
Customer: AutoMiningToken
Date: 20 September, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
AutoMiningToken

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OÜ

Tags ERC20 token; Liquidity Pool

Platform EVM

Language Solidity

Methodology Link

Website https://www.autominingtoken.com/

Changelog
15.06.2023 – Initial Review
01.08.2023 - Second Review
29.08.2023 - Third Review
20.09.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.autominingtoken.com/

Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Risks 7
Checked Items 8
Findings 11

Critical 11
C01. Invalid Calculations 11

High 11
H01. Contradiction in Docs 11
H02. Invalid Calculations 12

Medium 12
M01. Missing Validation 12
M02. Best Practice Violation / Unchecked Return Value 13
M03. Missing Event Emitting 13
M04. Highly Permissive Role Access 14
M05. Missing Validation 14
M06. Accumulation of Dust Values 15

Low 15
L01. Floating Pragma 15
L02. Shadowing State Variable 16
L03. Missing Zero Address Validation 16
L04. Invalid Hardcoded Value 17

Informational 17
I01. Variables That Should Be Declared Constant 17
I02. Variables That Should Be Declared Immutable 18
I03. Unused Function Parameters 18
I04. Unused Import 18
I05. Use Of Hardcoded Values 19
I06. Typos In The Documentation 19
I07. Redundant Declaration 19
I08. Redundant Complexity 20
I09. Style Guide Violation 20
I10. State Variables Default Visibility 21
I11. Unused Variable 22
I12. Unused Import 22

Disclaimers 23
Appendix 1. Severity Definitions 24

Risk Levels 24
Impact Levels 25
Likelihood Levels 25
Informational 25

Appendix 2. Scope 26

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by AutoMiningToken (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

AutoMiningToken is a platform that allows, through its token - AMT,
investment in BTC mining projects. Users who own AMT will be able to profit
from the returns generated by the project based on the amount of AMT they
own on all circulating tokens.

● AMT — a simple ERC-20 token that does not mint any initial supply,
but additional minting is allowed. Total supply is capped to 100
million tokens.
It has the following attributes:

○ Name: AutoMiningToken
○ Symbol: AMT
○ Decimals: 18
○ Total supply: 100m tokens.

● LiquidityAmt — a simple ERC-20 token to be used for liquidity
purposes that does not mint any initial supply, but additional
minting is allowed.
It has the following attributes:

○ Name: liqAutoMiningToken
○ Symbol: liqAMT
○ Decimals: 18
○ Total supply: Infinitive.

● Market — a contract that allows users to withdraw USDT tokens against
their AMT balance (a sort of liquidation operation), as well as buy
AMT with USDT tokens.

● Master — a contract that manages the liquidity pools and distributes
rewards for liquidity providers and AMT token holders.
Each reward charge is tracked through a snapshot mechanism. When the
owner calls the "payRent" function, the reward for that specific
moment will be distributed based on the snapshot of how many tokens
they currently hold or how much they have utilized for the liquidity
pool. So, the total reward amount and the timing of its distribution
will depend on the system owner.

● BurnVault — a contract that allows users to burn their AMT tokens in
exchange for some amount of BTCB balance in the contract.

Privileged roles
● The owner of the AMT contract can:

www.hacken.io
4

○ take snapshots
○ mint tokens

● The owner of the LIQUIDITYAMT contract can:
○ take snapshots
○ mint tokens

● The owner of the marketvault can:
○ set the Master contract address
○ can transfer the backing tokens to itself

● The owner of Master can:
○ can extend the approval amount for addrRouter
○ set the payer wallet
○ add liquidity to be locked for 2 years
○ mint AMT tokens

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● NatSpec is sufficient.

Code quality
The total Code Quality score is 9 out of 10.

● Development environment is configured.
● Solidity Style Guides are not followed.

Test coverage

Code coverage of the project is 100% (branch coverage).

