
Customer: GovWorld
Date: July 21, 2023

This report may contain confidential information about IT
systems and the intellectual property of the Customer, as well as
information about potential vulnerabilities and methods of their
exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
GovWorld

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Lending Platform

Platform EVM

Language Solidity

Methodology Link

Website https://www.govworld.io/

Changelog
22.02.2023 – Initial Review
11.04.2023 – Second Review
12.06.2023 – Third Review
21.07.2023 – Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.govworld.io/

Table of contents
Introduction 6
Scope 6
Severity Definitions 29
Executive Summary 30
Risks 31
Checked Items 32
System Overview 35
Findings 52

Critical 52
C01. Access Control Violation 52
C02. Data Consistency 52
C03. Data Consistency 52
C04. Data Consistency 53
C05. Denial of Service Vulnerability 53
C06. Funds Lock 54
C07. Requirements Violation; Denial of Service Vulnerability 54
C08. Requirements Violation 54
C09. Flashloan Attack 55
C10. Data Consistency 55
C11. Frontrunning 56
C12. Requirements Violation 56
C13. Data Consistency 56

High 57
H01. Denial of Service Vulnerability 57
H02. Denial of Service Vulnerability 57
H03. Denial of Service Vulnerability 58
H04. Denial of Service Vulnerability 59
H05. Denial of Service Vulnerability 59
H06. Denial of Service Vulnerability 60
H07. Denial of Service Vulnerability 60
H08. Denial of Service Vulnerability 61
H09. Requirements Violation; Denial of Service Vulnerability 61
H10. Data Consistency 61
H11. Data Consistency; Requirements Violation 62
H12. Denial of Service Vulnerability; Requirements Violation 62
H13. Highly Permissive Role Access; Undocumented Behavior 63
H14. Data Consistency 63
H15. Requirements Violation 63
H16. Highly Permissive Role Access 64
H17. Requirements Violation 64
H18. Requirements Violation; Undocumented Behavior 65
H19. Front-Running Attack 65
H20. Insufficient Funds; Denial of Service Vulnerability 65
H21. Data Consistency 66
H22. Undocumented Behavior 66
H23. Unfinalized Functionality 66

www.hacken.io
3

H24. Requirements Violation; Undocumented Behavior 67
H25. Requirements Violation; Undocumented Behavior 67
H26. Inconsistent Data 67
H27. Requirements Violation; Inconsistent Data 68
H28. Frontrunning 68
H29. Data Consistency 68
H30. Data Consistency 69
H31. Denial of Service Vulnerability 69
H32. EIP Standard Violation 69
H33. Requirements Violation 70
H34. Ambiguous Third-Party Integration 70

Medium 70
M01. Inconsistent Data 70
M02. Inconsistent Data; Best Practice Violation 71
M03. Best Practice Violation 72
M04. Contradiction 72
M05. Inefficient Gas Model 72
M06. Inconsistent Data 73
M07. Inconsistent Data 73
M08. Inconsistent Data 73
M09. Inconsistent Data; Funds Lock 74
M10. Inefficient Gas Model 74
M11. Inconsistent Data 75
M12. Inconsistent Data 75
M13. Contradiction 75
M14. Inefficient Gas Model 76
M15. Inefficient Gas Model 76
M16. Inefficient Gas Model 76
M17. Inconsistent Data 76
M18. Contradiction 77
M19. Inefficient Gas Model 77
M20. Inconsistent Data 78
M21. Contradiction 78
M22. Inefficient Gas Model 78
M23. Inefficient Gas Model 79
M24. Inefficient Gas Model 79
M25. Inconsistent Data 79
M26. Inconsistent Data 80
M27. Inconsistent Data 80
M28. Denial of Service Vulnerability 81
M29. Inefficient Gas Model 81
M30. Tests Failing 81
M31. Best Practice Violation; Inconsistent Data 81
M32. Inconsistent Data 82
M33. Inefficient Gas Model 82
M34. Redundant Variable 83
M35. Best Practice Violation 83
M36. Denial of Service Vulnerability 83

www.hacken.io
4

M37. Best Practice Violation 84
M38. Inefficient Gas Model 84
M39. Inconsistent Data 84
M40. Inconsistent Data 85
M41. Contradiction 85

Low 85
L01. Redundant Imports 85
L02. Incorrect Functions Titles 86
L03. Floating Pragma 86
L04. Contradiction 87
L05. Unused Events 87
L06. Public Functions That Could Be Declared External 87
L07. Code Duplication 88
L08. Redundant Property 88
L09. Redundant Property 88
L10. Commented Code 88
L11. Incorrect Function Title 89
L12. Redundant Variable Reference 89
L13. Unclear Error Message 89
L14. Unclear Error Message 89
L15. Redundant Check 90
L16. Redundant Check 90
L17. Contradiction 90
L18. Contradiction 90
L19. Redundant Parameter 91
L20. Contradiction 91
L21. Redundant Functionality 91
L22. Redundant Parameter 92
L23. Contradiction 92
L24. Unclear Error Message 92
L25. Redundant Variable 92
L26. Code Duplication 93
L27. Misleading Variable Title 93
L28. Best Practice Violation 93
L29. Code Duplication 93
L30. Code Duplication 94
L31. Inefficient Gas Model 94
L32. Redundant Import 94
L33. Data Consistency 94
L34. Data Consistency 95
L35. Redundant Imports 95
L36. Code Duplication 95
L37. Default Visibility Usage 95
L38. Incorrect Comment 96

Disclaimers 97

www.hacken.io
5

Introduction

Hacken OÜ (Consultant) was contracted by GovWorld (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/GovWorld/protocol-contracts/blob/contracts

-v2

Commit c9057e0fb5c09d596ae7ad8e86d282bff71fc83e

Whitepaper Whitepaper

Functional
Requirements

Internal functional documentation
(SHA3:
f9a7b72af284ced43323c10acb2c907fcb9c37fc65549d2f9c1a5f360877b
f22)

Technical
Requirements

Internal technical documentation
(SHA3:
f9a7b72af284ced43323c10acb2c907fcb9c37fc65549d2f9c1a5f360877b
f22)

Contracts

File: ./contracts/facets/addressprovider/AddressProviderFacet.sol
SHA3: e163abd7a244f6f5b039aba2fd22fd9c19ddca98ef2180bd9ac008734a616b41

File: ./contracts/facets/admin/AdminRegistryFacet.sol
SHA3: 513e3cac070d5f5f5df61db9524698bd13e53b71bcbd6025c97d206396d3c748

File: ./contracts/facets/admin/LibAdmin.sol
SHA3: 080e0465a49459bf4949cfe39d7204e99ea126c6e2463a1ed4ea86a8e473c7b1

File: ./contracts/facets/admin/LibAdminStorage.sol
SHA3: 317ef785ddc0ffdc191378b25a5f271392d88935dcfdfcf674a3bf033df8758a

File: ./contracts/facets/claimtoken/ClaimTokenFacet.sol
SHA3: a34d61bcac1fadb4714edf22c89bcf78f012b1e9691b11e18681bf8d7d4b722d

File: ./contracts/facets/claimtoken/LibClaimTokenStorage.sol
SHA3: c12bb3f87b17e45e80aa642007240d230176d33910fe4a15fff5e617edb08aaf

File: ./contracts/facets/govTier/GovTierFacet.sol
SHA3: 978f04d299cc4511fc01a3b5abdca68b5d69356ad446d93ba7d4db12534c1baa

File: ./contracts/facets/govTier/LibGovTier.sol
SHA3: 599c2cff7d0c50ae9d6c5ee7db2cb9ba7d7d452a05603e80ea61d1209f6e11f1

File: ./contracts/facets/govTier/LibGovTierStorage.sol
SHA3: d8986be146db5f80efea02b592a7ca32ccf6994fe5c166b9daf12a9769a145b3

File: ./contracts/facets/gTokenFactory/GTokenFactoryFacet.sol
SHA3: 4135596fe4681b7f1c5b6ea1b1c351d473d57e37670bd41df6d949501498d7f0

www.hacken.io
6

https://govworld.gitbook.io/govworld-whitepaper/

File: ./contracts/facets/liquidator/LibLiquidator.sol
SHA3: c03b3da6b113e37e76ebc4f4ef0e189f5e1f4057326e32fd07ecfa05bdd6904b

File: ./contracts/facets/liquidator/LibLiquidatorStorage.sol
SHA3: 002af955e8962ca73c64366fd94ce7f80cec6edf9e4b0c82e053e703a5912a9b

File: ./contracts/facets/liquidator/LiquidatorFacet.sol
SHA3: 2fd687324b81555f9e60c6dd06c8d9bc865926e8240df5fe7dc299b295be1a23

File: ./contracts/facets/market/libraries/LibMarketProvider.sol
SHA3: 479ff406c7e08cebce68a729258af2ef5963e0e93e30638f42cfae312aafbfba

File: ./contracts/facets/market/libraries/LibMarketStorage.sol
SHA3: d9eb1dd4a8fba342aaeb000fd6edcb4f5eb7597f7159fb43b87836beb08b95e4

File: ./contracts/facets/market/libraries/LibNetworkMarket.sol
SHA3: 719d2dcecb1fb7b8af797bf8092591240eab3e1e1373f37ab7b23b35cf01cf32

File: ./contracts/facets/market/libraries/LibNFTMarket.sol
SHA3: cbf49590182552cc1138f916ba45c014175da9fbd298a241bf5b0dab5aaf6160

File: ./contracts/facets/market/libraries/LibTokenMarket.sol
SHA3: 1cf3240e67a19a03c77b1541a2ee75d78877a8d58541526d2f1bad7f3275c15a

File: ./contracts/facets/market/network/NetworkMarketFacet.sol
SHA3: 1bb3804389fcf17b8cff52956acce0bcefa1addc035bb10ff3a37f5482c2a4d3

File: ./contracts/facets/market/nft/NFTMarketFacet.sol
SHA3: d3da16e9155e2da9b96501e1b65dc4afce8292c739fd09f1b1c9405033ea4179

File: ./contracts/facets/market/token/TokenMarketFacet.sol
SHA3: b6b8ed151a8b097bbd6ea2ea152bdf684ae58c314364ed25747b604df644cb15

File: ./contracts/facets/marketRegistry/LibMarketRegistryStorage.sol
SHA3: 6557ab80b52c1d099bb1f3b7480893429a8beaaa92a68458b7699572a844e9f8

File: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol
SHA3: 4a43c7b4fe3bc43d59e81c3980a6ae4ad65126dc0fad61e5e42a7f4b02161fea

File: ./contracts/facets/nftTier/GovNFTTierFacet.sol
SHA3: ee84424d6b425f4eee6ae8a746866af08adc10c04cfee2ec92b7882aeabc8d88

File: ./contracts/facets/nftTier/LibGovNFTTier.sol
SHA3: 7fe4018764d1f650f12b5a5a7f7218993f38011592ee6d5cbb9be8b7d3408c02

File: ./contracts/facets/nftTier/LibGovNFTTierStorage.sol
SHA3: cb59981f17931bbbccf52dacdfa1c43d7c70b32d7d44337a9c804fe36e56aaac

File: ./contracts/facets/oracle/LibPriceConsumer.sol
SHA3: 6a422bcf31d3b0b3b28bd34dcd120809c48f5e96a2baf0d370372a7a59e08766

File: ./contracts/facets/oracle/LibPriceConsumerStorage.sol
SHA3: 139cbd2f5ce339bac24faecba0876fa93449085306976317993f179ba8b50688

File: ./contracts/facets/oracle/PriceConsumerFacet.sol
SHA3: 617aca5897093ab872ae4edf60fdac75a07e08b28d49fb3b8b838c439068638a

File: ./contracts/facets/pausable/PausableFacet.sol
SHA3: 761db4e871e95b1644232d8f3d91700014ca3829d62df5a856a0b86f12e79fc0

File: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol
SHA3: bc52d65507ea63abc3f942af5910b127137bd5a1110ef4cbbc17330064306468

File: ./contracts/facets/protocolRegistry/LibProtocolStorage.sol

www.hacken.io
7

SHA3:
11591ff612cef839b81abd77dac2032be1cb46ac0be77a54d5be25f5036a5ee3

File: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol
SHA3: add2a62761c5913dfcd5018139388f43bfac8ca1bc11ff24f3a591d57f8bf141

File: ./contracts/facets/token/GToken.sol
SHA3: c9f32cdb64011b4065a958d8c470fba84769dd2caef818b341a7e28c061114d4

File: ./contracts/facets/userTier/LibUserTier.sol
SHA3: 556783a8a9d92ba17a753af386aba4a2e098d289e6434f298c5e4bcf1b237ba3

File: ./contracts/facets/userTier/UserTierFacet.sol
SHA3: 4cae99b0a73a6cdcc0e787d1b9bc7d0cb45e39d85e2a3dbf6c25bef968b468a5

File: ./contracts/facets/vcTier/LibVCTierStorage.sol
SHA3: 93f91ff9afbac667b980b2d1193c8589b4b69966d5d089943f4e77c4399a6852

File: ./contracts/facets/vcTier/VCTierFacet.sol
SHA3: 7368f15c3f07545640b44693592201da1fb4c5c31730989ad451a3a33134950d

File: ./contracts/interfaces/IAdminRegistry.sol
SHA3: a69022317a56886e9d4913106b622e87ad00a8d6d0f56ceef897cc3343446f41

File: ./contracts/interfaces/IClaimToken.sol
SHA3: 032ea8b8455665a56287cdb8aa8681d14ef3193a256ef281f40c202a8cfdef8d

File: ./contracts/interfaces/IDexFactory.sol
SHA3: 58adf6b9b305d5baa20018b95a076a6fe37c3d562627b88c5c2fb36af6802371

File: ./contracts/interfaces/IDexPair.sol
SHA3: 4014302fef1dc17627e4e64646e624dfd4433b296e4807643280c434cdb5473b

File: ./contracts/interfaces/IDiamondCut.sol
SHA3: 4d648ccac12675848263d1f5568bf036d4ef3fe5919410ab243cbd047a1b07ff

File: ./contracts/interfaces/IDiamondLoupe.sol
SHA3: 22ffe42c8f67069b2124ef93937a8fe6faa9d912f8fc7892fc69c8f03be94664

File: ./contracts/interfaces/IERC20Extras.sol
SHA3: d9cd3ce53748b56d8e6c83d0f88908854b7fe31692e7873c435416ab0333227c

File: ./contracts/interfaces/IGovNFTTier.sol
SHA3: 430d94c3e9c892eb4474a03980b2a943ad671a4349b6e7a5d9b3b46c0c6b2811

File: ./contracts/interfaces/IGovTier.sol
SHA3: 504d97a162a5a0fd6ca74a099170b61d063beafc261519e6afa36f0791034a0f

File: ./contracts/interfaces/IGToken.sol
SHA3: b1c47075b23edc29bfd42128b245277d64f8907ffe34be4dc4b8c8e7f730257c

File: ./contracts/interfaces/IGTokenFactory.sol
SHA3: d4de0e392459ff810ab7789d217d80c1419d603ed36932cbbdfc10307e061b37

File: ./contracts/interfaces/IMarketRegistry.sol
SHA3: a9e4e2f09fcf300ef3328a56038531a73ee9da82bd955896ba32380b3f6b8a56

File: ./contracts/interfaces/IPriceConsumer.sol
SHA3: 6cccf892f4e4a827e528d6eac87917ab784f55028e2070b194994b9e2a3b8194

