
Customer: CRE
Date: 25 September, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for CRE

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://www.creproject.com/

Changelog
12.05.2023 – Initial Review
23.05.2023 - Second Review
25.09.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.creproject.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10

M01. Requirements Violation 10
Low 10

L01. Unscalable Functionality - Copy Of Well-Known Contract 10
L02. Unchecked Transfer 11
L03. Missing Zero Address Validation 11
L04. Missing Events 12
L05. CEI Pattern Violation 12
L06. Contradiction - Undocumented Functionality 12
L07. Contradiction - Documentation Mismatch 13

Informational 13
I01. State Variables That Can Be Packed 13
I02. Floating Pragma 14
I03. Style Guide Violation - Order of Functions 14
I04. Unused Functions 15
I05. Redundant Code Block 15
I06. Missing Empty String Check 15
I07. Typo 15
I08. Style Guide Violation - Naming Conventions 16

Disclaimers 17
Appendix 1. Severity Definitions 18

Risk Levels 18
Impact Levels 19
Likelihood Levels 19
Informational 19

Appendix 2. Scope 20
Initial review scope 20
Second review scope 20
Third review scope 21

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by CRE (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

CryptoRealEstate is an ERC-20 token that mints all initial supplies to a
given address provided during contract creation. Additional minting is not
allowed. It has the following attributes:

● Name: Crypto Real Estate
● Symbol: CRE
● Decimals: 18
● Total supply: 100M tokens.

CryptoRealEstate uses OpenZeppelin Ownable contract to restrict access to
critical functionalities, but transferOwnership() is not allowed. During
contract creation, there is a new pair on Uniswap created - CRE/wETH.
Additionally, each transfer of these tokens is taxed with up to 9 % and tax
is burned. Owner of the contract can add an address to the whitelist and
transferring tokens to or from the whitelisted address omits tax. There are
3 available taxes, but only one is appalled per transfer:

● buyTax - up to 3%, this tax is applied when transfer is done from
DEX.

● sellTax - up to 9%, this tax is applied when transferring to DEX.
Half of the tax is burned and the second half is saved for marketing
wallet.

● transferTax - up to 3%, this tax is applied when transferring to or
from other addresses.

Privileged roles
● The owner of the CryptoRealEstate contract can add or can remove a

given address from the whitelist, change buy, sell and transfer tax,
set marketing wallet address, open trading, withdraw ERC20 or native
tokens from contract.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed.
● A detailed technical description is provided in the form of extensive

NatSpec comments.

Code quality
The total Code Quality score is 10 out of 10.

● Development environment is configured.
● Code follows best practices.

Test coverage
Code coverage of the project is 0% (branch coverage).

● No tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

The system users should acknowledge all the risks summed up in the risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

12 May 2023 7 1 0 0

23 May 2023 0 0 0 0

25 September 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● If a Marketing Wallet address is a contract without the ability to
withdraw native tokens, funds can be potentially locked.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Not
Relevant

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Requirements Violation

Impact Low

Likelihood High

In the changeSwapAmount() function, the comparison of the
_newThreshold variable is done incorrectly.

It is stated in the revert message of the required function that its
value should be: 0.005-0.03% of total supply

The total supply of the CRE token is constantly decreasing due to the
burning of collected fees, but the constant variable of the initial
mint is used for comparison in the changeSwapAmount() function.

Path:
./contracts/CryptoRealEstate.sol : changeSwapAmount()

Recommendation: Use the current total supply in the
changeSwapAmount() function when setting the new threshold.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3) (Requirements updated to
0.005-0.03% of initial total supply.)

Low

L01. Unscalable Functionality - Copy Of Well-Known Contract

Impact Low

Likelihood Medium

It is considered that smart contract systems should be easily
scalable.

Well-known contracts from projects like OpenZeppelin should be
imported directly from source as the projects are in development and
may update the contracts in future.

www.hacken.io
10



This may lead to new issues during further development and unexpected
errors in case of accidental or inattentive modification.

Path:
./contracts/CryptoRealEstate.sol : *,

Recommendation: Import the contract directly from source. Override
transferOwnership() and put revert() inside the overridden function
body.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

L02. Unchecked Transfer

Impact Low

Likelihood Low

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The function does not use SafeERC20 library for checking the result
of ERC20 token transfer. Tokens may not follow ERC20 standard and
return false in case of transfer failure or not returning any value
at all.

This may lead to denial of service vulnerabilities during
interactions with non-standard tokens.

Path:
./contracts/CryptoRealEstate.sol : withdrawToken()

Recommendation: Follow common best practices, use SafeERC20 library
to interact with tokens safely.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

L03. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path:
./contracts/CryptoRealEstate.sol : constructor(), setTreasury()

Recommendation: Implement zero address checks.
www.hacken.io

11



Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

L04. Missing Events

Impact Low

Likelihood Low

Events for critical state changes should be emitted for tracking
things off-chain.