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

15 June 2023 4 4 0 1

01 August 2023 2 2 2 0

29 August 2023 0 1 1 0

20 September 2023 0 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Risks

● The system owner can mint an infinite amount of liqAMT tokens.
● In the Market contract, AMT price to buy with USDT is specified by a

centralized mechanism and can be changed by the system owner.

www.hacken.io
7

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Failed I10

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not
Relevant

Style Guide
Violation

Style guides and best practices should
be followed. Failed I09

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

Findings

Critical

C01. Invalid Calculations

Impact High

Likelihood High

The backingWithdrawl() function implementation first burns the
refunded tokens and then calculates the back rate for the backing
token.

This order of functions called burnFrom()->getBackRate() is incorrect
as the back rate is dependent on the total supply of the refunded
token.

This will lead to users to get inconsistent and unfair amounts of
backing tokens depending on the amount they refund.

Path:
./marketvault.sol : backingWithdrawl();

Recommendation: Follow the correct order in the function. First
calculate the back rate based on the current total supply and then
burn the tokens.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

High

H01. Contradiction in Docs

Impact Low

Likelihood High
Although it’s stated that “This contract allows for the buying and
selling of AMT tokens with USDT and BTCb” in the Market contract,
functions only support buying with USDT token.

Path:
./Production/contracts/Market.sol : buy();

Recommendation: Implement the mentioned requirement or update the
explanation in the code.

Found in: 0fd2faa

Status: Fixed (Revised commit: b2516c5)

www.hacken.io
11

H02. Invalid Calculations

Impact Medium

Likelihood High

The chargeFromTo() function updates the values of chargedAt and
amtUsedAt mappings incorrectly.

They need to be cumulatively updated by aggregating the charge amount
of each user for the respective snapshot ID. However, in the function
mentioned, it is updated for only one user (specifically, the
'msg.sender' of the function in our case), while the charges of other
users are overlooked.

Path:
./Master.sol : chargeFromTo()

Recommendation: Update the lines as below;

chargedAt[i] += paidAti;
amtUsedAt[i] += amt.balanceOfAt(msg.sender, i);

Found in: b2516c5

Status: Fixed (Revised commit: c674d1f)

Medium

M01. Missing Validation

Impact Medium

Likelihood High

The getBackRate() function does not check if the backingCoin balance
is greater than 0.

This can lead to situations where division by 0 is performed.

Path:
./marketvault.sol : getBackRate();

Recommendation: Add a validation check that the backingCoin balance
is greater than 0.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa) (getBackRate function is
removed)

www.hacken.io
12

M02. Best Practice Violation / Unchecked Return Value

Impact Low

Likelihood High

Return values of the transfer and transferFrom functions are not
validated.

In the absence of proper validation, a situation might arise where
function returns an error, yet the transaction still proceeds to
completion.

This may lead to unexpected behavior.

Paths:
./marketvault.sol : backingWithdrawl(), buy(), charge();
./Market.sol : release(), payRent(), charge(), liqCharge(),
addLiquidityLocking(), addLiquidity(), removeLiquidity();

Recommendation: Incorporate a check for the return value of the
function to ensure it executes correctly. Or use Openzeppellins’s
SafeERC20.

Found in: e0fe204

Status: Fixed (Revised commit: c674d1f)

M03. Missing Event Emitting

Impact Low

Likelihood High

The extendApprove, setPayerWallet, payRent, addLiquidityLocking,
addLiquidity, removeLiquidity, mintMaster functions in the Master
contract do not emit an event.

The backingWithdrawl, buy, setMaster and charge functions of the
mastervault contract do not emit an event.

Important state changes should emit events to allow users to track
transactions on the front-end.

Paths:
./Master.sol : extendApprove(), setPayerWallet(), payRent(),
addLiquidityLocking(), addLiquidity(), removeLiquidity(),
mintMaster();
./mastervault : backingWithdrawl(), buy(), setMaster() , charge();

Recommendation: Emit the event whenever corresponding action happens.

www.hacken.io
13

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

M04. Highly Permissive Role Access

Impact High

Likelihood Low

The owner of the marketvault contract can change the Master contract
address at any moment and call the charge() function.

This can be used to withdraw all the backingCoin tokens from the
contract if the changed Master contract is malicious, by setting the
amount returned from the Master.charge() function as the maximum
amount that can be withdrawn.