File: ./contracts/interfaces/IProtocolRegistry.sol
SHA3: a962296938282ba86a5d5ceb3723110240910d78168067c6586e3fa279ddd622

File: ./contracts/interfaces/IUniswapSwapInterface.sol
SHA3: c805cb12258f66ecebeb159bf412e1df042018f5b046e824af54076e80bb8aa4

www.hacken.io
8

File: ./contracts/interfaces/IUniswapV2Router01.sol
SHA3: e3ce9868d3833269bc63500bcb43a5ef25e4ae2fe876b2fe51fe2bed06eb9050

File: ./contracts/interfaces/IUniswapV2Router02.sol
SHA3: 62855cfb573a6af3a57d6ca56e9373514b025cc84dd1526610ab9d8fc19b37fb

File: ./contracts/interfaces/IUserTier.sol
SHA3: 2c3a76e6f0c2bce1238b9a6319486935d8323135e03aa5a72bda335576ba30b5

File: ./contracts/interfaces/IVCTier.sol
SHA3: 1389765cb2a9cdc54f28967a5103a9adc00fe517bc7fea9cd84a038dc99ad660

File: ./contracts/shared/Diamond.sol
SHA3: d7b1e88fa1a0efd68bcf507308935df709b4ae071f41aef35229e6d519ca2dee

File: ./contracts/shared/facets/DiamondCutFacet.sol
SHA3: b54f141ac489fdc7919297c9162e7dfcfe51e0eea6163096350dece5a8dc4fc1

File: ./contracts/shared/facets/DiamondLoupeFacet.sol
SHA3: 41fd84caba9eacceb1ee327ec865e9ad2c0d761dd2cc7c600d81eb090a90ffe3

File: ./contracts/shared/facets/OwnershipFacet.sol
SHA3: 093101daf7c0c3a8daf56576c79e90ee173aae7652a5cc55a5bf1e5c504feecb

File: ./contracts/shared/interfaces/IDiamondCut.sol
SHA3: 4d648ccac12675848263d1f5568bf036d4ef3fe5919410ab243cbd047a1b07ff

File: ./contracts/shared/interfaces/IDiamondLoupe.sol
SHA3: 22ffe42c8f67069b2124ef93937a8fe6faa9d912f8fc7892fc69c8f03be94664

File: ./contracts/shared/interfaces/IERC165.sol
SHA3: d2fc32ffccc9a3ce51f7a79bf14430706981ed374d2a3619fd8bb5c2c74128ba

File: ./contracts/shared/interfaces/IERC173.sol
SHA3: df587d7945371179091fc9649cd05690283cd1dcc50c445afe243fc6e63252e7

File: ./contracts/shared/libraries/LibAppStorage.sol
SHA3: de75d7e865068685d834d9278f70bf2b364dd0c45f9cdb625946301bd7f18ed3

File: ./contracts/shared/libraries/LibDiamond.sol
SHA3: 2df5cb0da4bcb01dc97a62a56504a21dd0d4e1432d33d4c0a8359887494ef6f1

File: ./contracts/shared/libraries/LibMeta.sol
SHA3: 8fb1223dd7acdab261cb57cbb9baeba499f2a26fc7d0e6aac83e9c7fc4ba6639

File: ./contracts/shared/libraries/LibPausable.sol
SHA3: c66f93afc794c0667ae72050952fdab1f64b4f5da9c28d9b24f7595c1f37c512

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ad
dressStringUtil.sol
SHA3: df0fcd49fc2364a050d0ee48ce7bad77ff34718ab4d92786f7f74778a0380388

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ba
bylonian.sol
SHA3: abdf57aa6c0acb54245f8322e99454a7977dbfde1af0c808e5f8818f68b304d4

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Bi
tMath.sol
SHA3: d77af914ac7454b5e6fe36fb9c15cb76f013d33bed66c855b7c1fcea97458f9c

www.hacken.io
9

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fi
xedPoint.sol
SHA3: b0d3da542a8dbf65f993fe968e397d457353a6124c3349369b84e7f8a640eea2

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fu
llMath.sol
SHA3: 297c94c68a0045d3757bc4037347ed413df9f1790e6abe2610780c52df43c9be

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Sa
feERC20Namer.sol
SHA3: a4b01b142a1f18e418724e84e6bd0436a263610c99572a4ad66008bc3bdf9251

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Tr
ansferHelper.sol
SHA3: 5e0ba812461ef72f9ca6f8033e5962cdbaaee39702e96c2fbab4bef91a1025f5

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IERC20.sol
SHA3: 24cc29ac72194902dd1dad4532ed4191bed8c5fa19624b751cd224675d4e545c

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Callee.sol
SHA3: eedb43f6d1cd39070bc18a6217399ed38fefb3280a6acc6c4124f1e9423fc784

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2ERC20.sol
SHA3: c97b85bf5faf5024bc3dd1be8aafcd1b876692e4a81c2daeecf2b2ad3688b425

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Factory.sol
SHA3: b0627746d906ffd79fb54e4a850fc6f7212bf99f3ce3999082ee6f5652ede02d

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Pair.sol
SHA3: f458fcb4e4e1df7b1e646440c68b61d5de5303e10335b980d606f424e0cb7866

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/Math.sol
SHA3: 04f5d054167653e3d34cc1bcd90afd18e3408a59ef480f9a6fb2563b6f7ffbfb

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/SafeMath.sol
SHA3: 567cf3815667d04d1664dc04bc54ca6326e86845c4ff97985c79603c9aaf0fd1

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/UQ112x112.sol
SHA3: 82e8014c70a4e2f204804a9e4b31eeb065fbb96d18c9da1a419a214e2d2ad12e

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2ERC20.sol
SHA3: 8be556fe4efc8c099e11360cc84557e3bc2b2ceb49772cba90bf89478db10fc0

www.hacken.io
10

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Factory.sol
SHA3: d3de08f1a3afd5545d8860733b9088f38cf35231d1bdf9311c4fd6c2522baef0

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Pair.sol
SHA3: 56788239b960c6cd7395c97c08ea4fd16ab5c5e4aa5636fa5389d2ec2a631994

File: ./contracts/uniswap/v2-periphery-master/interfaces/IERC20.sol
SHA3: 10b180dd59c7ed1ffb033e7404be7190547e935e39632f618bc0a93f6e239c51

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Migrator.sol
SHA3: 52557b69d41955a1f7ba0a512b4fc2cb71f274c4f472948d48981edf37a7d7c7

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router01.sol
SHA3: f48501c3bec8d7c11cb4aacf4552eb2d39eb82ac91ec12aec98294ebead8ee51

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router02.sol
SHA3: 8d1c371a297b04b4d18c7cdd3b3be34f5aa47143f47cafba41e0bf1b16d6dd8e

File: ./contracts/uniswap/v2-periphery-master/interfaces/IWETH.sol
SHA3: f15ae6abf9e1e7dbf4d4ae696d793453d8c137ccd1681af40778b47219a2d339

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Exchange.sol
SHA3: a5b2ced2aae302f26ad0a8d28cb686e9225c4862bf09e1df3d3f869055adbfb0

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Factory.sol
SHA3: 8481bb4d99a81d27c4f3b310ed9f0d1cf1c63c376643d93a270549488c7a17fa

File: ./contracts/uniswap/v2-periphery-master/libraries/SafeMath.sol
SHA3: 7aa01d2d0c692ee14c9e011b0d5ded5f57920cafaf76bb5a766ca1fb98f8ff3d

File: ./contracts/uniswap/v2-periphery-master/libraries/UniswapV2Library.sol
SHA3: f49b157ba97bca53b585000cf513fe7198294ede2277ea02ee07cb420ed46ea0

File: ./contracts/uniswap/v2-periphery-master/libraries/UniswapV2OracleLibrary.sol
SHA3: 07a0255a6e053db1c7189d48e5cbfef51075c9c89fac53e5892f46ae59446ded

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Migrator.sol
SHA3: d972dfcbd4f9a914a6b30097aace840b0adc7942c05b861f9dc5d5f65ff2788f

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router01.sol
SHA3: f05e30b58f26dc2bc4af01f26ee113544514c8a95452d390e76f8a369e82d2ab

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router02.sol
SHA3: caac4e4a74c608c1b14b7a3f62f3ffdd10374c1afd8cc4454a97645d28d85301

Second review scope
Repository https://github.com/GovWorld/protocol-contracts/blob/contracts

-v2

Commit ed54c7c9dab35b28c9b7fea0edfbd97fd5e7cc2d

Whitepaper Not provided

Functional
Requirements

https://govworld.gitbook.io/govworld-docs/

Technical
Requirements

https://govworld.gitbook.io/govworld-docs/

www.hacken.io
11

https://govworld.gitbook.io/govworld-docs/
https://govworld.gitbook.io/govworld-docs/

Contracts

File: ./contracts/facets/addressprovider/AddressProviderFacet.sol
SHA3: c0ce6e7fdf282998156bf963cfaa22121bc219f943205a5a70402009fa3fd4cd

File: ./contracts/facets/admin/AdminRegistryFacet.sol
SHA3: e1a4a8b4465f90f495816c35f4cd42400e0d166b888c68453fcce85091923f44

File: ./contracts/facets/admin/LibAdmin.sol
SHA3: cab578818a1fc92987b6ccae14791ef9d75163139a6a44bff64fb6e78882437a

File: ./contracts/facets/admin/LibAdminStorage.sol
SHA3: 317ef785ddc0ffdc191378b25a5f271392d88935dcfdfcf674a3bf033df8758a

File: ./contracts/facets/claimtoken/ClaimTokenFacet.sol
SHA3: 1a342c2de41ffc223b3e28a24333702dba5bc52da98cea46b2556c99139890d3

File: ./contracts/facets/claimtoken/LibClaimTokenStorage.sol
SHA3: ceed8eb984218c64766f04631261de063f2f038f215b0f1d2a8e469ab0be3680

File: ./contracts/facets/govTier/GovTierFacet.sol
SHA3: 43ca2936b6c900fe8db0adcdaa67ad3af93f4abfdc43f613dc91bccd39fe2504

File: ./contracts/facets/govTier/LibGovTier.sol
SHA3: afa1beb1a383090fb7d3cf29256efe5f892b4912ea6d010fb47cbef6a77dc892

File: ./contracts/facets/govTier/LibGovTierStorage.sol
SHA3: 7761211e336ff5635cb70a65298ee3b0639f55057ab5435c5d607753d5b2a025

File: ./contracts/facets/gTokenFactory/GTokenFactoryFacet.sol
SHA3: 5e5679c351419ab8b57604c6458a5409729afdd266e881d7be25c06b852a5d5d

File: ./contracts/facets/liquidator/LibLiquidator.sol
SHA3: 80f57e1b348602d81830ebba62cec4aee644447e3bce3440f16901da6e43c4d1

File: ./contracts/facets/liquidator/LibLiquidatorStorage.sol
SHA3: b63e0d85a14e011f23b464d1fa61d0da19f2c732fc1e72faa97e3f5f12e53ed3

File: ./contracts/facets/liquidator/LiquidatorFacet.sol
SHA3: f693ad468a156538afab45cd72670c9823261c46066dede3ee21e0b7e0e00440

File: ./contracts/facets/market/libraries/LibMarketProvider.sol
SHA3: d859447f2c7b270c88d8d4d209f830add77fada948ad66dd82399f7ed989cd45

File: ./contracts/facets/market/libraries/LibMarketStorage.sol
SHA3: 35e7e41ca6a894b73a6f70bbe0f332ce94b26cf113b17446a2bf85364a1678b8

File: ./contracts/facets/market/libraries/LibNetworkMarket.sol
SHA3: f7abc1202367d093fe17b3c7061af69795c4542aa05cf9299771d8582324580b

File: ./contracts/facets/market/libraries/LibNFTMarket.sol
SHA3: c8f3a22701130eed33533b8e06ff5fbe709819ef19869d1c9272a720b5d46665

File: ./contracts/facets/market/libraries/LibTokenMarket.sol
SHA3: 906baddf52f1fd08f07c7a601f00022d4d42b574e897d82f250c275f9e2cbde5

File: ./contracts/facets/market/network/NetworkMarketFacet.sol
SHA3: dc738dd01cfd2deb73bf925212c3479d87af232d81ac3ff1e55a07fff0933e3e

File: ./contracts/facets/market/nft/NFTMarketFacet.sol
SHA3: aeafb8a3f3d5a110d45f32df693ef803c6fb7b797f9ff32c7d7f9e2d53e4ee21

File: ./contracts/facets/market/token/TokenMarketFacet.sol
SHA3: ab473d9c18cd7d4d2dac0eec21a16b2342868bf4cf5ba293ee813ea8cabe3c5a

www.hacken.io
12

File:
./contracts/facets/marketRegistry/LibMarketRegistryStorage.sol
SHA3: 069461d88d71482d6b39a4758e96264d5e45bbb5550b3d0be037eac2a5362b09

File: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol
SHA3: 0b05af9d441660167504800ef368c3bda5856718e0680f7fff4bc39585a7ceeb

File: ./contracts/facets/nftTier/GovNFTTierFacet.sol
SHA3: 111991433e4c8912388ef3ce2e22a1e92189af0c16ac57019a57f1b9dc242409

File: ./contracts/facets/nftTier/LibGovNFTTier.sol
SHA3: cb1c9e4362844972ce8221ddc30e59c425ca0589b38e080b873e154f92e53a4a

File: ./contracts/facets/nftTier/LibGovNFTTierStorage.sol
SHA3: 024dad4afb9eed2eecaa8360835576d50ee3811cad309be7c210c56288a27e66

File: ./contracts/facets/oracle/LibPriceConsumer.sol
SHA3: 3a96a047daafa1f51518128b68670b2225f75502eacbbe8fb6460ee652f0929f

File: ./contracts/facets/oracle/LibPriceConsumerStorage.sol
SHA3: f0e0650d3bfa9f8ed62963fe3f2d7888fd639260b89614368b9f286665a2ac11

File: ./contracts/facets/oracle/PriceConsumerFacet.sol
SHA3: c53f90282f53cd5e25ef6bd0300ee012fc2051d24b101e9a48d65c1f482ca6c6

File: ./contracts/facets/pausable/PausableFacet.sol
SHA3: 54b9be28c9db0406ffe10080de00d3f5a6fbfba6b1921b9ab702bd8f0200f1d5

File: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol
SHA3: 5cc3933b9bfb05044420698e6c7461c40c9b225f9fbe3ecd45d31b3887c04ba8

File: ./contracts/facets/protocolRegistry/LibProtocolStorage.sol
SHA3: 9751fb08996323941509222d4afb1a789d74b7476e6367e8c9202459c82bf698

File: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol
SHA3: b998ad97000775de671579ec705e7fd0db54ae3ed19a6d4aa416eb1b17f2cae6

File: ./contracts/facets/token/GToken.sol
SHA3: 59ec26bdf0e1a416df090b8c558b1901a899fbcd057a6b5376dae19427afcb91

File: ./contracts/facets/userTier/LibUserTier.sol
SHA3: 73619ec8f32ccf39e45420d97d4976ba56bbbae729fdd6320a39bff27056350d

File: ./contracts/facets/userTier/UserTierFacet.sol
SHA3: 5fae272cc8691f357c66abd9c5844a950364d3d4de4ad2a8f803c011a391841d

File: ./contracts/facets/vcTier/LibVCTierStorage.sol
SHA3: 4451b8e8e1ad0c8d8bc5c3caead6f5eb1543866c098d56b6d4289bbbb3aecd22

