 14
M06. Modification Of Well Known Contract 14

Low 14
L01. Missing Zero Address Validation 14
L02. Empty Constructor 15
L03. State Variable That Should be Constant 15
L04. Inefficient Gas Model 15

Informational 16
I01. Floating Pragma 16
I02. Incorrect Contract Description 16
I03. Redundant Code 16

Disclaimers 17
Appendix 1. Severity Definitions 18

Risk Levels 18
Impact Levels 19
Likelihood Levels 19
Informational 19

Appendix 2. Scope 20

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Warped Games (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

System Overview

Warped Games is a ERC-20 token protocol with the following contracts:
● WarpedPoolManager — is a contract that enables the management

of a pool list. The contract allows for adding and removing
pools, as well as setting and updating the primary pool (during
setting or updating, the pool should be added to the pools
list). Additionally, the contract provides a function to verify
if a given address is present in the pool list.

● WarpedTaxHandler — is a smart contract that provides tax
management for token transfers. This contract calculates tax on
transactions based on the level of the user, determined by
their ownership of NFTs (Non-Fungible Tokens). The contract
includes the following main features:

○ Tax Management: The contract manages taxes on
transactions. The tax rate is determined by the user's
level, which is associated with their ownership of
non-fungible tokens (NFTs).

○ NFT Ownership-based Levels: The contract establishes
different levels of users based on their ownership of
certain NFTs. The level assigned to a user affects the
tax they need to pay on transactions.

○ Tax Calculation: The contract calculates the amount of
tax a user has to pay on a transaction. Tax is only
charged on transactions involving the exchange pool, not
between regular users or between different pools.

○ Custom Tax Rates: The contract allows for setting custom
tax rates for different levels of users.

○ Add/Remove NFTs: The contract includes functionality for
adding and removing NFTs. This helps in managing which
NFTs are considered when determining a user's level.

○ Tax Pause and Resume: The contract includes functions to
disable and enable tax calculations. This could be useful
during special events or certain time periods.

● WarpedTreasuryHandler — is a smart contract that serves as a
treasury handler, primarily designed to manage tokens
accumulated through a mechanism like transaction tax. On every
token transaction, it's notified to handle the tax part of the
transferred tokens. If the tokens collected in the contract
exceed a certain threshold, the contract then sells a portion

www.hacken.io
4



of the tokens for ETH, considering a limit to avoid severe
price impact. A part of the tokens are used to add liquidity to
a liquidity pool. The ETH obtained from selling tokens and the
remaining ETH after adding liquidity are then sent to the
treasury address.
This contract also provides functionalities to adjust key
parameters like the percentage of tokens that should be added
as liquidity (liquidityBasisPoints) and maximum price impact
allowed for a sell (priceImpactBasisPoints).
Additionally, it allows the owner to change the treasury
address, withdraw stuck tokens or ETH, and modify the threshold
limit (_taxSwap) which triggers the token selling and liquidity
addition process.
This contract essentially manages the accumulation and
distribution of transaction taxes, helping maintain liquidity
and stabilize the token price.

● WarpedToken — is a contract that extends the standard ERC20
token contract, adding a taxation and treasury handling system,
which are managed by two external contracts referred to as the
Tax Handler and the Treasury Handler. It also has a feature to
prevent re-entrancy attacks using the LenientReentrancyGuard.

○ Initialization: When the WARPED token contract is
deployed, it is initialized with the address of the
deployer, the Tax Handler contract, and the Treasury
Handler contract. All the initial tokens (10 billion in
total) are minted to the deployer's address.

○ Token Transfers: Every time a token transfer occurs, two
additional steps are taken:
Before the transfer, the contract calls the
processTreasury function of the Treasury Handler
contract, allowing it to execute any necessary logic
before the token transfer.
After the transfer, the contract calculates the tax
amount to be deducted using the getTax function of the
Tax Handler contract, and the tax is transferred to the
address of the Treasury Handler contract.