If a key leak were to occur, the potential consequences could be
significant, potentially leading to security breaches and undermining
the overall integrity of the system.

Path:
./marketvault.sol : setMaster(), charge();

Recommendation: It is recommended to restrict the scope of
permissions for those roles.

To ensure transparency and accountability, it is advised to provide a
comprehensive explanation of highly-permissive access in the system's
public documentation. This would help to ensure that users are fully
informed of the implications of such access and can make informed
decisions accordingly.

Either restrict the owner's access to not to withdraw the funds or
make the Master contract immutable to protect users’ funds.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

M05. Missing Validation

Impact Low

Likelihood High

backingWithdraw function does not check if the BTCB balance of the
contract is not zero. In a scenario like mentioned, users will not
get any BTCB in exchange for burning their AMT tokens.

Path:
./Production/contracts/BurnVault.sol : backingWithdraw();

www.hacken.io
14

Recommendation: Add a validation that checks that the BTCB balance is
greater than 0.

Found in: 0fd2faa

Status: Fixed (Revised commit: b2516c5)

M06. Accumulation of Dust Values

Impact Low

Likelihood High

In the Master contract, the charge function distributes the rewards
that users earned. The calculation is performed by dividing the total
reward among all token holders, which may not always result in whole
numbers. As a consequence, there might be fractional values, leading
to the accumulation of dust.
A contract should not accumulate dust values left after swaps or
reward distributions.

Path:
./Production/contracts/Master.sol : charge(), chargeFromTo();

Recommendation: Implement calculation logic so that the dust values
will not accumulate on the contract. One of the options can be a
time-locked allowance to collect the accumulated dust value or to
include the dust values as part of the rewards.

Found in: 0fd2faa

Status: Fixed (Revised commit: b2516c5)

Low

L01. Floating Pragma

Impact Low

Likelihood Low

The project uses floating pragmas ^0.8.0.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Paths:
./AMT.sol
./LIQUIDITYAMT.sol
./marketvault.sol
./Master.sol

www.hacken.io
15

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: e0fe204

Status: Fixed (Revised commit: b2516c5)

L02. Shadowing State Variable

Impact Low

Likelihood Low

The parameter _name of the AMT.constructor shadows an ERC20._name.

The parameter _symbol of the AMT.constructor shadows an
ERC20._symbol.

The parameter _name of the LIQUIDITYAMT.constructor shadows an
ERC20._name.

The parameter _symbol of the LIQUIDITYAMT.constructor shadows an
ERC20._symbol.

Solidity allows for ambiguous naming of state variables when
inheritance is used. Contract A with a variable x could inherit
contract B, which also has a state variable x defined. This would
result in two separate versions of x, one of them being accessed from
contract A and the other one from contract B. In more complex
contract systems, this condition could go unnoticed and subsequently
lead to security issues.

Shadowing state variables can also occur within a single contract
when there are multiple definitions on the contract and function
level.

Paths:
./AMT.sol
./LIQUIDITYAMT.sol

Recommendation: Rename related variables/arguments.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

L03. Missing Zero Address Validation

Impact Low

Likelihood Low

www.hacken.io
16

Address parameters are used without checking against the possibility
of 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./marketvault.sol : setMaster();
./Master.sol : liqLocker.constructor(), Master.constructor(),
Master.setPayerWallet(), Master.mintMaster();

Recommendation: Implement zero address checks.

Found in: e0fe204

Status: Fixed (Revised commit: b2516c5)

L04. Invalid Hardcoded Value

Impact Low

Likelihood Low

In the addLiquidityLocking() and addLiquidity() functions, the
milisecsToValidate variable is declared as ‘60000’ to represent 1
minute.

However, this is 1000 minutes, as EVM uses seconds, not milliseconds.

Path:
./Master.sol : addLiquidityLocking(), addLiquidity();

Recommendation: Change the value to ‘60’, correct the documentation
or remove this variable.

When used in the equation block.timestamp + milisecsToValidate the
milisecsToValidate has no effect as block.timestamp is sufficient as
the deadline for the Uniswap.addLiquidity() function.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

Informational

I01. Variables That Should Be Declared Constant

Variables that do not change their value should be declared constant
to save Gas.