File: ./contracts/facets/vcTier/VCTierFacet.sol
SHA3: 537a2c67876cc5cc662dee71b1e0ffaa99f9194a8fb1fe0f65087b1c863bd201

File: ./contracts/interfaces/IAdminRegistry.sol
SHA3: a69022317a56886e9d4913106b622e87ad00a8d6d0f56ceef897cc3343446f41

File: ./contracts/interfaces/IClaimToken.sol
SHA3: 56d1ac9c37253f6d03cf9c06148aaad1be06e8931cce63028e2ae821af579486

File: ./contracts/interfaces/IDexFactory.sol
SHA3: 6bc45374c37092ca74cf6e88fdc3f1e5bc5f22d64eb25405a11e3c1567ccbfa3

File: ./contracts/interfaces/IDexPair.sol
SHA3: 6c06d64a4e84cecf4ed9e1aee1ab825f2e86e3391e0615db25deccffd5730b48

File: ./contracts/interfaces/IDiamondCut.sol

www.hacken.io
13

SHA3:
4d648ccac12675848263d1f5568bf036d4ef3fe5919410ab243cbd047a1b07ff

File: ./contracts/interfaces/IDiamondLoupe.sol
SHA3: 22ffe42c8f67069b2124ef93937a8fe6faa9d912f8fc7892fc69c8f03be94664

File: ./contracts/interfaces/IERC20Extras.sol
SHA3: e3b2fb98c8ba819670cf6f3eb5ae52630785f95876de1315971be7c240ba8be2

File: ./contracts/interfaces/IERC721Extras.sol
SHA3: 26e11317cccc3b6bddbded144be75300c50a2a2e54d28812f41f58b05ce43034

File: ./contracts/interfaces/IGovNFTTier.sol
SHA3: 430d94c3e9c892eb4474a03980b2a943ad671a4349b6e7a5d9b3b46c0c6b2811

File: ./contracts/interfaces/IGovTier.sol
SHA3: 504d97a162a5a0fd6ca74a099170b61d063beafc261519e6afa36f0791034a0f

File: ./contracts/interfaces/IGToken.sol
SHA3: cbaa60ed2fa70d80b0bdb6ea3a56083e53c12356f3ea060a2bf52784e5b76809

File: ./contracts/interfaces/IGTokenFactory.sol
SHA3: 8f62ef0d6be2e681e1d4c713a53012ec49ec17ccfafd8b9e93bdf5dad607e679

File: ./contracts/interfaces/IMarketRegistry.sol
SHA3: a9e4e2f09fcf300ef3328a56038531a73ee9da82bd955896ba32380b3f6b8a56

File: ./contracts/interfaces/IPriceConsumer.sol
SHA3: 55dfec013e7b16bb6949b3dcbd19943a74aa610d81007d31db84d905ff6513bf

File: ./contracts/interfaces/IProtocolRegistry.sol
SHA3: 6c9107caa5b17fa9bfb3be15495da271a91d224f1fc40f04706240681c6c3bc8

File: ./contracts/interfaces/IUniswapSwapInterface.sol
SHA3: c805cb12258f66ecebeb159bf412e1df042018f5b046e824af54076e80bb8aa4

File: ./contracts/interfaces/IUniswapV2Router01.sol
SHA3: e3ce9868d3833269bc63500bcb43a5ef25e4ae2fe876b2fe51fe2bed06eb9050

File: ./contracts/interfaces/IUniswapV2Router02.sol
SHA3: 62855cfb573a6af3a57d6ca56e9373514b025cc84dd1526610ab9d8fc19b37fb

File: ./contracts/interfaces/IUserTier.sol
SHA3: 2c3a76e6f0c2bce1238b9a6319486935d8323135e03aa5a72bda335576ba30b5

File: ./contracts/interfaces/IVCTier.sol
SHA3: 1389765cb2a9cdc54f28967a5103a9adc00fe517bc7fea9cd84a038dc99ad660

File: ./contracts/shared/Diamond.sol
SHA3: d7b1e88fa1a0efd68bcf507308935df709b4ae071f41aef35229e6d519ca2dee

File: ./contracts/shared/facets/DiamondCutFacet.sol
SHA3: b54f141ac489fdc7919297c9162e7dfcfe51e0eea6163096350dece5a8dc4fc1

File: ./contracts/shared/facets/DiamondLoupeFacet.sol
SHA3: 41fd84caba9eacceb1ee327ec865e9ad2c0d761dd2cc7c600d81eb090a90ffe3

File: ./contracts/shared/facets/OwnershipFacet.sol
SHA3: 1a248f734988437e53dfd663cfbcd34abf67c72d03a38b79a84f2f5cb254e3aa

File: ./contracts/shared/interfaces/IDiamondCut.sol
SHA3: 4d648ccac12675848263d1f5568bf036d4ef3fe5919410ab243cbd047a1b07ff

File: ./contracts/shared/interfaces/IDiamondLoupe.sol
SHA3: 22ffe42c8f67069b2124ef93937a8fe6faa9d912f8fc7892fc69c8f03be94664

www.hacken.io
14

File: ./contracts/shared/interfaces/IERC165.sol
SHA3: d2fc32ffccc9a3ce51f7a79bf14430706981ed374d2a3619fd8bb5c2c74128ba

File: ./contracts/shared/interfaces/IERC173.sol
SHA3: df587d7945371179091fc9649cd05690283cd1dcc50c445afe243fc6e63252e7

File: ./contracts/shared/libraries/LibAppStorage.sol
SHA3: 4ada2aa15a1f1fc36d05bcef0349e1da5615e3706a769675f87cb605be0971a3

File: ./contracts/shared/libraries/LibDiamond.sol
SHA3: 1bbb11f46e30fb7b0a931ef348aeb460ba49acc762542c93f1e9ecd931aedee5

File: ./contracts/shared/libraries/LibMeta.sol
SHA3: 843971b0ad9e1a9ef1784a6b72507eae7fac1fd8eeeacd3b114c89eda665135a

File: ./contracts/shared/libraries/LibPausable.sol
SHA3: df534bfd71db25ead4893d7751422cdad9cbbd34baaea35964774e61ca32a7e4

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ad
dressStringUtil.sol
SHA3: df0fcd49fc2364a050d0ee48ce7bad77ff34718ab4d92786f7f74778a0380388

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ba
bylonian.sol
SHA3: abdf57aa6c0acb54245f8322e99454a7977dbfde1af0c808e5f8818f68b304d4

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Bi
tMath.sol
SHA3: d77af914ac7454b5e6fe36fb9c15cb76f013d33bed66c855b7c1fcea97458f9c

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fi
xedPoint.sol
SHA3: b0d3da542a8dbf65f993fe968e397d457353a6124c3349369b84e7f8a640eea2

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fu
llMath.sol
SHA3: 297c94c68a0045d3757bc4037347ed413df9f1790e6abe2610780c52df43c9be

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Sa
feERC20Namer.sol
SHA3: a4b01b142a1f18e418724e84e6bd0436a263610c99572a4ad66008bc3bdf9251

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Tr
ansferHelper.sol
SHA3: 5e0ba812461ef72f9ca6f8033e5962cdbaaee39702e96c2fbab4bef91a1025f5

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IERC20.sol
SHA3: 24cc29ac72194902dd1dad4532ed4191bed8c5fa19624b751cd224675d4e545c

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Callee.sol
SHA3: eedb43f6d1cd39070bc18a6217399ed38fefb3280a6acc6c4124f1e9423fc784

www.hacken.io
15

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2ERC20.sol
SHA3: c97b85bf5faf5024bc3dd1be8aafcd1b876692e4a81c2daeecf2b2ad3688b425

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Factory.sol
SHA3: b0627746d906ffd79fb54e4a850fc6f7212bf99f3ce3999082ee6f5652ede02d

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Pair.sol
SHA3: f458fcb4e4e1df7b1e646440c68b61d5de5303e10335b980d606f424e0cb7866

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/Math.sol
SHA3: 04f5d054167653e3d34cc1bcd90afd18e3408a59ef480f9a6fb2563b6f7ffbfb

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/SafeMath.sol
SHA3: 567cf3815667d04d1664dc04bc54ca6326e86845c4ff97985c79603c9aaf0fd1

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/UQ112x112.sol
SHA3: 82e8014c70a4e2f204804a9e4b31eeb065fbb96d18c9da1a419a214e2d2ad12e

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2ERC20.sol
SHA3: 8be556fe4efc8c099e11360cc84557e3bc2b2ceb49772cba90bf89478db10fc0

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Factory.sol
SHA3: b34bc571fc7e5fe11baa81acf3592d549ff4dfaa54245844eaf40e754be21df4

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Pair.sol
SHA3: 56788239b960c6cd7395c97c08ea4fd16ab5c5e4aa5636fa5389d2ec2a631994

File: ./contracts/uniswap/v2-periphery-master/interfaces/IERC20.sol
SHA3: 10b180dd59c7ed1ffb033e7404be7190547e935e39632f618bc0a93f6e239c51

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Migrator.sol
SHA3: 52557b69d41955a1f7ba0a512b4fc2cb71f274c4f472948d48981edf37a7d7c7

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router01.sol
SHA3: f48501c3bec8d7c11cb4aacf4552eb2d39eb82ac91ec12aec98294ebead8ee51

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router02.sol
SHA3: 8d1c371a297b04b4d18c7cdd3b3be34f5aa47143f47cafba41e0bf1b16d6dd8e

File: ./contracts/uniswap/v2-periphery-master/interfaces/IWETH.sol
SHA3: f15ae6abf9e1e7dbf4d4ae696d793453d8c137ccd1681af40778b47219a2d339

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Exchange.sol
SHA3: a5b2ced2aae302f26ad0a8d28cb686e9225c4862bf09e1df3d3f869055adbfb0

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Factory.sol
SHA3: 8481bb4d99a81d27c4f3b310ed9f0d1cf1c63c376643d93a270549488c7a17fa

www.hacken.io
16

File: ./contracts/uniswap/v2-periphery-master/libraries/SafeMath.sol
SHA3: 7aa01d2d0c692ee14c9e011b0d5ded5f57920cafaf76bb5a766ca1fb98f8ff3d

File: ./contracts/uniswap/v2-periphery-master/libraries/UniswapV2Library.sol
SHA3: f49b157ba97bca53b585000cf513fe7198294ede2277ea02ee07cb420ed46ea0

File: ./contracts/uniswap/v2-periphery-master/libraries/UniswapV2OracleLibrary.sol
SHA3: 07a0255a6e053db1c7189d48e5cbfef51075c9c89fac53e5892f46ae59446ded

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Migrator.sol
SHA3: d972dfcbd4f9a914a6b30097aace840b0adc7942c05b861f9dc5d5f65ff2788f

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router01.sol
SHA3: f05e30b58f26dc2bc4af01f26ee113544514c8a95452d390e76f8a369e82d2ab

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router02.sol
SHA3: 7da7ca7f6459ca9b448f90b1e7f3ec3fb9fed4bb17208e6c26b7eb4e60d7da59

Third review scope
Repository https://github.com/GovWorld/protocol-contracts/blob/contracts

-v2

Commit 3c0d52c047425a95075ecda2458c60612acf7c20

Whitepaper Not provided

Functional
Requirements

https://govworld.gitbook.io/govworld-docs/

Technical
Requirements

https://govworld.gitbook.io/govworld-docs/

Contracts

File: ./contracts/facets/addressprovider/AddressProviderFacet.sol
SHA3: c0ce6e7fdf282998156bf963cfaa22121bc219f943205a5a70402009fa3fd4cd

File: ./contracts/facets/admin/AdminRegistryFacet.sol
SHA3: 34886b9aacb3222e489cf1deb8524b89afd9acd2c42075034c71aae49f69ea13

File: ./contracts/facets/admin/LibAdmin.sol
SHA3: 8bf4e9794a1c82c44df61e245c14f80b5133a1a84d5b30839583da128f83e06a

File: ./contracts/facets/admin/LibAdminStorage.sol
SHA3: 863565c73136041ef502f549a0bbb722216a8bffd28e38bb25c01b8d470f8d60

File: ./contracts/facets/claimtoken/ClaimTokenFacet.sol
SHA3: c04cd193ee17f3ce6932c0af2f280998e3acf4be133c74cbd08fddd1c771bf1a

File: ./contracts/facets/claimtoken/LibClaimTokenStorage.sol
SHA3: ceed8eb984218c64766f04631261de063f2f038f215b0f1d2a8e469ab0be3680

File: ./contracts/facets/govTier/GovTierFacet.sol
SHA3: abe22669b8ae347eed48d5dc0cbad9d5f41e8670e9f3cad14eed62c89850a6bb

File: ./contracts/facets/govTier/LibGovTier.sol
SHA3: e485004776ad47e3a63b716bf30cb9524fc16037ec740019c54e3d71cc4a6620

File: ./contracts/facets/govTier/LibGovTierStorage.sol
SHA3: 42c149dcd3275c313f51516c1be0d4e2b17e55e3cfe71541d4afdf17e3abbfa4

www.hacken.io
17

https://govworld.gitbook.io/govworld-docs/
https://govworld.gitbook.io/govworld-docs/

File: ./contracts/facets/gTokenFactory/GTokenFactoryFacet.sol
SHA3: d6be7e8665a23099cf52ac11660e8ca6b22fa4614de4231029df08a4ff6b2766

File: ./contracts/facets/liquidator/LibLiquidator.sol
SHA3: b9246e4691a092bc832a64486fb037aee7534a0a76fb87ad5f0aae5b12828bf9

File: ./contracts/facets/liquidator/LibLiquidatorStorage.sol
SHA3: b63e0d85a14e011f23b464d1fa61d0da19f2c732fc1e72faa97e3f5f12e53ed3

File: ./contracts/facets/liquidator/LiquidatorFacet.sol
SHA3: aca4a4ce89e30e37ffa4bdd47ad9f42b2518b45e96e489733ad495dd5afdb285

File: ./contracts/facets/market/libraries/LibMarketProvider.sol
SHA3: a4594a1392861d877a703b316628575e3326860ba533033e192f364338187ae4

File: ./contracts/facets/market/libraries/LibMarketStorage.sol
SHA3: 82d481b39b7e37de30c7bbbde80134acd5261081cb7e4f5d93b62b3c87e0516a

File: ./contracts/facets/market/libraries/LibNetworkMarket.sol
SHA3: 5f146de640f66eb44e690acaca0c77d4594320ca06ea6fc9a0244900add97979

File: ./contracts/facets/market/libraries/LibNFTMarket.sol
SHA3: 540ad0fb2b0fd049c2400476bf08518cce8c4c91523e2e9d69bc523d52bedeed

File: ./contracts/facets/market/libraries/LibTokenMarket.sol
SHA3: f54c432aa24f9e12177e29c41789c5315c2230a8d48e8da87d48fc6c1aed1982

File: ./contracts/facets/market/network/NetworkMarketFacet.sol
SHA3: 2c9951a4ebc3222bf0e450251c5bed0d662f63df470004bddf0560befdde1a73

File: ./contracts/facets/market/nft/NFTMarketFacet.sol
SHA3: bfdb1727cb892dbd36ab79f3e7c546bdcc3ff26a7a220cdd1056ef8f1cd1d67a

File: ./contracts/facets/market/token/TokenMarketFacet.sol
SHA3: a566c077e1435f1597d216486daab43e2e845e09807c73a22ca6fa11eb1474fc

File: ./contracts/facets/marketRegistry/LibMarketRegistryStorage.sol
SHA3: fc6d019928fd5e403f6a03932c9ce9862ba2bbd126c35af714ffbb53f7cf389b