Path:
./contracts/CryptoRealEstate.sol : constructor(), changeSwapAmount(),
addToWhitelist(), removeFromWhitelist(), changeBuyTaxFeePercent(),
changeTransferTaxFeePercent(), changeSellTaxFeePercent(),
setTreasury(), openTrading(), withdrawToken(), withdrawBNB()

Recommendation: Create and emit related events.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

L05. CEI Pattern Violation

Impact Medium

Likelihood Low

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The Checks-Effects-Interactions pattern is violated. During the
function, checks are done after state variables are updated.

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during implementation of new functionality.

Path:
./contracts/CryptoRealEstate.sol : constructor()

Recommendation: Follow common best practices, and implement the
function according to the Checks-Effects-Interactions pattern.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

L06. Contradiction - Undocumented Functionality

Impact Medium

Likelihood Low

www.hacken.io
12

https://docs.soliditylang.org/en/v0.8.17/security-considerations.html#use-the-checks-effects-interactions-pattern


It is considered that the project should be consistent and contain no
self-contradictions.

The changeSwapAmount() is never documented. Range that the new
threshold must be is undocumented.

This may lead to unexpected contract behavior.

Path:
./contracts/CryptoRealEstate.sol : changeSwapAmount()

Recommendation: Provide documentation, comments and identifiers in
code consciously, remove the functionality or mention it in
documentation.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

L07. Contradiction - Documentation Mismatch

Impact Medium

Likelihood Low

It is considered that the project should be consistent and contain no
self-contradictions.

According to documentation, the withdrawToken() function allows the
contract owner to withdraw any BSC token accidentally sent to the
contract. However, in the implementation, the owner can also withdraw
funds for marketing wallet before the balance of contract is greater
than threshold.

This may lead to unexpected contract behavior.

Path:
./contracts/CryptoRealEstate.sol : withdrawToken()

Recommendation: Fix the mismatch.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

Informational

I01. State Variables That Can Be Packed

Since the state variables in the CryptoRealEstate contract
sellTaxFeePercent, transferTaxFeePercent and buyTaxFeePercent,
represent numbers in range [0-9], they can be downcast and packed
together in order to save Gas.

www.hacken.io
13



Paths:
./contracts/CryptoRealEstate.sol : sellTaxFeePercent,
transferTaxFeePercent, buyTaxFeePercent

Recommendation: Consider downcasting the mentioned variables to
smaller uint sizes and place them next to each other in order to pack
storage.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

I02. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths:
./contracts/CryptoRealEstate.sol : *
./contracts/IPancakeFactory.sol : *
./contracts/IPancakeRouter.sol : *
./contracts/CustomOwnable.sol : *

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

I03. Style Guide Violation - Order of Functions

The project should follow the official code style guidelines.

Functions should be grouped according to their visibility and
ordered:

● constructor
● receive function (if exists)
● fallback function (if exists)
● external
● public
● internal
● private

Within a grouping, place the view and pure functions at the end.

Paths:
./contracts/CryptoRealEstate.sol
./contracts/CustomOwnable.sol

Recommendation: The official Solidity style guidelines should be
followed.

www.hacken.io
14



Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

I04. Unused Functions

The functions created but not used in the project should be deleted.
This will make a more readable contract.

Path:
./contracts/IPancakeRouter.sol :
swapExactETHForTokensSupportingFeeOnTransferTokens(),
swapExactTokensForETH(), addLiquidityETH()

Recommendation: Remove unused function.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

I05. Redundant Code Block

According to documentation, withdrawBNB() only purpose is to withdraw
native tokens stuck in contract.

Only function that accepts native tokens to contract is receive().

This function does not have a body and is not needed to make the
contract work properly.

Path:
./contracts/CryptoRealEstate.sol : withdrawBNB(), receive()

Recommendation: Delete redundant code block.

Found in: 960021a

Status: Reported

I06. Missing Empty String Check

Missing empty string check for _name and _symbol of newly created
ERC20 token. These values cannot be changed later.

Path:
./contracts/CryptoRealEstate.sol : constructor()

Recommendation: Implement empty string checks.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

I07. Typo

The pancekeRouter state variable has a typo in its name.

www.hacken.io
15



Path:
./contracts/CryptoRealEstate.sol : pancekeRouter

Recommendation: Fix the typo.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

I08. Style Guide Violation - Naming Conventions

Constants should be named with all capital letters with underscores
separating words.

For example: TOTAL_SUPPLY.

Path:
./contracts/CryptoRealEstate.sol : TOTALSUPPLY

Recommendation: Fix the violation.