Paths:
./AMT.sol : nameForDeploy, symbolForDeploy;
./LIQUIDITYAMT.sol : nameForDeploy, symbolForDeploy;
./Master.sol : addrRouter, liqRouter, posibleVariation,
milisecsToValidate;

www.hacken.io
17

Recommendation: Declare variables as constants.

Found in: e0fe204

Status: Fixed (Revised commit: c674d1fc)

I02. Variables That Should Be Declared Immutable

The variables fee and sellRate are only declared in the constructor.
These variables should be declared as immutable to save Gas.

Path:
./LIQUIDITYAMT.sol: fee, sellRate;

Recommendation: Declare the variables as immutable.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

I03. Unused Function Parameters

Parameters _name and _symbol of the constructor are never used.

Unused variables are allowed in Solidity and do not pose a direct
security issue. It is best practice to avoid them as they can cause
an increase in computations (and unnecessary Gas consumption) and
decrease readability.

Paths:
./AMT.sol
./LIQUIDITYAMT.sol

Recommendation: Remove the unused parameters.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

I04. Unused Import

Address and SafeMath imports are never used in the LIQUIDITYAMT
contract.

Unused imports should be removed from the contracts. Unused imports
are allowed in Solidity and do not pose a direct security issue.

However, it is best practice to avoid them as they can decrease
readability.

Path:
./LIQUIDITYAMT.sol

Recommendation: Remove the unused imports.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)
www.hacken.io

18

I05. Use Of Hardcoded Values

In the AMT contract, total supply cap (100000000*(10**18)) is used in
the mint function as hardcoded.

In the Master contract, on line 93 & 94, the amount to be approved is
hardcoded.

In the Master contract, on line 197, lockingTime is hardcoded.

Using hardcoded values in the computations and comparisons is not
best practice.

Paths:
./AMT.sol
./Master.sol

Recommendation: Convert this variable into constant.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

I06. Typos In The Documentation

In the marketvault contract, the word ‘withdrawl’ is spelled
incorrectly several times. It should have been ‘withdrawal’.

In the marketvault contract, the word ‘Standar’ is spelled
incorrectly. It should have been ‘Standard’.

In the Master contract, on line 133, the word ‘Liquity’ is spelled
incorrectly. It should have been ‘Liquidity’.

In the Master contract, on line 79 and 80, the words ‘payed’ and
‘payd’ are spelled incorrectly. They should have been ‘paid’.

In the Master contract, on lines 176, 177, 223, 224, ‘to small’ is
spelled incorrectly. It should have been ‘too small’.

Paths:
./marketvault.sol
./Master.sol

Recommendation: Fix the typos in the documentation.

Found in: e0fe204

Status: Fixed (Revised commit: b2516c5)

I07. Redundant Declaration

Boolean variables are already false by default. Therefore, there is
no need to assign a value ‘false’ at the first declaration on line
63.

www.hacken.io
19

Path:
./Master.sol : liqLocked

Recommendation: Remove value assigning to save Gas.

Found in: e0fe204

Status: Fixed (Revised commit: b2516c5)

I08. Redundant Complexity

The condition in the require statement on lines 176, 177, 223, 224
has redundant complexity since it actually checks only if the amount
is greater than 1.

Redundant complexity spends more Gas and decreases code readability.

Path:
./Master.sol: addLiquidityLocking(), addLiquidity();

Recommendation: Change the condition to amount > 1.

Found in: e0fe204

Status: Fixed (Revised commit: 0fd2faa)

I09. Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be ordered and grouped by their visibility as
follows:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External functions
5. Public functions
6. Internal functions
7. Private functions

Within each grouping, view and pure functions should be placed at the
end.

www.hacken.io
20

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

The marketvault and liqLocker contracts are named with lowercase
letters. Contracts and libraries should be named using the CapWords
style.

Constant and immutable variables should be in uppercase.

Some functions violate line length standards. Please check ‘Maximum
Line Length’ in the official Solidity guideline.