File: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol
SHA3: 4f15cf7f8bd7d817ba5a48900510330ed986e1c88777975e2426d5d748626b8b

File: ./contracts/facets/nftTier/GovNFTTierFacet.sol
SHA3: 765b13afa38eccd224af4f197f6784ef138ede4ff7c03a173ca792c8596df01a

File: ./contracts/facets/nftTier/LibGovNFTTier.sol
SHA3: 0107c83b90fbe505920e9cfb5d01ea5c0b2c7d7950a467d689c66fb04f2f3cec

File: ./contracts/facets/nftTier/LibGovNFTTierStorage.sol
SHA3: 57fbc5448938b2c9d9bd92c19ba6d0f90dd3c14e0b2ffe7432d475cad36385c9

File: ./contracts/facets/oracle/LibPriceConsumer.sol
SHA3: 977e7259335162389611294ffebc3439c04ca8a43a1a9344713ef84f028109cf

File: ./contracts/facets/oracle/LibPriceConsumerStorage.sol
SHA3: 59053a1027b4cf2136d0ae58f18e536680fd3f83710b07d462b5eb057e29d9c3

File: ./contracts/facets/oracle/PriceConsumerFacet.sol
SHA3: c2817af9a0ce0dfa48455c222925099422c47a309ad697d847e958b91a95bc49

File: ./contracts/facets/oracle/UniswapOracleV3.sol
SHA3: 2e3a3f7dd07248055438723bfe550cc42f7d70fcd12e67f0399c5989df4c68d4

File: ./contracts/facets/pausable/PausableFacet.sol

www.hacken.io
18

SHA3:
54b9be28c9db0406ffe10080de00d3f5a6fbfba6b1921b9ab702bd8f0200f1d5

File: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol
SHA3: a9c5d199c78c8bb43a41ac83789f4ad0de8a5f7148241385a47721c8ea1f4869

File: ./contracts/facets/protocolRegistry/LibProtocolStorage.sol
SHA3: 88f6ab9e001c48d6b158fe8d67d9380ef274bad70c5e12f13d1c6d19ff1ef8c8

File: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol
SHA3: 30c07c93240071dc62f025493b1fe925bbb0b2eb662a8ccfdf7404fe41b447e3

File: ./contracts/facets/token/GToken.sol
SHA3: 6af29e423b9d873269d23248cf539a8cedddd703c96b2e84b7a9086a2d947774

File: ./contracts/facets/userTier/LibUserTier.sol
SHA3: 73619ec8f32ccf39e45420d97d4976ba56bbbae729fdd6320a39bff27056350d

File: ./contracts/facets/userTier/UserTierFacet.sol
SHA3: fd76f5c470f3c490927226a921aeb2019e270f203bfcc2a45c2e241fc3f8adb4

File: ./contracts/facets/vcTier/LibVCTierStorage.sol
SHA3: e408b029d3e48b48c131a2a077c68674842efc65c6f81f82ce1e7d918d09e17d

File: ./contracts/facets/vcTier/VCTierFacet.sol
SHA3: 6a5e70d13031eb037c0f5be8ae117ee4e00f48c2c40ae2e64e489970fb5d7eab

File: ./contracts/interfaces/IAdminRegistry.sol
SHA3: 4c210c0f2e36ac9ff059849f397dcb8dfd391b08355e96b67cc33ddb0c8dea30

File: ./contracts/interfaces/IClaimToken.sol
SHA3: 570e891ed2481ba65ca3f863d8fbc45debcb2834025c3946cf4d7e661b08dc94

File: ./contracts/interfaces/IDexFactory.sol
SHA3: 870fa283df6e1303c710433dd72026138178de78d585b716cdba06e602f25ed6

File: ./contracts/interfaces/IDexPair.sol
SHA3: 9cb7d3bfc87617d59f5013950261d3444dff6f5b1cafa3372ee1f4ac75edeaac

File: ./contracts/interfaces/IDiamondCut.sol
SHA3: 097ab56d21ca87e1260ed732d35b1928724f207337eaca41d89141bfb8349b99

File: ./contracts/interfaces/IDiamondLoupe.sol
SHA3: 90cdc2f3d119001a023cf3d1d600761551625f42d582ffad112b33fae29a161e

File: ./contracts/interfaces/IERC20Extras.sol
SHA3: e3b2fb98c8ba819670cf6f3eb5ae52630785f95876de1315971be7c240ba8be2

File: ./contracts/interfaces/IERC721Extras.sol
SHA3: 26e11317cccc3b6bddbded144be75300c50a2a2e54d28812f41f58b05ce43034

File: ./contracts/interfaces/IGovNFTTier.sol
SHA3: 67994d64fe466ea7041dfa014126242716e4cefa68cce69fd490a8d678f2a732

File: ./contracts/interfaces/IGovTier.sol
SHA3: 08ff9c36d7b95804ac9ded8a4daa49a74775c3d4a4b84961dab4748aa2bb2b91

File: ./contracts/interfaces/IGToken.sol
SHA3: cbaa60ed2fa70d80b0bdb6ea3a56083e53c12356f3ea060a2bf52784e5b76809

File: ./contracts/interfaces/IGTokenFactory.sol
SHA3: dd9eb048be64d11c424681672c0919fba35f4a81dd52d2724e75d9a5b87b5485

File: ./contracts/interfaces/IMarketRegistry.sol
SHA3: dffb84364fa3877f60f62bc1d41e89f6b18c2e998d9c4036540e85db84ae6aac

www.hacken.io
19

File: ./contracts/interfaces/IPriceConsumer.sol
SHA3: 3a783d69c184c4d2fb660d88c7d9087b91e569007c6f762f78194c43ec852623

File: ./contracts/interfaces/IProtocolRegistry.sol
SHA3: cfadc6d6399e1fe3acf759bb08cc3608457784882af5654b50b2e915e7e760d5

File: ./contracts/interfaces/IUniswapOracleV3.sol
SHA3: ca5f4019f65135e3fafca21710dce9708e25ff6198499cc72ad3778d2cb6398d

File: ./contracts/interfaces/IUniswapSwapInterface.sol
SHA3: efd32d7d7dbb5dfb0c9ba6074a0367782af1ef9b2d5bc9c331c616cc43941a08

File: ./contracts/interfaces/IUniswapV2Router01.sol
SHA3: efc965b76796230d3891d4b1aad253d2f8505c2f93ceac848b80842a9e74c518

File: ./contracts/interfaces/IUniswapV2Router02.sol
SHA3: 62855cfb573a6af3a57d6ca56e9373514b025cc84dd1526610ab9d8fc19b37fb

File: ./contracts/interfaces/IUniswapV3Factory.sol
SHA3: 94e9658d22a17443e9239084c69b5564b05ea8b5035c6b53496701d234ae08d5

File: ./contracts/interfaces/IUniswapV3Router.sol
SHA3: ee81e5d470eaf442e4246dad1d675abd8321cff23dcea9c50478fa593ce5801c

File: ./contracts/interfaces/IUserTier.sol
SHA3: 4df71e8f1a1ee5d63bc1cd5760be4cdecfb9911a61801380fcd2b6df94436339

File: ./contracts/interfaces/IVCTier.sol
SHA3: 98f60723ac0c5b923c6e5a551823de956e3604fd3166cec3d181cefb15390eb6

File: ./contracts/shared/Diamond.sol
SHA3: 87992ecfcf9b825aa00c46e89652a3362c0a6b16ea271db81a0f0a55c64f468b

File: ./contracts/shared/facets/DiamondCutFacet.sol
SHA3: 05a8390cefbff7131d5b91798ab96f4641cecbf48905cf33cbea02b13245bd82

File: ./contracts/shared/facets/DiamondLoupeFacet.sol
SHA3: 8ad8c8c614cd363c1ab45b98878988eb65df965bc75d10c5d0b80460df43a469

File: ./contracts/shared/facets/OwnershipFacet.sol
SHA3: b248daedc25610b9353257c90ca8b51eb6802e2ae943ddbf8410c897e6f7d80e

File: ./contracts/shared/interfaces/IDiamondCut.sol
SHA3: 097ab56d21ca87e1260ed732d35b1928724f207337eaca41d89141bfb8349b99

File: ./contracts/shared/interfaces/IDiamondLoupe.sol
SHA3: 90cdc2f3d119001a023cf3d1d600761551625f42d582ffad112b33fae29a161e

File: ./contracts/shared/interfaces/IERC165.sol
SHA3: 2db7e91cf306335bccf3e9d84ece8a71d376f930daf61122b2571bd324d66a58

File: ./contracts/shared/interfaces/IERC173.sol
SHA3: 4f32c30a4b8c3894cd9276e0d9436910caa4b9ea09ca0ef292b77108dc55cf39

File: ./contracts/shared/libraries/LibAppStorage.sol
SHA3: 4ada2aa15a1f1fc36d05bcef0349e1da5615e3706a769675f87cb605be0971a3

File: ./contracts/shared/libraries/LibDiamond.sol
SHA3: e6e0a5cde2fabf2d742837a415bfc68730ba4edc102c0c10252a56efde6fc168

File: ./contracts/shared/libraries/LibMeta.sol
SHA3: 0a312736a8f5e05d2550bf689d4b1dc4d51b2ea70fe66afee2e708f8334140e7

File: ./contracts/shared/libraries/LibPausable.sol

www.hacken.io
20

SHA3:
df534bfd71db25ead4893d7751422cdad9cbbd34baaea35964774e61ca32a7e4

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Migrator.sol
SHA3: 4a626e4ec0864c6eb6475dc93a0d18045f4883d028006ad90019dce0cdb374eb

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router01.sol
SHA3: 0e8867b9a87d9df07eae068f2c342f090c77b4b4fed5e552f79022c8eae2e2a8

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router02.sol
SHA3: 02ef0ec1bf1d2057e66a4f9d56a62fc0b48f0d269229792d72321fead3cca9dd

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ad
dressStringUtil.sol
SHA3: b9c4e63fcbf4a879c477d8c4fd347837d2668a4a2a6a1005d17ca9d1cd96a861

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ba
bylonian.sol
SHA3: 6ea2bfd8b989ec7d616d22b725d5ff874f29be2a0533427d011725a48bf52e6b

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Bi
tMath.sol
SHA3: 34b174459a8734ddc07284797ba967ec5e91f6776e8db225943d0c395c79266a

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fi
xedPoint.sol
SHA3: 66966ce56c3063843982a3cde51bd0761afd1aa9a8e23dd98103e84afba729e6

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fu
llMath.sol
SHA3: 78a3e49791c5c474d49e88a681c1b9be90471c9f0218802f39b8701bdeff312c

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Sa
feERC20Namer.sol
SHA3: 38b9bbadb9fce6ca34ccc1fe4e1190724b5f5c2a7d4b077c1ae2ce75985754ad

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Tr
ansferHelper.sol
SHA3: c8b7cc0e76242f60dff0e224b7b27c4d8fae5477661789104d47cf59885f910e

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2ERC20.sol
SHA3: 4ddb0763c4561a9ff3a52a7837aeb7dc88cbe79bcbe1d54659b97da8962959fa

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Factory.sol
SHA3: 0e2db8efa398c32bec215d16f11014140fe38e34e5577e2527cc2d7d68b06734

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Pair.sol
SHA3: b669b00dba5bdbfa97da9e5b6607f0ee2c31ad3642dedff549c88404715e8300

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IERC20.sol

www.hacken.io
21

SHA3:
42e4b863a781d4cea0b2cb626d5bb58684d397a544fbf160dffc3a0148afc1d2

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Callee.sol
SHA3: 56e42f76e0b6298b3b6d440efc13f2a670c2c85e013511277b74465f69a79f18

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2ERC20.sol
SHA3: 04d4cc12d43a113c7b1e59fb15f18ae1c277563f79fa3d135ddf5f85659dc8b9

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Factory.sol
SHA3: 1029024b2479a10eaf1a7c45507b63f1cc1212e5b1674892120f0410641271f3

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Pair.sol
SHA3: 1a67b3a6d7369f6936b5976379edd61d476e4295abca0c15405de1276a1e531b

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/Math.sol
SHA3: 931c3cb4dee32a740a8c2ac7f845de5ac733703652cfcf6a2d43d1faeb25e72b

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/SafeMath.sol
SHA3: 5a2ee0cd9bde270a65a7bbf231cab9bb4dc04f8f4d6faa4984f9951ee10d2200

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/UQ112x112.sol
SHA3: d2eccc238c08eb60a9068c02a5c01bca3566b878324684d93bb3570f02c67512

File: ./contracts/uniswap/v2-periphery-master/interfaces/IERC20.sol
SHA3: dcb2e043bde8a32f25fa7faa805041130e67d31bc8fad2ab5e568f4363290a5c

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Migrator.sol
SHA3: 715808ea0f1dde62f29190cf8a4b26c52c35fc21ba95799d8daf66634404f944

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router01.sol
SHA3: ede34403bc4c23c55dbf1dd7bebdbec1a839d8983b8803d4c91a410e015d280f

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router02.sol
SHA3: 521ea3060bf020b52e6af0bbe77d50dd8f4faea788b1d4d15414d5ba48b3285a

File: ./contracts/uniswap/v2-periphery-master/interfaces/IWETH.sol
SHA3: 633ed9ff88e7d7d06b9341a98aa08717d936279af05aa35666f7d19b04b4d0a7

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Exchange.sol
SHA3: c81cfb4a356f2d0298a9bde96219d8b58c98b10161e60eb0003f0a6d62eda9bb

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Factory.sol
SHA3: b5e8b8c643e7ed5858e12fdf40c7be71da0325e12a44ecc29fdd889ab3aa368a

File: ./contracts/uniswap/v2-periphery-master/libraries/SafeMath.sol
SHA3: 8303fdecb7e19e705dffcd1716f127f8f970ad7b1046f049f36db66fa63fff15

File: ./contracts/uniswap/v2-periphery-master/libraries/UniswapV2Library.sol
SHA3: 311529dd998ee58138d52e6eaa7a0d8c1f2d4c3220d2c62bfc627e44804d61dc

www.hacken.io
22

File:
./contracts/uniswap/v2-periphery-master/libraries/UniswapV2OracleLibrary.sol
SHA3: fb79749da5b63abf3ca6fc47d0d70b1d73506e990a2f32dc93516b4dda02ba16

Fourth review scope
Repository https://github.com/GovWorld/protocol-contracts/blob/contracts

-v2

Commit 5ff534b40115cb68cf86c66af7960fb90b97c7e8

Whitepaper Not provided

Functional
Requirements

https://govworld.gitbook.io/govworld-docs/

SHA3:08dc38476a04b8c9052a9e628255741044261987b8caddd6aaec56d3
0ed7ac3e

Technical
Requirements

https://govworld.gitbook.io/govworld-docs/

SHA3:08dc38476a04b8c9052a9e628255741044261987b8caddd6aaec56d3
0ed7ac3e

Contracts

File: ./contracts/facets/addressprovider/AddressProviderFacet.sol
SHA3: c0ce6e7fdf282998156bf963cfaa22121bc219f943205a5a70402009fa3fd4cd

File: ./contracts/facets/admin/AdminRegistryFacet.sol
SHA3: 6c146475b42f4513ef22aa2904056fbf12302a259e4f058e776a1adad83d7366

File: ./contracts/facets/admin/LibAdmin.sol
SHA3: 8bf4e9794a1c82c44df61e245c14f80b5133a1a84d5b30839583da128f83e06a