Found in: 960021a

Status: Fixed (Revised commit: 2de82e3)

www.hacken.io
16



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
17



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
18



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
19



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://dev.azure.com/blockstars/Solidity Projects Public/_git/CRE
Token

Commit 960021aa8ac1e55820688d7ceedbc405453403cc

Whitepaper https://www.creproject.com/whitepaper

Requirements CRE Token.docx
SHA3: 2620f0d50278aab1d5185bd6e12fef755940a8b04e4a23cf13f7d12d070e79c9

Technical
Requirements

CRE Token.docx
SHA3: 2620f0d50278aab1d5185bd6e12fef755940a8b04e4a23cf13f7d12d070e79c9

Contracts File: contracts/CryptoRealEstate.sol
SHA3: 54aa0c5bd4d60c4384ea78273fc288e7c42f47a710b57604e7cb3c2c89fe6042

File: contracts/CustomOwnable.sol
SHA3: e33f9c489af7e4a864f208454df4809435b0eb5d3bee582f21ce0384d1c7152f

File: contracts/interfaces/IPancakeFactory.sol
SHA3: d5043b2256e646a0b999e2b5f20a6a75d8885cbf988b1b4117e39fde0f9d2352

File: contracts/interfaces/IPancakeRouter.sol
SHA3: d6d27eeb75bd1879e9782c9b3595eac2e0628de3445e32c01eb2efd232873552

Second review scope

Repository https://dev.azure.com/blockstars/Solidity Projects Public/_git/CRE
Token

Commit 2de82e38f61602c2c79e85627f415740ef8b7ddf

Whitepaper https://www.creproject.com/whitepaper

Requirements
CRE Token.docx
SHA3: 2620f0d50278aab1d5185bd6e12fef755940a8b04e4a23cf13f7d12d070e79c9
CRE Token Requirements.pdf
SHA3: ceee09fd9b8f2b9c9aff06d06f200278059d0f560d4a0f0d331421f41db852b3

Technical
Requirements

CRE Token.docx
SHA3: 2620f0d50278aab1d5185bd6e12fef755940a8b04e4a23cf13f7d12d070e79c9
CRE Token Requirements.pdf
SHA3: ceee09fd9b8f2b9c9aff06d06f200278059d0f560d4a0f0d331421f41db852b3

Contracts File: contracts/CryptoRealEstate.sol
SHA3: 194b7f5cfd9c3b4fbdd2dab0cd5989698fcc2d5a7783971c84c530738d1960d1

File: contracts/interfaces/IPancakeFactory.sol
SHA3: 1666978c0da6805296cddd6d706e4785ed5ef7ec8c356c2a2ea21768d0043e8b

File: contracts/interfaces/IPancakeRouter.sol
SHA3: 373f240a2b4af2895ac3248670c1477a0fe27c30fbd65824c2d0a69822cf10e8

www.hacken.io
20

https://dev.azure.com/blockstars/Solidity
https://dev.azure.com/blockstars/Solidity
https://www.creproject.com/whitepaper
https://dev.azure.com/blockstars/Solidity
https://dev.azure.com/blockstars/Solidity
https://www.creproject.com/whitepaper


Third review scope

Repository https://etherscan.io/address/0x21b8bfbbefc9e2b9a994871ecd742a5132b98ae
d#code

Commit -

Whitepaper https://www.creproject.com/whitepaper

Requirements
CRE Token.docx
SHA3: 2620f0d50278aab1d5185bd6e12fef755940a8b04e4a23cf13f7d12d070e79c9
CRE Token Requirements.pdf
SHA3: ceee09fd9b8f2b9c9aff06d06f200278059d0f560d4a0f0d331421f41db852b3

Technical
Requirements

CRE Token.docx
SHA3: 2620f0d50278aab1d5185bd6e12fef755940a8b04e4a23cf13f7d12d070e79c9
CRE Token Requirements.pdf
SHA3: ceee09fd9b8f2b9c9aff06d06f200278059d0f560d4a0f0d331421f41db852b3

Contracts File:
https://etherscan.io/address/0x21b8bfbbefc9e2b9a994871ecd742a5132b98ae
d#code
SHA3: fa7d24c5da2221d9613027e41c49a2dce6f6317e23f142764f3c935c4e8530e1

www.hacken.io
21

https://etherscan.io/address/0x21b8bfbbefc9e2b9a994871ecd742a5132b98aed#code
https://etherscan.io/address/0x21b8bfbbefc9e2b9a994871ecd742a5132b98aed#code
https://www.creproject.com/whitepaper
https://etherscan.io/address/0x21b8bfbbefc9e2b9a994871ecd742a5132b98aed#code
https://etherscan.io/address/0x21b8bfbbefc9e2b9a994871ecd742a5132b98aed#code