○ Updating Handlers: The contract owner can update the
address of the Tax Handler or the Treasury Handler at any
time using the updateTaxHandler and updateTreasuryHandler
functions respectively. This provides flexibility to
replace the handling logic as needed.

● WarpedTokenManager — is a contract responsible for managing the
WARPED token, including its creation and the addition of
liquidity to Uniswap. The contract uses the WarpedPoolManager,
which seems to manage a set of exchange pools for the WARPED
token.

www.hacken.io
5



Here is a brief overview of how it works:
Initialization: During the initialization of the
WarpedTokenManager contract, the contract creates a
WarpedTreasuryHandler, a WarpedTaxHandler, and the WarpedToken
itself. The addresses of these newly created contracts are
stored and their ownership is transferred to the deployer of
the WarpedTokenManager contract. The WarpedTreasuryHandler is
also initialized with the provided treasury address and the
address of the WarpedToken.
Adding Liquidity: There is a function, addLiquidity, that can
only be called by the owner of the contract. This function
allows the owner to add liquidity to the Uniswap pool for the
WARPED token. In this process, the contract:
Receives tokens from the deployer's wallet, approves the
Uniswap Router to use the tokens, creates a Uniswap pair with
the WARPED token and WETH (Wrapped Ether), adds liquidity to
the pair, stores the Uniswap pair address as an exchange pool
and sets it as the primary pool.

Privileged roles
● The owner of the WarpedPoolManager contract can add, delete pool

addresses and set, update a primary pool address.
● The owner of the WarpedTaxHandler contract can set tax rates, add and

remove nfts, pause and unpause tax.
● The owner of the WarpedToken contract can update tax handler and

treasury handler addresses.
● The owner of the WarpedTreasuryHandler contract can initialize the

contract, set liquidity basis points, set price impact basis points,
set treasury address, withdraw coins and ERC-20 tokens from contract,
update tax swap value.

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional Requirements are complete
● Technical Description is complete
● NatSpecs are satisfactory.
● Readme contains the needed information.

Code quality
The total Code Quality score is 10 out of 10.

● The code quality is very good.
● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage), with a mutation
score of 73,3%.

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is complete.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

21 June 2023 4 6 2 1

7 July 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10



Findings

Critical

C01. Denial of Service

Impact High

Likelihood High

In the function removeNFTs(), the NFTs are removed from the array
using the delete keyword. Therefore, the zero address will be present
in the array instead of the removed one.

This will lead to the balanceOf call to zero address in
_getTaxBasisPoints() which will fail and make the function
inoperable.

Path: ./contracts/WarpedTaxHandler.sol : removeNFTs()

Recommendation: do not leave gaps when removing the values from the
arrays.

Found in: 168ad70

Status: Fixed (9b59231)

High

H01. Front Running

Impact High

Likelihood Medium

The amount out values are set to 0 when interacting with Uniswap.

This allows attackers to perform front running attacks and the
operations may result in unexpected amounts of out tokens.

Path: ./contracts/WarpedTokenManager.sol : addLiquidity()

./contracts/WarpedTreasuryHandler.sol : _addLiquidity(),
_swapTokensForEth()

Recommendation: specify the amount out values when interacting with
Uniswap.

Found in: 168ad70

Status: Fixed (9b59231)

www.hacken.io
11



H02. Denial Of Service

Impact High

Likelihood Medium

The _getTaxBasisPoints function loops over all the NFTs and tax
rates.

In case the arrays are large enough to exceed the block Gas limit,
the execution may fail.

Path: ./contracts/WarpedTokenManager.sol : _getTaxBasisPoints()

Recommendation: do not rely on the arrays` lengths.

Found in: 168ad70

Status: Fixed (9b59231)

Medium

M01. Data Consistency

Impact Medium

Likelihood Medium

The primary pool address may be removed from the _exchangePools and
be not updated in the primaryPool variable.

This will result in inconsistent contract state.

Path: ./contracts/WarpedPoolManager.sol

Recommendation: ensure that the primaryPool and _exchangePools values
are consistent.

Found in: 168ad70

Status: Fixed (9b59231)

M02. Data Consistency

Impact Low

Likelihood Medium

The NFTs are not being checked for the uniqueness when they are
added.