File: ./contracts/facets/admin/LibAdminStorage.sol
SHA3: 863565c73136041ef502f549a0bbb722216a8bffd28e38bb25c01b8d470f8d60

File: ./contracts/facets/claimtoken/ClaimTokenFacet.sol
SHA3: 6d88caf7b4a1e000ba32b294ab12be9bc4317a40fc0159d187192c8f9625b8b8

File: ./contracts/facets/claimtoken/LibClaimTokenStorage.sol
SHA3: ceed8eb984218c64766f04631261de063f2f038f215b0f1d2a8e469ab0be3680

File: ./contracts/facets/govTier/GovTierFacet.sol
SHA3: abe22669b8ae347eed48d5dc0cbad9d5f41e8670e9f3cad14eed62c89850a6bb

File: ./contracts/facets/govTier/LibGovTier.sol
SHA3: e485004776ad47e3a63b716bf30cb9524fc16037ec740019c54e3d71cc4a6620

File: ./contracts/facets/govTier/LibGovTierStorage.sol
SHA3: 42c149dcd3275c313f51516c1be0d4e2b17e55e3cfe71541d4afdf17e3abbfa4

File: ./contracts/facets/gTokenFactory/GTokenFactoryFacet.sol
SHA3: d6be7e8665a23099cf52ac11660e8ca6b22fa4614de4231029df08a4ff6b2766

File: ./contracts/facets/liquidator/LibLiquidator.sol
SHA3: b0327a7c73d8efa57b3de81e408c0a1ec08cedb6e5f50a6a7abb4037fbdb6f82

File: ./contracts/facets/liquidator/LibLiquidatorStorage.sol
SHA3: 1802184bee63168e2decd45bf518d6387f3360ffdea5a641a0c59cedd2aed14a

File: ./contracts/facets/liquidator/LiquidatorFacet.sol
SHA3: a4ebc431d94a4e8f0fd8bc73c3feee15a8c888c59161571add96dcffe49bc5d2

www.hacken.io
23

https://govworld.gitbook.io/govworld-docs/
https://govworld.gitbook.io/govworld-docs/

File: ./contracts/facets/market/libraries/LibMarketProvider.sol
SHA3: a4594a1392861d877a703b316628575e3326860ba533033e192f364338187ae4

File: ./contracts/facets/market/libraries/LibMarketStorage.sol
SHA3: 4e4609e41d69cfe287ea3fb8acb5199ba277d2a21a596d7e781d3038e591f684

File: ./contracts/facets/market/libraries/LibNetworkMarket.sol
SHA3: 6f68334864320b31af2d44ed9237737c9381fc10f3dba4a531addce230d05e73

File: ./contracts/facets/market/libraries/LibNFTMarket.sol
SHA3: 540ad0fb2b0fd049c2400476bf08518cce8c4c91523e2e9d69bc523d52bedeed

File: ./contracts/facets/market/libraries/LibTokenMarket.sol
SHA3: ceb1915b98b43dafecfe2c312127274d5565bf47eb4bc17c62ef6f538b0f6533

File: ./contracts/facets/market/network/NetworkMarketFacet.sol
SHA3: 485a87b39f2d656f6caa370616f7483dfaa71090202ee9f8e4ffe2600ec01c7d

File: ./contracts/facets/market/nft/NFTMarketFacet.sol
SHA3: bfdb1727cb892dbd36ab79f3e7c546bdcc3ff26a7a220cdd1056ef8f1cd1d67a

File: ./contracts/facets/market/token/TokenMarketFacet.sol
SHA3: c1369f652b6a080636fd6e958ad4d64cf3feb73cfcc0120b9d32d7c505932583

File: ./contracts/facets/marketRegistry/LibMarketRegistryStorage.sol
SHA3: fc6d019928fd5e403f6a03932c9ce9862ba2bbd126c35af714ffbb53f7cf389b

File: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol
SHA3: 0e72dc6922cb83a265fa849487905a90176ae59b55ff98fafd8718fc44192597

File: ./contracts/facets/nftTier/GovNFTTierFacet.sol
SHA3: 765b13afa38eccd224af4f197f6784ef138ede4ff7c03a173ca792c8596df01a

File: ./contracts/facets/nftTier/LibGovNFTTier.sol
SHA3: 0107c83b90fbe505920e9cfb5d01ea5c0b2c7d7950a467d689c66fb04f2f3cec

File: ./contracts/facets/nftTier/LibGovNFTTierStorage.sol
SHA3: 57fbc5448938b2c9d9bd92c19ba6d0f90dd3c14e0b2ffe7432d475cad36385c9

File: ./contracts/facets/oracle/LibPriceConsumer.sol
SHA3: 983c1ebd1be303920c0c6538fc0a96cd0dc64bb694477adcb2735e84d985a0e5

File: ./contracts/facets/oracle/LibPriceConsumerStorage.sol
SHA3: 59053a1027b4cf2136d0ae58f18e536680fd3f83710b07d462b5eb057e29d9c3

File: ./contracts/facets/oracle/PriceConsumerFacet.sol
SHA3: d51d56fa0bc1829ef2f9eb044949766b0db6f74d0e707ca6ba2a4653e5f089bb

File: ./contracts/facets/oracle/UniswapOracleV3.sol
SHA3: 4e8693026e79eacef097e64e5e8658828938624df72fbed97ecc6fd3b0bf3d3f

File: ./contracts/facets/pausable/PausableFacet.sol
SHA3: 54b9be28c9db0406ffe10080de00d3f5a6fbfba6b1921b9ab702bd8f0200f1d5

File: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol
SHA3: a49c5f975ccb2e55199377a8962ab0961acc4dddde781b458a2320eca248c976

File: ./contracts/facets/protocolRegistry/LibProtocolStorage.sol
SHA3: 88f6ab9e001c48d6b158fe8d67d9380ef274bad70c5e12f13d1c6d19ff1ef8c8

File: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol
SHA3: 30c07c93240071dc62f025493b1fe925bbb0b2eb662a8ccfdf7404fe41b447e3

File: ./contracts/facets/token/GToken.sol

www.hacken.io
24

SHA3:
6af29e423b9d873269d23248cf539a8cedddd703c96b2e84b7a9086a2d947774

File: ./contracts/facets/userTier/LibUserTier.sol
SHA3: c3b2d4d11f01a549363a9324baaad033923f93c0be25341d569ee12a76a30478

File: ./contracts/facets/userTier/UserTierFacet.sol
SHA3: fd76f5c470f3c490927226a921aeb2019e270f203bfcc2a45c2e241fc3f8adb4

File: ./contracts/facets/vcTier/LibVCTierStorage.sol
SHA3: e408b029d3e48b48c131a2a077c68674842efc65c6f81f82ce1e7d918d09e17d

File: ./contracts/facets/vcTier/VCTierFacet.sol
SHA3: 6a5e70d13031eb037c0f5be8ae117ee4e00f48c2c40ae2e64e489970fb5d7eab

File: ./contracts/interfaces/IAdminRegistry.sol
SHA3: 4c210c0f2e36ac9ff059849f397dcb8dfd391b08355e96b67cc33ddb0c8dea30

File: ./contracts/interfaces/IAggregationExecutor.sol
SHA3: 7e4452040f3ed384046ff0afe2039a8a9f85add0fdf1d3076a10c289563c40e7

File: ./contracts/interfaces/IAggregationRouterV5.sol
SHA3: 2dee60fc39da9d57be79b07ac184138211c481787d11adb89d2c3bc83635ba35

File: ./contracts/interfaces/IClaimToken.sol
SHA3: 570e891ed2481ba65ca3f863d8fbc45debcb2834025c3946cf4d7e661b08dc94

File: ./contracts/interfaces/IDexPair.sol
SHA3: 9cb7d3bfc87617d59f5013950261d3444dff6f5b1cafa3372ee1f4ac75edeaac

File: ./contracts/interfaces/IDiamondCut.sol
SHA3: 097ab56d21ca87e1260ed732d35b1928724f207337eaca41d89141bfb8349b99

File: ./contracts/interfaces/IDiamondLoupe.sol
SHA3: 90cdc2f3d119001a023cf3d1d600761551625f42d582ffad112b33fae29a161e

File: ./contracts/interfaces/IERC20Extras.sol
SHA3: e3b2fb98c8ba819670cf6f3eb5ae52630785f95876de1315971be7c240ba8be2

File: ./contracts/interfaces/IGovNFTTier.sol
SHA3: 67994d64fe466ea7041dfa014126242716e4cefa68cce69fd490a8d678f2a732

File: ./contracts/interfaces/IGovTier.sol
SHA3: 08ff9c36d7b95804ac9ded8a4daa49a74775c3d4a4b84961dab4748aa2bb2b91

File: ./contracts/interfaces/IGToken.sol
SHA3: cbaa60ed2fa70d80b0bdb6ea3a56083e53c12356f3ea060a2bf52784e5b76809

File: ./contracts/interfaces/IGTokenFactory.sol
SHA3: dd9eb048be64d11c424681672c0919fba35f4a81dd52d2724e75d9a5b87b5485

File: ./contracts/interfaces/IMarketRegistry.sol
SHA3: dffb84364fa3877f60f62bc1d41e89f6b18c2e998d9c4036540e85db84ae6aac

File: ./contracts/interfaces/IPriceConsumer.sol
SHA3: 3a783d69c184c4d2fb660d88c7d9087b91e569007c6f762f78194c43ec852623

File: ./contracts/interfaces/IProtocolRegistry.sol
SHA3: cfadc6d6399e1fe3acf759bb08cc3608457784882af5654b50b2e915e7e760d5

File: ./contracts/interfaces/IUniswapOracleV3.sol
SHA3: a7c687b9a13282189de94e4997fcc3856d7ad877bf150be03560c5f6f1f92922

File: ./contracts/interfaces/IUniswapSwapInterface.sol
SHA3: efd32d7d7dbb5dfb0c9ba6074a0367782af1ef9b2d5bc9c331c616cc43941a08

www.hacken.io
25

File: ./contracts/interfaces/IUniswapV2Router01.sol
SHA3: efc965b76796230d3891d4b1aad253d2f8505c2f93ceac848b80842a9e74c518

File: ./contracts/interfaces/IUniswapV2Router02.sol
SHA3: 62855cfb573a6af3a57d6ca56e9373514b025cc84dd1526610ab9d8fc19b37fb

File: ./contracts/interfaces/IUniswapV3Factory.sol
SHA3: 94e9658d22a17443e9239084c69b5564b05ea8b5035c6b53496701d234ae08d5

File: ./contracts/interfaces/IUniswapV3Router.sol
SHA3: ee81e5d470eaf442e4246dad1d675abd8321cff23dcea9c50478fa593ce5801c

File: ./contracts/interfaces/IUserTier.sol
SHA3: 4df71e8f1a1ee5d63bc1cd5760be4cdecfb9911a61801380fcd2b6df94436339

File: ./contracts/interfaces/IVCTier.sol
SHA3: 98f60723ac0c5b923c6e5a551823de956e3604fd3166cec3d181cefb15390eb6

File: ./contracts/shared/Diamond.sol
SHA3: 87992ecfcf9b825aa00c46e89652a3362c0a6b16ea271db81a0f0a55c64f468b

File: ./contracts/shared/facets/DiamondCutFacet.sol
SHA3: 05a8390cefbff7131d5b91798ab96f4641cecbf48905cf33cbea02b13245bd82

File: ./contracts/shared/facets/DiamondLoupeFacet.sol
SHA3: 8ad8c8c614cd363c1ab45b98878988eb65df965bc75d10c5d0b80460df43a469

File: ./contracts/shared/facets/OwnershipFacet.sol
SHA3: b248daedc25610b9353257c90ca8b51eb6802e2ae943ddbf8410c897e6f7d80e

File: ./contracts/shared/interfaces/IDiamondCut.sol
SHA3: 097ab56d21ca87e1260ed732d35b1928724f207337eaca41d89141bfb8349b99

File: ./contracts/shared/interfaces/IDiamondLoupe.sol
SHA3: 90cdc2f3d119001a023cf3d1d600761551625f42d582ffad112b33fae29a161e

File: ./contracts/shared/interfaces/IERC165.sol
SHA3: 2db7e91cf306335bccf3e9d84ece8a71d376f930daf61122b2571bd324d66a58

File: ./contracts/shared/interfaces/IERC173.sol
SHA3: 4f32c30a4b8c3894cd9276e0d9436910caa4b9ea09ca0ef292b77108dc55cf39

File: ./contracts/shared/libraries/LibAppStorage.sol
SHA3: 4ada2aa15a1f1fc36d05bcef0349e1da5615e3706a769675f87cb605be0971a3

File: ./contracts/shared/libraries/LibDiamond.sol
SHA3: e6e0a5cde2fabf2d742837a415bfc68730ba4edc102c0c10252a56efde6fc168

File: ./contracts/shared/libraries/LibMeta.sol
SHA3: 0a312736a8f5e05d2550bf689d4b1dc4d51b2ea70fe66afee2e708f8334140e7

File: ./contracts/shared/libraries/LibPausable.sol
SHA3: df534bfd71db25ead4893d7751422cdad9cbbd34baaea35964774e61ca32a7e4

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Migrator.sol
SHA3: 4a626e4ec0864c6eb6475dc93a0d18045f4883d028006ad90019dce0cdb374eb

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router01.sol
SHA3: 0e8867b9a87d9df07eae068f2c342f090c77b4b4fed5e552f79022c8eae2e2a8

File: ./contracts/uniswap/v2-periphery-master/UniswapV2Router02.sol
SHA3: 02ef0ec1bf1d2057e66a4f9d56a62fc0b48f0d269229792d72321fead3cca9dd

www.hacken.io
26

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ad
dressStringUtil.sol
SHA3: b9c4e63fcbf4a879c477d8c4fd347837d2668a4a2a6a1005d17ca9d1cd96a861

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Ba
bylonian.sol
SHA3: 6ea2bfd8b989ec7d616d22b725d5ff874f29be2a0533427d011725a48bf52e6b

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Bi
tMath.sol
SHA3: 34b174459a8734ddc07284797ba967ec5e91f6776e8db225943d0c395c79266a

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fi
xedPoint.sol
SHA3: 66966ce56c3063843982a3cde51bd0761afd1aa9a8e23dd98103e84afba729e6

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Fu
llMath.sol
SHA3: 78a3e49791c5c474d49e88a681c1b9be90471c9f0218802f39b8701bdeff312c

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Sa
feERC20Namer.sol
SHA3: 38b9bbadb9fce6ca34ccc1fe4e1190724b5f5c2a7d4b077c1ae2ce75985754ad

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/contracts/libraries/Tr
ansferHelper.sol
SHA3: c8b7cc0e76242f60dff0e224b7b27c4d8fae5477661789104d47cf59885f910e

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2ERC20.sol
SHA3: 4ddb0763c4561a9ff3a52a7837aeb7dc88cbe79bcbe1d54659b97da8962959fa

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Factory.sol
SHA3: 0e2db8efa398c32bec215d16f11014140fe38e34e5577e2527cc2d7d68b06734

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/UniswapV
2Pair.sol
SHA3: b669b00dba5bdbfa97da9e5b6607f0ee2c31ad3642dedff549c88404715e8300

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IERC20.sol
SHA3: 42e4b863a781d4cea0b2cb626d5bb58684d397a544fbf160dffc3a0148afc1d2

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Callee.sol
SHA3: 56e42f76e0b6298b3b6d440efc13f2a670c2c85e013511277b74465f69a79f18