Paths:
./AMT.sol
./LIQUIDITYAMT.sol
./marketvault.sol
./Master.sol

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Providing comprehensive NatSpec annotations for functions and
following Solidity's naming conventions further enrich the quality of
the code. Follow the official Solidity guidelines.

Found in: e0fe204

Status: Reported (Revised commit: 0fd2faa) (Naming is not improved.
Constant and immutable variables are not in uppercase)

I10. State Variables Default Visibility

Some variables’ visibility is not specified in the project.

Specifying state variables visibility helps to catch incorrect
assumptions about who can access the variable.

This makes the contract`s code quality and readability higher

Paths:
./AMT.sol : nameForDeploy, symbolForDeploy
./LiquidityAmt.sol: nameForDeploy, symbolForDeploy
./Market.sol: amt, btcb, usdt, addrBtcb, addrUsdt, fee, master
./liqLocker.sol: masterContract, btcb, liqToken
./Master.sol: liqLocked, amt, btcb, liqToken, externalLiqToken,
addrRouter, liqRouter, liqFactory, addrBtcb, amountForApproval

Recommendation: Specify the intended visibility explicitly.

Found in: e0fe204

Status: Reported (BurnVault.sol visibilities and maxAmt variable in
Amt.sol are not set.)(Revised commit: b2516c5)

www.hacken.io
21

https://docs.soliditylang.org/en/v0.8.13/style-guide.html

I11. Unused Variable

masterSetControl variable is declared and never used in anywhere.

Unused variables are allowed in Solidity and do not pose a direct
security issue. It is best practice to avoid them as they can cause
an increase in computations (and unnecessary Gas consumption) and
decrease readability.

Paths: ./Market.sol

Recommendation: Remove the unused variable.

Found in: 0fd2faa

Status: Fixed (Revised commit: b2516c5)

I12. Unused Import

The Master.sol contract is imported in the BurnVault.sol contract,
but it is never used.

Unused imports are allowed in Solidity and do not pose a direct
security issue. It is best practice to avoid them as they can cause
an increase in computations (and unnecessary Gas consumption) and
decrease readability.

Paths: ./BurnVault.sol

Recommendation: Remove the unused import.

Found in: 0fd2faa

Status: Fixed (Revised commit: b2516c5)

www.hacken.io
22

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
23

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
24

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
25

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/AutoMiningToken

Commit e0fe2041cf5d09d711a49ebe8648dbdd16ea0b6f

Whitepaper Link

Requirements Link

Technical
Requirements -

Contracts
Addresses

AMT.sol:
https://bscscan.com/address/0x6ae0a238a6f51df8eee084b1756a54dd8a8e85d3

LIQUIDITYAMT.sol:
https://bscscan.com/address/0x679bd76ca0b3f037131af9170d0462c9ffc9bc27

marketvault.sol:
https://bscscan.com/address/0xaed5982fe57813312f883292b57c2bf924812cf0

Master.sol:
https://bscscan.com/address/0x13e98112e1c67dbe684adf3aeb1c871f1fe6d1ac

Contracts File: contracts/AMT.sol
SHA3: c4f56cbf88f074d72299cf97465b9f54235b4046020bbecfe836448002d6a25e

File: contracts/LIQUIDITYAMT.sol
SHA3: 4b86dbccd06e2f6c836c77c11ad1e51b94fbef18b6d798c9d0022b9ff24d01d8

File: contracts/marketvault.sol
SHA3: f617ba837df12552d64c599c27533a651083a5a6360784e3b96cf3dc7e861e81

File: contracts/Master.sol
SHA3: 8e625087aae4ef4b7d7bb04b8e644b807b470ee3813e3612eb943acb9cc109a9