This may result in duplicates and inconsistent contract state.

www.hacken.io
12



Path: ./contracts/WarpedTaxHandler.sol : addNFTs()

Recommendation: check if the NFTs addresses are unique.

Found in: 168ad70

Status: Fixed (9b59231)

M03. Requirement Violation - Data Consistency

Impact Medium

Likelihood Medium

In the function setTaxRates(), the requirement says :

- values of `thresholds` must be placed in ascending order.

There is no check done to verify this requirement.

Path: ./contracts/WarpedTaxHandler.sol : setTaxRates()

Recommendation: ensure that the tax rates are stored in a correct
order.

Found in: 168ad70

Status: Fixed (9b59231)

M04. Missing Event

Impact Low

Likelihood Medium

Events for critical state changes should be emitted for tracking
things off-chain.

Path: ./contracts/WarpedTaxHandler.sol : setTaxRates(), addNFTs(),
removeNFTs(), pauseTax(), resumeTax()

./contracts/WarpedToken.sol : updateTaxHandler(),
updateTreasuryHandler()

./contracts/WarpedTreasuryHandler.sol : updateTaxSwap()

Recommendation: emit events for critical state changes.

Found in: 168ad70

Status: Fixed (9b59231)

www.hacken.io
13



M05. Unchecked Transfer

Impact Medium

Likelihood Medium

The function withdraw() does not use SafeERC20 library for checking
the result of ERC20 token transfer.

Path: ./contracts/WarpedTreasuryHandler.sol : withdraw()

Recommendation: use SafeERC20 library to interact with tokens safely.

Found in: 168ad70

Status: Fixed (9b59231)

M06. Modification Of Well Known Contract

The nonReentrant modifier does not revert in case of reentrancy, but
executes return.

Such behavior may be unexpected. Not reverting will break the key
functionality of non-reentrancy.

Path: ./contracts/LenientReentrancyGuard.sol : nonReentrant()

Recommendation: do not modify the well known contract.

Found in: 168ad70

Status: Fixed (9b59231)

Low

L01. Missing Zero Address Validation

Impact Medium

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/WarpedTreasuryHandler.sol : initialize()

./contracts/WarpedToken.sol : constructor()

Recommendation: implement zero address checks.

www.hacken.io
14



Found in: 168ad70

Status: Fixed (9b59231)

L02. Empty Constructor

Impact Low

Likelihood Medium

The constructor is empty.

Redundant code decreases the code readability.

Path: ./contracts/WarpedPoolManager.sol : constructor()

Recommendation: remove the redundant code.

Found in: 168ad70

Status: Fixed (9b59231)

L03. State Variable That Should be Constant

Impact Low

Likelihood Medium

State variables that do not change their value should be declared
constant to save Gas.

Path: ./contracts/WarpedTaxHandler.sol : maxTaxRate

Recommendation: declare variable as constant.

Found in: 168ad70

Status: Fixed (9b59231)

L04. Inefficient Gas Model

Impact Low

Likelihood Medium

String variables are attributed with the keyword unicode. This is not
necessary and will cost additional Gas.

Path: ./contracts/WarpedToken.sol : _NAME, _SYMBOL

Recommendation: remove the “unicode” keyword when it is not
necessary.

www.hacken.io
15



Found in: 168ad70

Status: Fixed (9b59231)

Informational

I01. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths: ./contracts/*

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 168ad70

Status: Fixed (9b59231)

I02. Incorrect Contract Description

The WarpedPoolManager contract is described with the “@title Exchange
pool processor abstract contract.” comment.

However, it is not abstract.

Path: ./contracts/WarpedPoolManager.sol

Recommendation: align the documentation and the implementation.

Found in: 168ad70

Status: Fixed (9b59231)

I03. Redundant Code

The taxDisabled value is manually set to false, which is redundant.

Redundant code uses the extra Gas and decreases the code readability.

Path: ./contracts/WarpedTaxHandler.sol : constructor()

Recommendation: remove the redundant code.