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2ERC20.sol
SHA3: 04d4cc12d43a113c7b1e59fb15f18ae1c277563f79fa3d135ddf5f85659dc8b9

www.hacken.io
27

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Factory.sol
SHA3: 1029024b2479a10eaf1a7c45507b63f1cc1212e5b1674892120f0410641271f3

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/interfac
es/IUniswapV2Pair.sol
SHA3: 1a67b3a6d7369f6936b5976379edd61d476e4295abca0c15405de1276a1e531b

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/Math.sol
SHA3: 931c3cb4dee32a740a8c2ac7f845de5ac733703652cfcf6a2d43d1faeb25e72b

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/SafeMath.sol
SHA3: 5a2ee0cd9bde270a65a7bbf231cab9bb4dc04f8f4d6faa4984f9951ee10d2200

File:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/librarie
s/UQ112x112.sol
SHA3: d2eccc238c08eb60a9068c02a5c01bca3566b878324684d93bb3570f02c67512

File: ./contracts/uniswap/v2-periphery-master/interfaces/IERC20.sol
SHA3: dcb2e043bde8a32f25fa7faa805041130e67d31bc8fad2ab5e568f4363290a5c

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Migrator.sol
SHA3: 715808ea0f1dde62f29190cf8a4b26c52c35fc21ba95799d8daf66634404f944

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router01.sol
SHA3: ede34403bc4c23c55dbf1dd7bebdbec1a839d8983b8803d4c91a410e015d280f

File: ./contracts/uniswap/v2-periphery-master/interfaces/IUniswapV2Router02.sol
SHA3: 521ea3060bf020b52e6af0bbe77d50dd8f4faea788b1d4d15414d5ba48b3285a

File: ./contracts/uniswap/v2-periphery-master/interfaces/IWETH.sol
SHA3: 633ed9ff88e7d7d06b9341a98aa08717d936279af05aa35666f7d19b04b4d0a7

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Exchange.sol
SHA3: c81cfb4a356f2d0298a9bde96219d8b58c98b10161e60eb0003f0a6d62eda9bb

File: ./contracts/uniswap/v2-periphery-master/interfaces/V1/IUniswapV1Factory.sol
SHA3: b5e8b8c643e7ed5858e12fdf40c7be71da0325e12a44ecc29fdd889ab3aa368a

File: ./contracts/uniswap/v2-periphery-master/libraries/SafeMath.sol
SHA3: 8303fdecb7e19e705dffcd1716f127f8f970ad7b1046f049f36db66fa63fff15

File: ./contracts/uniswap/v2-periphery-master/libraries/UniswapV2Library.sol
SHA3: 311529dd998ee58138d52e6eaa7a0d8c1f2d4c3220d2c62bfc627e44804d61dc

File: ./contracts/uniswap/v2-periphery-master/libraries/UniswapV2OracleLibrary.sol
SHA3: fb79749da5b63abf3ca6fc47d0d70b1d73506e990a2f32dc93516b4dda02ba16

www.hacken.io
28

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
29

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed.
● Technical description is robust.

Code quality
The total Code Quality score is 10 out of 10.

Test coverage
Code coverage of the project is 92.31% (branch coverage).

● Three tests are failing during the testing on the local hardhat
environment.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the "Findings" section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.72.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

17 February 2023 27 37 30 12

11 April 2023 17 17 14 4

09 June 2023 4 1 5 0

21 July 2023 0 0 0 0

www.hacken.io
30

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Risks

● The smart contracts in the system are upgradeable. This poses a risk
that as it empowers the admin to modify the code, which can introduce
vulnerabilities or alter the contract's functionality without
consensus from other participants.

● There is no guarantee that the loans will be repaid by the borrowers.
The liquidation may not fully cover the loan.

● The liquidation can not be guaranteed as it is manually triggered by
the liquidators.

● The GTokens are automatically approved to the protocol when they are
minted. The GToken can not be transferred, approved to the addresses
except the whitelisted receivers.

● The GToken whitelisting functionality allows setting the whitelisted
receivers. In case the address except the govDiamond is set, this may
lead to the critical behavior described in the C05 issue: the locking
of the loan repayment or liquidation.

● The user manually sets the price for each NFT collateral token
without any validation by passing the corresponding stakedNFTPrice
field value in the LoanDetailsNFT structure. The stakedNFTPrice is
used to verify if the user has sufficient tier for the loan creation
with the specified loanAmount. Users may create a loan and specify a
high enough NFT price value to pass tier validation and set a high
loan amount.

www.hacken.io
31

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
32

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

www.hacken.io
33

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
34

System Overview

GovWorld is a loan platform built on the EIP-2535 standard with the
following contracts:
Base contracts:

● Diamond — is a contract that acts as a proxy in the system, delegates
the call to the facets in its fallback function.

● LibMeta — is a library that contains the function for the msg.sender
definition.

● DiamondCutFacet — is a facet that allows the system owner to perform
diamond cuts (add, delete, replace function selectors).

● DiamondLoupeFacet — is a facet that allows to get all facets, each
facet address, selectors, to get the facet by the selector that
belongs to it.

● OwnershipFacet — is a facet that allows the system owner to transfer
to ownership.

● LibDiamond — is a library that provides the definition of diamond
storage: facets, selectors, system owner. The library provides
functions that perform diamond cuts and set the owner address.

● LibAppStorage — is a library that provides the definition of diamond
storage: Gov and Gov Gov token addresses.

● Modifiers — is a library that provides access check modifiers for the
admins accesses, owner; non-paused system status.

Address provider functionality:
● AddressProviderFacet — is a facet that allows the owner to set Gov

and Gov Gov token addresses.
Market registry functionality:

● MarketRegistryFacet — is a facet that allows super admin to set
minimum loan amount allowed to create loan, loan limit amount for the
activation, the LTV percentages limit, allowed multi collateral limit
(10 maximum), 1inch aggregator address, set and update whitelisted
for activation lenders addresses. The facet allows any user to obtain
all the mentioned data (except 1inch aggregator address), to check if
each address belongs to the all the whitelisted addresses and if it
is whitelisted for the activation.

● LibMarketRegistryStorage — is a library responsible for the market
registry storage. It stores the defined store position and the struct
for it: allowed loan activation limit, minimal loan allowed amount,
LTC percentage, multi collateral limit, all the whitelisted lenders
addresses, whitelisted addresses statuses.

Protocol registry functionality:
● LibProtocolStorage — is a library responsible for the protocol

registry storage. It stores Gov platform fee, Gov autosell fee, Gov
threshold fee, approved tokens data (dex router address, gToken, is
token to mint, token type (dex, elite, vip), is token enabled as

www.hacken.io
35

collateral), sp wallets for approved tokens, statuses
of stable coins (enabled or not).

● ProtocolRegistryFacet — is a facet that allows administrators to
manage the protocol registry. An owner can initialize the contract;
when initializing the Gov platform fee is set to 2%, Gov autosell fee
is set to 7%, Gov threshold fee is set to 2%.

Superadmin can change the limits through this contract within the
defined limits: Gov platform fee <= 20%, Gov threshold fee <= 50%,
Gov autosell fee <= 20%.

The facet allows to check if token approved, enabled as collateral,
if sp wallet added to token, to obtain all the approved tokens
addresses, each approved token data (dex router address, gToken, is
token to mint, token type (dex, elite, vip), is token enabled as
collateral), to check if stable coin approved, to get Gov platform
fee, Gov autosell fee, Gov threshold fee, Sps wallet added to each
token, to check if synthetic mint option is on for the approved
collateral token.

The facet allows an admin with editToken permission to set statuses
of stable coins, to allow and to disallow tokens as collateral, to
update data of approved tokens that have VIP type and not set g
Token; an admin with the addToken permission to allow tokens and add
their data: if token type is vip, its gToken is deployed and is token
to mint indicator is set to the defined by an admin value; an admin
with the addSp permission to add Sps wallets to the token if its type
is vip (one or bulk); an admin with the editSp permission to remove
or update Sps wallets to the token if its type is vip (one or bulk);

● LibProtocolRegistry — is a library that provides helper functionality
for the ProtocolRegistryFacet. It provides functions for adding,
updating tokens, adding, updating and removing Sps.
It contains events emitted in the ProtocolRegistryFacet.

Gov tier functionality:
● LibGovTierStorage — is a library responsible for the Gov tier

storage. It defines the storing of tier levels (information for each
tier level: Gov holdings, ltv percentage of the Gov holdings, Gov
intel indicator, if tier is for single token, if tier is for multiply
tokens, if tier is for NFT token, if tier is for NFT tokens, if tier
is for reverse loan), tiel lever of each address, all addresses that
have tiers, address provider, indicator if the Gov tier is
initialized.

● GovTierFacet — is a facet that allows the management of the Gov tiers
data.
The owner can initialize the Gov tier: the if initialized Gov tier is
set to true and the following tiers are added:

○ bronze:
○ Gov holdings: 15000e18
○ Ltv percentage of the Gov holdings: 30

www.hacken.io
36

○ Gov intel indicator: false
○ If tier is for single token: true
○ If tier is for multiply tokens: false
○ If tier is for NFT token: true
○ If tier is for NFT tokens: false
○ If tier is for reverse loan: false

○ silver:
○ Gov holdings: 30000e18
○ Ltv percentage of the Gov holdings: 40
○ Gov intel indicator: false
○ If tier is for single token: true
○ If tier is for multiply tokens: true
○ If tier is for NFT token: true
○ If tier is for NFT tokens: true
○ If tier is for reverse loan: false

○ gold:
○ Gov holdings: 75000e18
○ Ltv percentage of the Gov holdings: 50
○ Gov intel indicator: true
○ If tier is for single token: true
○ If tier is for multiply tokens: true
○ If tier is for NFT token: true
○ If tier is for NFT tokens: true
○ If tier is for reverse loan: true

○ platinum:
○ Gov holdings: 150000e18
○ ltv percentage of the Gov holdings: 70
○ Gov intel indicator: true
○ If tier is for single token: true
○ If tier is for multiply tokens: true
○ If tier is for NFT token: true
○ If tier is for NFT tokens: true
○ If tier is for reverse loan: true

The facet functionality allows admin with edit tier level role to add
tier, its Gov holdings value should be less than the govToken total
supply and bigger than all the other tiers` Gov holdings values; and
to update the tier, the Gov holdings value should be between previous
and next tiers levels` values. The functionality allows to save tier
levels: update if tier exists and add if it does not.

The super admin can set and update the tier level for each user.

It allows to get all the tiers levels keys, each tier level data (Gov
holdings, ltv percentage of the Gov holdings, Gov intel indicator, if
tier is for single token, if tier is for multiply tokens, if tier is
for NFT token, if tier is for NFT tokens, is for reverse loan), each

www.hacken.io
37

wallet tier, the wallet tiers of all the addresses,
check if address has a tier level.

The maximal amount of tiers is 30.
● LibGovTier — is a library that provides functionality for managing

LibGovTierStorage, used in the GovTierFacet: to add, update, save and
remove tiers; to check if tier is added and get tier index.

NFT tier functionality:
● LibGovNFTTierStorage — is a library responsible for the Gov NFT tier

storage. It defines the storing of NFT and Sp tier levels
(information for each Sp tier level: Gov ltv percentage, if tier is
for single token, if tier is for multiple tokens, if tier is for
single NFT token, if tier is for multiple NFT tokens; information for
each NFT tier level: NFT contract address, if tier is traditional, Sp
token address, traditional (Gov) tier id, allowed NFTs for tier
addresses, allowed Sun tokens for tier addresses), all the NFT tier
levels keys, all the Sp tier levels keys.

● GovNFTTierFacet — is a facet that allows the management of the NFT
and Sun tiers data.
The facet functionality allows admin with edit tier level role to add
and update Sp tier, its ltv value should be greater than 0; to remove
Sp and Nft tiers.

The super admin is allowed to add NFT tier level, if its traditional
indicator is set to true, it can be traditional (its traditional tier
level is checked through the LibGovTier for existence) or SP (defined
SP`s tier ltv percentage should be bigger than 0); traditional and SP
can not be combined. Other tier data added: allowed NFTs and Sun
tokens addresses. Sp tier data: Gov ltv percentage, if tier is for
single token, if tier is for multiple tokens, if tier is for single
NFT token, if tier is for multiple NFT tokens. The super admin can
add NFTs and Sun tokens to Nft tiers.

The facet allows to get all the Sp tiers keys, all the NFT tiers
keys, the amount of the NFT tiers, each Nft address` tier level, and
each Sp tier data.

The facet functionality allows to get the user`s tier: all the NFTs
tiers are looped and that is owned by the user and has the bigger LTV
(Gov tier ltv for traditional tier, and Sp ltv for Sp tier) is
chosen.

The tiers and allowed tokens of each type are limited to 30 per each.
● LibGovNFTTier — is a library that provides helper functionality for

the LibGovNFTTierStorage, used in the GovNFTTierFacet: to remove Sp
and Nft tier keys, to get Sp and NFT tier keys indexes, to check if
NFT tier created.

VC tier functionality:
● LibVCTierStorage — is a library responsible for the VC tier storage.

It defines the storing of VC tier levels (information for each VC

www.hacken.io
38

tier level: NFT contract address, traditional (Gov)
tier id, allowed NFTs for tier addresses, allowed Sun
tokens for tier addresses), all the VC tier levels keys.

● VCTierFacet — is a facet that allows the management of the NFT and
Sun tiers data.
The contract functionality allows super admin to add VC tiers, to add
Sp and NFT tokens to them.

It allows users to obtain each tier information (NFT contract
address, traditional (Gov) tier id, allowed NFTs for tier addresses,
allowed Sun tokens for tier addresses); to check if tier added; to
get user`s tier: all the NFTs tiers are looped and that is owned by
the user and has the bigger LTV (Gov tier ltv of traditional tier) is
chosen.

The maximal amounts of Sp and NFT tokens for each tier are 30 per
each.

User tier functionality (gathers all the tiers functionality):
● UserTierFacet — is a facet that allows users to obtain and verify

their tiers.
The contract functionality allows to obtain each user` Gov tier: the
user`s Gov plus Gov Gov tokens balance is obtained, if it is bigger
than the required amount for the least tier, the tier is obtained
according to the balance, otherwise, set by admin tier for user is
obtained from GovTierFacet.

The contract contains a function that allows to obtain the maximal
loan amount using the tier level percentages and collateral token
amount in stable and using the tier defined by the user with the
verification that the user has it.
There is a function that checks if the token or NFT loan to be
created is under user` tier (defined by user type).

● LibUserTier — is a library that provides functions for the
validations if the loans are under tiers, used in the UserTierFacet.

○ Gov tier for ERC-20 tokens: checks if only single token loan
allowed, if so, validates if staked collateral token number is
1, otherwise, reverts. Checks if loan amount is not greater
than maximal loan amount according to collateral amount is
stable and tier ltv.

○ Gov tier for ERC-721 tokens: checks if only single NFT token
loan allowed, if so, validates if staked collateral NFT token
number is 1, otherwise, reverts. Checks if loan amount is not
greater than maximal loan amount according to collateral amount
is stable and tier ltv.

○ NFT traditional tier for ERC-20 tokens: executes the Gov tier
for ERC-20 tokens validation using the related traditional Gov
tier.

www.hacken.io
39

○ NFT traditional tier for ERC-721 tokens:
executes the Gov tier for ERC-721 tokens validations using the
related traditional Gov tier.