Second review scope

Repository https://github.com/AutoMiningToken/amtEnviroment

Commit 0fd2faa756eb3bf197b3bbc1e7ad5dbccc51422f

Whitepaper Link

Requirements Link

Technical
Requirements -

Contracts File: contracts/Amt.sol
SHA3: 87d0054beb4bf8498681e8722dacfc06c514bf7dc28369b0ff066567aaa9d162

www.hacken.io
26

https://github.com/AutoMiningToken
https://autominingtoken.com/wp-content/uploads/2023/06/WhitePaper-EN.pdf
https://solidity.finance/audits/AutoMiningToken/
https://bscscan.com/address/0x6ae0a238a6f51df8eee084b1756a54dd8a8e85d3
https://bscscan.com/address/0x679bd76ca0b3f037131af9170d0462c9ffc9bc27
https://bscscan.com/address/0xaed5982fe57813312f883292b57c2bf924812cf0
https://bscscan.com/address/0x13e98112e1c67dbe684adf3aeb1c871f1fe6d1ac
https://github.com/AutoMiningToken/amtEnviroment
https://autominingtoken.com/wp-content/uploads/2023/06/WhitePaper-EN.pdf
https://solidity.finance/audits/AutoMiningToken/

File: contracts/BurnVault.sol
SHA3: 1e6817fd9caf3c0714e4471bb8d8ea9bc392a176d6d28ef6d288f06d46ea0375

File: contracts/LiquidityAmt.sol
SHA3: 3ffbe422c1890287d37de4e6331dadeeb812e62b488f00bcd0eacd5bce3468a9

File: contracts/Market.sol
SHA3: 4cf3a0f8fda8ec1f7ad5fa60f1cd98b40b3c8b27c2bbd25ed56b53718c414735

File: contracts/Master.sol
SHA3: f3ec3682eb2b9cad92ffcacf9326a94b55ded9ec79579d7ae7607fd4fa768edf

Third review scope

Repository https://github.com/AutoMiningToken/amtEnviroment

Commit b2516c5fbc7c6a1591d0ef57744f379476b26099

Whitepaper Link

Requirements Link

Technical
Requirements -

Contracts File: contracts/Amt.sol
SHA3: 9dbfac39f47100e40879ebbac20df902566cc2361b6d752661eb9778eb137101

File: contracts/BurnVault.sol
SHA3: 94e35e9c0375ca88006fd40fc6daf236867374c525bc76b0157f20b8a7faf93b

File: contracts/LiquidityAmt.sol
SHA3: 1dc8b40da5f2adc102b2d6f01a144ea1ba017777e02cb89fb7e3d21c00b253bc

File: contracts/Market.sol
SHA3: a7999b77fa38622b7d41d81a496bf29f01fec3ec206b0fa70def705ed972f8bb

File: contracts/Master.sol
SHA3: 379226b21aa280efe85b91ae6899375244ed879667503a41a01b8ac52839fd49

Fourth review scope

Repository https://github.com/AutoMiningToken/amtEnviroment

Commit c674d1fcd1a3c6e1dd442d9407a5c789df8de9f3

Whitepaper Link

Requirements Link

Technical
Requirements -

Contracts File: Production/contracts/Amt.sol
SHA3: 9dbfac39f47100e40879ebbac20df902566cc2361b6d752661eb9778eb137101

www.hacken.io
27

https://github.com/AutoMiningToken/amtEnviroment
https://autominingtoken.com/wp-content/uploads/2023/06/WhitePaper-EN.pdf
https://solidity.finance/audits/AutoMiningToken/
https://github.com/AutoMiningToken/amtEnviroment
https://autominingtoken.com/wp-content/uploads/2023/06/WhitePaper-EN.pdf
https://solidity.finance/audits/AutoMiningToken/

File: Production/contracts/BurnVault.sol
SHA3: 673ed4b33e55b9aa62bfde717d2387aaae4dc9385e0bf2b2b8dbc9de0b327af0

File: Production/contracts/LiquidityAmt.sol
SHA3: 1dc8b40da5f2adc102b2d6f01a144ea1ba017777e02cb89fb7e3d21c00b253bc

File: Production/contracts/Market.sol
SHA3: d1384046ad0767341532b36b2a4d87340ca2a18a7f2241eac6e774c28423ae32

File: Production/contracts/Master.sol
SHA3: 9986a0dac27fea065b1ef4ef1f88bbc405f3837ffe29b474f5748a0024b4adac

www.hacken.io
28