Found in: 168ad70

Status: Fixed (9b59231)

www.hacken.io
16



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
17



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
18



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
19



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/warpedgames/contracts-warped-token

Commit 168ad70c69128527c1a8d15a3cd1e0109cd2790c

Whitepaper

Requirements

Technical
Requirements

Contracts File: contracts/LenientReentrancyGuard.sol
SHA3: d757ba8b8fef29988e0e6f1b2b83723a27c2d7fbc232e088eda123cb0ca11a76

File: contracts/WarpedPoolManager.sol
SHA3: c7ba6a34394bb8e4cf3b176dad5167b40b929d22acd4616b1c38f0d99186d389

File: contracts/WarpedTaxHandler.sol
SHA3: d8587c80d337a40d56929f58196b5c3d8e4476ab360d62508b873b6314076b12

File: contracts/WarpedToken.sol
SHA3: 10a861d5e4eb4d46d75509bc1e3ce49d5cf3f20c03f0c5d5d14c798858663acc

File: contracts/WarpedTokenManager.sol
SHA3: 985ce3fb688fa80d0cd21bf8485491fb660eb169dfae3746b6c7d03c3bc14ad7

File: contracts/WarpedTreasuryHandler.sol
SHA3: 2671cc6676bab750c8e0a285d72c79c0b0557219d3922144de27fa180fc81b8c

File: contracts/interfaces/IPoolManager.sol
SHA3: 9fca266e34c6d69fc0a2aa389192f774931d788e51b331e5f316e5accf4e5291

File: contracts/interfaces/ITaxHandler.sol
SHA3: 9577f0a69632a38f2026558d99cb2feed0a70b89dae734ca67d26dbba322b07c

File: contracts/interfaces/ITreasuryHandler.sol
SHA3: bf10e6cb612e3a352b18106f16072e6e2755675c78eae242677491736567d4e8

File: contracts/interfaces/IUniswapV2Router02.sol
SHA3: df997c8a54715ea63a7ad4c7162327b76061fff81d40afb8876c5ad253519e5e

Second review scope

Repository https://github.com/warpedgames/contracts-warped-token

Commit 9b59231f2093f29d486d596c7891c311cb9ebe63

Whitepaper

www.hacken.io
20



Requirements https://github.com/warpedgames/contracts-warped-token/WARPED - Audit
Techspec.pdf

Technical
Requirements

https://github.com/warpedgames/contracts-warped-token/WARPED - Audit
Techspec.pdf

Contracts File: WarpedPoolManager.sol
SHA3: ffb9657eca1c08fd4ba014b005ba38b26b27d0be5b4f7c412e04357c84abd4ac

File: WarpedTaxHandler.sol
SHA3: db17f51241df8f21d591753dd4bab2f0991a40355e69f82a71219a607e9b0d7a

File: WarpedToken.sol
SHA3: d404fa82b33689bac5705dab9a0c26cd8b915adaa793f5d6ee4dc71946f1d3b2

File: WarpedTokenManager.sol
SHA3: fd96d78080e3d36faf552d1f3ad3de4c5ced7a5720bb6329d253cf89f9b106af

File: WarpedTreasuryHandler.sol
SHA3: 374160b0a25718f01c7b6c43a90bb7ca0f23a411f0ac09da680f8ad33aed6359

File: interfaces/IPoolManager.sol
SHA3: 98bd4f8481d2547af269a1c744dfb6c2c7daca1a66ee3db71994425eacad89f9

File: interfaces/ITaxHandler.sol
SHA3: 5f75f942182bbdb9d613be072026884ecaa2a93302f5d952973d02fd77ba6ad9

File: interfaces/ITreasuryHandler.sol
SHA3: 42e88d8929ef57cdf7ba50601d5ecc8b3e5e376a68bf21bbfd4ed4fd71a70303

File: interfaces/IUniswapV2Router02.sol
SHA3: f3b7349ebaf2c0a4afd04109cc09816f9da576a58d752f32ab5c394c099e6af3

www.hacken.io
21