○ NFT Sp tier for ERC-20 tokens: validates if multi tokens loan
is allowed, if not, checks if staked token is 1; checks if all
the staked collateral tokens belong to the allowed in the tier
Sun tokens or Sp token. Checks if loan amount is not greater
than maximal loan amount according to collateral amount is
stable and tier ltv.

○ NFT Sp tier for ERC-721 tokens: validates if multi NFT loan is
allowed, if not, checks if staked NFT token is 1; checks if all
the staked collateral tokens belong to the allowed in the tier
NFT tokens. Checks if loan amount is not greater than maximal
loan amount according to collateral amount is stable and tier
ltv.

○ VC tier for ERC-20 tokens: checks if only single token loan
allowed, if so, validates if staked collateral token number is
1, otherwise, reverts; checks if all the staked collateral
tokens belong to the allowed in the tier Sp tokens. Checks if
loan amount is not greater than maximal loan amount according
to collateral amount is stable and tier ltv.

○ VC tier for ERC-721 tokens: checks if only single NFT token
loan allowed, if so, validates if staked collateral token
number is 1, otherwise, reverts; checks if all the staked
collateral NFT tokens belong to the allowed in the tier Sp
tokens. Checks if loan amount is not greater than maximal loan
amount according to collateral amount is stable and tier ltv.

All the validating functions return 200 in case of success.
Pausing functionality:

● PausableFacet — is a facet that allows the management of the system
pause status. It allows the system owner to pause and unpause the
system. The pausing stops creating, updating, canceling and
activating all the loans and the NFT loan payback before the term
ends.

● LibPausable — is a library responsible for the system pause status
storage definition and its management. It provides functions that
allow to change the status, and the functionality that checks if the
system is not paused.

Admin registry functionality:
● LibAdminStorage — is a library responsible for the admins registry

storage definition. It defines the storing of approved admins and
their permissions, super admin address, pending admins and the admins
that approved each pending admin, pending information (pending keys).
The permissions that an admin may have:

○ add Gov Intel,
○ edit Gov Intel,
○ add token,

www.hacken.io
40

○ edit token,
○ add Sp,
○ edit Sp,
○ add Gov admin,
○ edit Gov admin,
○ add Bridge,
○ edit Bridge,
○ add pool,
○ edit pool,
○ to be super admin.

● AdminRegistryFacet — is a facet that allows the management of the NFT
and Sun tiers data.

The system owner may initialize the contract. When the
initialization, the admins with the following permissions are added:
1 super admin and 3 admins with all the permissions except the super
admin; and the pending keys are set (add key: 0, edit key: 1, remove
key: 2).

The super admin may transfer the super admin permission to the other
admin.

The admins with the add Gov admin permission may add a new admin,
then 51% of all the other admins with the add Gov admin permission
should approve the addition.

The admins with the edit Gov admin permission may edit and remove the
admins, then 51% of all the other admins with the edit Gov admin
permission should approve the edition or the removal. The admins with
the edit Gov admin permission may reject the pending for adding,
edition or removal admin if they have not approved them before.

Only one pending admin at once is allowed.

The contract allows to obtain pending admin keys, each admin
permission, to check if the user has each permission, each pending
for adding, editing of removal admin permissions, admins who approved
each pending address, all the approved admins.

The maximum number of admins is 30.
● LibAdmin — is a library that provides helper functionality for the

LibAdminStorage, used in the AdminRegistryFacet: to make admins
pending for removal, adding or edition; to remove, add or edit them.

Claim token functionality:
● LibClaimTokenStorage — is a library responsible for the claim tokens

storage definition. It defines the storing of approved claim tokens
and their data (token type, peg/sun tokens, peg/sun tokens
percentages, dex router), sun tokens, and claim token of each sun
token.
The maximal amount of sun tokens of each claim token is 30.

www.hacken.io
41

● ClaimTokenFacet — is a facet that allows the
management of the claim tokens.
The super admin may add claim tokens information, update it, enable
and disable claim tokens.
The facet provides the functionality for obtaining each claim token
data (token type, peg/sun tokens, peg/sun tokens percentages, dex
router), claim token of each sun token, to check if claim token is
enabled.

Gtokens functionality:
● GTokenFactoryFacet — is a facet that allows to deploy the GToken

based on the sp token, used in the ProtocolRegistryFacet: deploys the
G token for each Sp token which has VIP type. It sets the token name
to "gov" + sp token name, the token symbol to "gov" + sp token
symbol, transfers token ownership to the Diamond.

● GToken — is an ERC-20 token. Its name and symbol are defined when the
deployment. It is deployed on base of Sp token, its maximal token
supply is limited by the Sp token total supply, its decimals are
obtained from the Sp token.

The diamond address (set when the deployment) is allowed to mint
tokens. When tokens are minted, they are approved to the contract
owner.

The token has a whitelist for the token receivers. The whitelist is
managed by the system super admin. Tokens can be transferred and
approved only to the whitelisted receivers. The approve function acts
like an increaseAllowance function.

Markets functionality:
● TokenMarketFacet — is a facet that allows to create token loans and

activate them.
When the loan creation the user defines loan details: loan amount,
stable coin to be borrowed address, loan terms in days, apy
percentage, loan type (single token or multi token), collateral
tokens addresses and amounts, tier type (Gov tier, NFT traditional
tier, NFT sp tier, Vc tier), is loan private, is loan insured.
The stable token to be borrowed is verified for being approved in the
ProtocolRegistryFacet, collateral tokens number is being checked for
non-exceeding the multi collateral limit defined in the
MarketRegistryFacet, the amount to be borrowed is checked against the
minimum loan amount defined in the MarketRegistryFacet; if the loan
type is set to single collateral, the collaterals tokens number is
checked for equality with the 1, it is checked if all the collateral
tokens are allowed to create loans in the ProtocolRegistryFacet (and
they may be claim tokens) with and are approved to the contracts in
the defined amounts by the borrower. The collateral tokens are
calculated in the collateral tokens and ltv is calculated and checked
for being greater than the defined in the MarketRegistryFacet ltv
percentage. The collateral tokens conversation calculation is

www.hacken.io
42

performed in the LibTokenMarket through the
PriceConsumerFacet: all the token prices are summed upped: if the
token has claim token, its claim token price is obtained from the
defined in the claim token data dex and the defined sun/peg
percentage of it gets, if the token does not have the claim token,
its price is obtained from the Chainlink, the ltv is the percentage
of this total value from the loan amount. The loan is checked for
being the defined tier throughout the UserTierFacet using the
obtained collateral in borrowed token amount. If all the
verifications succeed, the loan offer is created with the INACTIVE
status.

The borrowers may update their loan offers (amount to be borrowed,
term length in days, apy offer, is private, is insured) if they are
in the INACTIVE status, the data for the loan is verified in the same
way as for the loan creation.

The borrowers may cancel their loan offers if they are in the
INACTIVE status.

The liquidators may cancel the loans if they are in the INACTIVE
status.

Canceling sets the loan status to CANCELLED.

Users may activate the loan that has INACTIVE status. When the
activation, the loan status is set to ACTIVE. The borrowers can not
activate their own loan offers. If the users are whitelisted for
activation in the MarketRegistryFacet, they can activate an unlimited
number of times; otherwise, they are limited with the loan activation
limit defined in the MarketRegistryFacet. Users may activate many
loan offers per time, defining the autosell indicator for each one.
If the loan collateral token has claim token defined in the
ClaimTokenFacet, the autosell can not be applied. The autosell
indicates the type of the collateral refund to the user when the
liquidation, if it's set to true: the collateral tokens are converted
to borrowed stable token, if it's set to false, the collateral are
paid in the tokens themselves. The max loan amount and LTV are
recalculated, the loan activator defines the loan amount to be
borrowed. If the new maximal loan amount is less than the loan amount
to be borrowed defined in the borrow offer, the defined by the lender
loan amount is set (should be equal or less for 3% than the maximal
loan amount). The loan amount is transferred to the contract from the
lended. The loan (the apy and the platform fee (its percentage is set
in the ProtocolRegistryFacet) is deducted from it) is transferred to
the borrower. The collateral tokens are transferred from the borrowed
to the contract, if the token has synthetic mint on
(ProtocolRegistryFacet), the appropriate GToken is minted to the
borrower.

www.hacken.io
43

The facet allows to obtain the information for each
loan offer, for each activated loan and the LTV
calculations (ltv, maximal loan amount and the collateral tokens in
the borrowed coin amount) for the defined collateral tokens, borrow
stable coin, loan amount, borrower and tier type.

● LibTokenMarket — is a library that provides helping functionality for
the TokenMarketFacet. It provides functions that check collateral
approvals, provides the ltv calculations, transfer collateral tokens
and mints synthetic.

● LiquidatorStorage — is a library responsible for the liquidator
storage definition. It initializes the storage of the whitelisted
liquidators, liquidators Sun token balances per each wallet, 1inch
aggregator address, if the liquidator initialized.

● LiquidatorFacet — is a facet that provides functionality for the
token loan repayments and liquidations.

The system owner can initialize the contract, when the
initialization, 2 provided addresses are set as liquidators.

Superadmin is allowed to set the liquidators’ statuses.
The facet provides the functionality for obtaining all the
liquidators and each liquidator status (enabled or not), total
payment amount for each token loan id, if the liquidation is pending
for each token id, liquidated sun tokens balances for each user and
each sun token, the withdrawable amount of stable coins and
collateral tokens.

The liquidators can approve tokens to 1inch.

The liquidators can liquidate the loan if it was not fully repaid and
the loan terms in days + 1 day have passed. After the liquidation,
the loan status is set to LIQUIDATED. Depending on the fact if the
autosell is on for the loan, the liquidation differs:

For the turned-on autosell: the collaterals are swapped to the
borrowed coin through the 1inch, if each collateral is to mint, the
appropriate amount of appropriate Gtoken is burned from the borrower.
The apy fee is recalculated and if there is an unearned apy fee, the
rest is left on the platform. The difference between the final
swapped amount and the borrowed amount is left in the protocol, the
autosell fee (autosell fee percentage is defined on the Market facet)
is deducted from the amount and then the resulting amount is
transferred to the lender.

For the turned-off autosell: each collateral token price in the
borrowed token is obtained. If the token has the claim token
(ClaimTokenFacet), its claim token price is obtained from the defined
in the claim token data dex and the defined sun/peg percentage of it
is obtained. If each collateral were to mint, the appropriate amount
of appropriate Gtoken would be burned from the borrower. The
collateral tokens are transferred to the lender until their total

www.hacken.io
44

price in the borrowed token reaches the borrowed
amount + threshold fee (threshold fee percentage
defined in the ProtocolRegistryFacet). The rest of the collateral are
left in the protocol. The apy fee is recalculated and if there is an
unearned apy fee, the rest is left on the platform. The initial apy
fee is transferred to the lender.

The facet allows borrowers to pay back their token loans if ltv is
bigger than the ltv percentage defined in the MarketRegistryFacet and
the loan term in days plus 1 day have not reached. The borrower may
pay the loan partially, if the remaining unpaid amount is sufficient
for the ltv calculation. If the borrower fully repays the loan, the
collateral tokens are transferred to the borrower, and the minted
GTokens are burned from the borrower. The loan and earned apy fee are
transferred to the lender, an unearned apy remains in the protocol.

The facet allows super admin to withdraw stablecoins that remained as
a platform fee when the loan activation and the collaterals that
remained in the contract as exceeded amount when swapping tokens for
the autosell liquidation.

● LibLiquidator — is a library that provides the functionality for the
LiquidatorFacet.

It provides the functions that set liquidators’ statuses, liquidate
the token loan with autosell, liquidate the token loan without
autosell, calculate the ltv, check if the liquidation of the each
loan is pending, calculate the total payback amount for each token
loan, fully payback the loan.

● NFTMarketFacet — is a facet that allows to create NFT loans,
activate, repay and liquidate them.
When the loan creation the user defines loan details: loan amount,
stable coin to be borrowed address, loan terms in days, apy
percentage, loan type (single token or multi token), NFT collateral
tokens addresses, their ids and prices, tier type (Gov tier, NFT
traditional tier, NFT sp tier, Vc tier), is loan private, is loan
insured.

The stable token to be borrowed is verified for being approved in the
ProtocolRegistryFacet, collateral tokens number is being checked for
non-exceeding the multi collateral limit defined in the
MarketRegistryFacet, the amount to be borrowed is checked against the
minimum loan amount defined in the MarketRegistryFacet; if the loan
type is set to single collateral, the collaterals tokens number is
checked for equality with the 1. The collateral tokens prices
(defined by the borrower) are summed up and the loan is checked for
being the defined tier throughout the UserTierFacet. If all the
verifications succeed, the loan offer is created with the INACTIVE
status.

www.hacken.io
45

The borrowers may cancel their loan offers if they are
in the INACTIVE status.

The liquidators may cancel the loans if they are in the INACTIVE
status.

Canceling sets the loan status to CANCELLED.

The borrowers may update their loan offers (amount to be borrowed,
term length in days, apy offer, is private, is insured) if they are
in the INACTIVE status, the data for the loan is verified in the same
way as for the loan creation.

Users may activate the loan that has INACTIVE status. When the
activation, the loan status is set to ACTIVE. The borrowers can not
activate their own loan offers. If the users are whitelisted for
activation in the MarketRegistryFacet, they can activate an unlimited
number of times; otherwise, they are limited with the loan activation
limit defined in the MarketRegistryFacet. The loan amount is
transferred to the contract from the lended. The loan (the apy and
the platform fee (its percentage is set in the ProtocolRegistryFacet)
is deducted from it) is transferred to the borrower. The collateral
tokens are transferred from the borrowed to the contract.

The liquidators can liquidate the loan if it was not fully repaid and
the loan terms in days + 1 day have passed. After the liquidation,
the loan status is set to LIQUIDATED. The collaterals are transferred
to the lender. The initial apy fee is transferred to the lender.
The facet allows to obtain the information for each loan offer, for
each activated loan.

● LibNFTMarket — is a library that provides the helper functionality
for the NFTMarketFacet.

It provides the functions that check NFTs approvals and transfer
them.

● NFTMarketFacet — is a facet that allows to create NFT loans,
activate, repay and liquidate them.

● NetworkMarketFacet — is a facet that allows to create token loans,
activate, repay and liquidate them. The collaterals are paid in ETH.
When the loan creation the user defines loan details: loan amount,
stable coin to be borrowed address, loan terms in days, apy
percentage, is loan private, is loan insured.

The amount to be borrowed is checked against the minimum loan amount
defined in the MarketRegistryFacet; the borrowed stable is checked
for being approved in the ProtocolRegistryFacet. The collaterals
coins are transferred to the contract, the ltv is checked for being
equal to or greater than the minimum ltv defined in the
MarketRegistryFacet. The loan is checked for being not greater than
the maximal allowed user loan calculated according to the user`s
tier` ltv by gov balance. If all the verifications succeed, the ltv

www.hacken.io
46

is calculated due to the borrowed coin price in wETH,
the loan offer is created with the INACTIVE status.

The borrowers may update their loan offers (amount to be borrowed,
term length in days, apy offer, is private, is insured) if they are
in the INACTIVE status, the data for the loan is verified in the same
way as for the loan creation.

The borrowers may cancel their loan offers if they are in the
INACTIVE status. The collaterals are then transferred back to them.
Canceling sets the loan status to CANCELLED.

Users may activate the loan that has INACTIVE status. When the
activation, the loan status is set to ACTIVE. The borrowers can not
activate their own loan offers. If the users are whitelisted for
activation in the MarketRegistryFacet, they can activate an unlimited
number of times; otherwise, they are limited with the loan activation
limit defined in the MarketRegistryFacet. The autosell indicates the
type of the collateral refund to the user when the liquidation, if it
is set to true: the collateral ETH is converted to borrowed stable
token, if it is set to false, the collateral is paid in the ETH coins
themselves. The max loan amount and LTV are recalculated, the loan
activator defines the loan amount to be borrowed. If the new maximal
loan amount is less than the loan amount to be borrowed defined in
the borrow offer, the defined by the lender loan amount is set
(should be equal or less for 3% than the maximal loan amount). The
loan amount is transferred to the contract from the lender. The loan
(the apy and the platform fee (its percentage is set in the
ProtocolRegistryFacet) is deducted from it) is transferred to the
borrower.

The facet allows borrowers to pay back their token loans if ltv is
bigger than the ltv percentage defined in the MarketRegistryFacet and
the loan term in days plus 1 day have not reached. The ltv is
calculated due to the borrowed coin price in wETH. The borrower may
pay the loan partially, if the remaining unpaid amount is sufficient
for the ltv calculation. If the borrower fully repays the loan, the
collateral coins are transferred to the borrower, and the minted
GTokens are burned from the borrower. The loan and earned apy fee is
transferred to the lender, an unearned apy remains in the protocol.

The liquidators can liquidate the loan if it was not fully repaid and
the loan terms in days + 1 day have passed. After the liquidation,
the loan status is set to LIQUIDATED. Depending on the fact if the
autosell is on for the loan, the liquidation differs:

For the turned-on autosell: the collateral ETH is swapped to the
borrowed coin through the 1inch. The apy fee is recalculated and if
there is an unearned apy fee, the rest is left on the platform. The
difference between the final swapped amount and the borrowed amount
is left in the protocol, the autosell fee (autosell fee percentage is

www.hacken.io
47

defined on the Market facet) is deducted from the
amount and then the resulting amount is transferred to
the lender.

For the turned-off autosell: each collateral token price in the
borrowed token is obtained. If the token has the claim token
(ClaimTokenFacet), its claim token price is obtained from the defined
in the claim token data dex and the defined sun/peg percentage of it
is obtained. If each collateral was to mint, the appropriate amount
of appropriate Gtoken is burned from the borrower. The collateral
tokens are transferred to the lender until their total price in the
borrowed token reaches the borrowed amount + threshold fee (threshold
fee percentage defined in the ProtocolRegistryFacet). The rest of the
collateral is left in the protocol. The apy fee is recalculated and
if there is an unearned apy fee, the rest is left on the platform.
The initial apy fee is transferred to the lender.

The facet allows super admin to withdraw exceeding coins.

The facet allows to obtain each created and activated loan
information, the withdrawable exceeding coins amount, the amount of
activated by user loans, total payback amount, check if the
liquidation for the loan is pending, get the loan ltv, maximal loan
amount according to the collateral amount and the borrower address.

● LibNetworkMarket — is a library that provides the helper
functionality for the NetworkMarketFacet.

It provides the functions that calculate payback amount, ltv, max
loan value and check if the liquidation is pending.

● LibMarketProvider — is a library that provides the helper functions
that calculate the resulting apy fee according to the loan amount,
apy fee, loan term in days.

● LibMarketStorage — is a library that defines the storage of market
data for each of Token, NFT and Network markets: current loan id,
loan details for each loan id, details for each activated loan id,
borrowers` loans, lenders` loans; and the common data: activated
amount of loans be each user, withdrawable coins and tokens,
liquidated sun token balances for each sun token and each user.

Prices obtaining functionality:
● PriceConsumerFacet — is a facet that provides tokens prices from

Chailink and Uniswap in order to calculate the collaterals values,
the facet calculates the ltv value according to the collateral tokens
prices, borrowed token and their amounts.

● LibPriceConsumer — is a library that provides the helper functions
for the PriceConsumerFacet. It allows to convert the pair to stable,
get the pair and the reserves, and check if Chainlink feed has been
added.

● LibPriceConsumerStorage — is a library that defines the storage of
price consumer: Chainlink data feeds and Uniswap router.

www.hacken.io
48

● IAdminRegistry, IClaimToken, IDexFactory, IDexPair,
IDiamondCut, IDiamondLoupe, IERC20Extras, IGovNFTTier, IGovTier,
IGToken, IGTokenFactory, IMarketRegistry, IPriceConsumer,
IProtocolRegistry, IUniswapSwapInterface, IUniswapV2Router01,
IUniswapV2Router02, IUserTier, IVCTier — are the system contracts
interfaces.

● AddressStringUtil, Babylonian, BitMath, FixedPoint, FullMath,
SafeERC20Namer, TransferHelper, Math, SafeMath, UQ112x112,
UniswapV2ERC20, UniswapV2Factory, UniswapV2Pair, IUniswapV1Exchange,
IUniswapV1Factory, SafeMath, UniswapV2Library,
UniswapV2OracleLibrary, UniswapV2Migrator, UniswapV2Router01,
UniswapV2Router02 — are the contracts for the uniswap functionality.

● IERC20 (/uniswap/v2-periphery-master/interfaces/), IUniswapV2Callee,
IUniswapV2ERC20, IUniswapV2Factory, IUniswapV2Pair, IERC20
(/uniswap/v2-periphery-master/dependencies/uniswap-v2-core/contracts/
interfaces/), IUniswapV2Migrator, IUniswapV2Router01,
IUniswapV2Router02, IWETH — are the contracts for the Uniswap
functionality`s interfaces.

Privileged roles
● The owner of the system is allowed to:

○ AddressProviderFacet - set Gov and Gov Gov tokens addresses.
○ ProtocolRegistryFacet - initialize the contract, update data of

approved tokens that have VIP type and not set g Token.
○ AdminRegistryFacet - initialize the contract.
○ PausableFacet - pause and unpause the system.
○ LiquidatorFacet - initialize the contract, withdraw stablecoins

that remained as a platform fee when the loan activation and the
collaterals that remained in the contract as exceeded amount when
swapping tokens for the autosell liquidation.

○ DiamondCutFacet - perform diamond cuts.
○ OwnershipFacet - transfer ownership to another address.
○ PriceConsumerFacet - initialize the contract, set swap router.

● The Diamond is allowed to:
○ GToken - may mint tokens.

● The super admin of the system is allowed to:
○ MarketRegistryFacet - set the minimum loan amount allowed to

create loan, loan limit amount for the activation, the LTV
percentages limit, allowed multi collateral limit, 1inch
aggregator address, set and update whitelisted for activation
lenders addresses.

○ ProtocolRegistryFacet - set the limits within the defined limits:
Gov platform fee <= 20%, Gov threshold fee <= 50%, Gov autosell
fee <= 20%.

www.hacken.io
49

○ GovTierFacet - set and update the tier lever for
each user.

○ GovNFTTierFacet - add NFT tier levels, add NFTs and Sun tokens to
NFT tiers.

○ VCTierFacet - add VC tier levels, add NFTs and Sun tokens to VC
tiers.

○ AdminRegistryFacet - transfer super admin permission to another
admin.

○ ClaimTokenFacet - add claim tokens information, update it, enable
and disable claim tokens.

○ LiquidatorFacet - set liquidators, withdraw exceeding tokens and
coins obtained in the NFT and Token markets.

○ NetworkMarketFacet - withdraw exceeding coins.
○ GToken - set whitelisted receivers.

● The admins with the editToken permission are allowed to:
○ ProtocolRegistryFacet - set statuses of stable coins, change is

mint token status.
● The admins with the addToken permission are allowed to:

○ PriceConsumerFacet - add tokens chainlink feeds, update price
aggregators.

○ ProtocolRegistryFacet - add tokens.
● The admins with the addSp permission are allowed to:

○ ProtocolRegistryFacet - add Sps wallets to the token if its
type is vip (one or bulk).

● The admins with the editSp permission are allowed to:
○ ProtocolRegistryFacet - remove or update Sps wallets to the

token if its type is vip (one or bulk).
● The admins with the EditTierLevel permission are allowed to:

○ GovTierFacet - add, update, remove and save (update or add)
tier levels.

○ GovNFTTierFacet - add and update SP tier levels, remove Sp and
NFT tiers.

● The admins with the addGovAdmin permission are allowed to:
○ AdminRegistryFacet - add new admins and approve their addition.

● The admins with the editGovAdmin permission are allowed to:
○ AdminRegistryFacet - update and remove admins and approve their

updating and removal, reject the pending for adding, removal of
updating admins.

● The liquidators are allowed to:
○ TokenMarketFacet - cancel the offer loans with the INACTIVE

status.
○ NFTMarketFacet - cancel the offer loans with the INACTIVE

status, liquidate the loans.
○ NetworkMarketFacet - liquidate the loans.

www.hacken.io
50

○ LiquidatorFacet - approve tokens to 1inch,
liquidate the token (TokenMarketFacet) loans.

www.hacken.io
51

Findings

Critical

C01. Access Control Violation

The super admin access verification in the setWhitelistReceiver
function is commented.

Therefore, any users may manage the token whitelist and define which
users can receive tokens.

Path: ./contracts/facets/token/GToken.sol : setWhitelistReceiver()

Recommendation: uncomment the access check verification.

Status: Fixed (Revised commit: ed54c7c)

C02. Data Consistency

When removing the sp wallet from the approvedSps mapping in the
ProtocolRegistryFacet.removeSp function
(LibProtocolRegistry._removeSpKeyfromMapping), the index to be
deleted is determined via the
LibProtocolRegistry._getIndexofAddressfromArray function, which
obtains the index from the allApprovedSps array.

Therefore, the ProtocolRegistryFacet.removeSp will always remove the
first value from the approvedSps mapping instead of the correct one.
(As the _getIndexofAddressfromArray will always return 0 index at
that moment of execution).

The same is applicable to ProtocolRegistryFacet.removeBulkSps and
LibProtocolRegistry._updateSp.

Paths: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol
: removeSp(), removeBulkSps()

./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_updateSp()

Recommendation: ensure that the correct wallet addresses are deleted
when removing and updating Sp wallets.

Status: Fixed (Revised commit: ed54c7c)

C03. Data Consistency

When updating Sp wallet in the LibProtocolRegistry._updateSp
function, instead of removing the old wallet address
(_oldWalletAddress) all the s.approvedSps[_tokenAddress] are removed
in the loop.

Therefore, the LibProtocolRegistry._updateS will always remove the
token Sp wallets.

www.hacken.io
52

The _newWalletAddress is added in the loop per each
iteration.

Due to this _newWalletAddress will be added to the approvedSps and
allApprovedSps length amount of times instead of 1.

Paths: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_updateSp()

./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol :
updateSp()

Recommendation: delete only the old wallet address and add new wallet
address once when updating.

Status: Fixed (Revised commit: ed54c7c)

C04. Data Consistency

When adding the claim tokens in the ClaimTokenFacet.addClaimToken
function, the claimTokenofSUN for each one from pegTokens is updated.

Therefore, if there was a value for the peg token in the
claimTokenofSUN, it will be re-written.

When updating the claim tokens information in the
ClaimTokenFacet.updateClaimToken function, the claimTokenofSUN is not
updated accordingly to new perTokens.

Therefore, the claimTokenofSUN will be incorrect for the pegTokens.

Due to this, the claimTokenofSUN and claimTokens.pegTokens will be
inconsistent.

Path: ./contracts/facets/claimtoken/ClaimTokenFacet.sol :
addClaimToken(), updateClaimToken()

Recommendation: rework the logic to ensure that the same peg token
can not be defined for different claim tokens, update the peg tokens
information properly when updating claim tokens.

Status: Fixed (Revised commit: 3c0d52c)

C05. Denial of Service Vulnerability

When repaying the token loans or their liquidation, the before minted
gTokens are burnt from the borrower.

Therefore, users may decrease the approval from the owner, the tokens
will not be burnt. Due to this, the functions will revert and the
lender will not be able to get any refunds.

Paths: ./contracts/facets/token/GToken.sol : approve()

./contracts/facets/market/token/TokenMarketFacet.sol :
fullLoanPaybackTokenEarly(), _liquidateCollateralAutoSellOff(),
_liquidateCollateralAutoSellOn()

www.hacken.io
53

Recommendation: rework the logic to ensure that the
lender will get repayments.

Status: Fixed (Revised commit: ed54c7c)

C06. Funds Lock

When borrowers partially repay the loans and the repaying time
expires, it is impossible to withdraw these partially repaid funds.
The loan repayment may be blocked due to the changed minimal ltv
value.

Therefore, the funds will be locked in the contract.

Paths: ./contracts/facets/liquidator/LiquidatorFacet.sol :
paybackToken()

./contracts/facets/market/network/NetworkMarketFacet.sol :
paybackEth()

Recommendation: ensure that partially repaid loans are not locked in
the system.

Status: Fixed (Revised commit: ed54c7c)

C07. Requirements Violation; Denial of Service Vulnerability

When obtaining the claim token in the activateLoanToken through the
IClaimToken.getClaimTokenofSUNToken for the autosell check is
incorrect because of i index.

Therefore, this will lead to the incorrect claim token verification
for the autosell liquidation and may lead to the denial of service
due to out of bounds exceptions.

Path: ./contracts/facets/market/token/TokenMarketFacet.sol :
activateLoanToken()

Recommendation: add the loop for the
loanDetails.stakedCollateralTokens when the verification.

Status: Fixed (Revised commit: ed54c7c)

C08. Requirements Violation

The user manually sets the price for each NFT collateral token
without any validation by passing the corresponding stakedNFTPrice
field value in the LoanDetailsNFT structure. The stakedNFTPrice is
used to verify if the user has sufficient tier for the loan creation
with the specified loanAmount. Users may create a loan and specify a
high enough NFT price value to pass tier validation and set a high
loan amount.

This leads to the possibility to open a loan with an arbitrary
loanAmount neglecting the user tier by manipulating the specified NFT
price.

www.hacken.io
54

Path: ./contracts/facets/market/nft/NFTMarketFacet.sol
: createLoanNft()

Recommendation: rework the logic and add calculations related to the
potential NFT prices, probably using the marketplace endpoints.

Status: Mitigated (The documentation: “NFT prices that will be used
while creating the NFT loans will be fetch from Opensea API on our
backend server, so when borrower creating the loan or lender is
activating the loan, nft prices will be available to everyone on the
marketplace, so lender before activating the loan, will see the
current sale and floor price of nfts, so to avoid any the lending
with arbitrary loan amount.”)

C09. Flashloan Attack

The project significantly relies on the token prices from the
decentralized exchanges during the calculations. The user may
manipulate the token pair price on the DEX using the flashloan attack
in order to deposit less collateral. This affects calculations
related to LTV value, required amount of collateral for a loan and
liquidation process.

This may lead to the funds’ loss.

Paths: ./contracts/facets/oracle/PriceConsumerFacet.sol :
getTokenPriceFromDex()

./contracts/facets/oracle/LibPriceConsumer.sol :
convertToStableOrWeth()

Recommendation: consider using alternative price sources, such as
other decentralized exchanges or centralized exchanges.

Status: Fixed (Revised commit: 3c0d52c)

C10. Data Consistency

The calculations in the convertToStableOrWeth() function are done by
dividing the reserves amounts of the pair, but the reserves
proportion does not represent the price for a specific amount of
tokens. UniswapV2 compatible AMM DEX calculates the output price
using the next formula:

amountIn - amount of tokens to be sold;
reserveIn - reserves of Token which is sold;
reserveOut - reserves of Token which is bought.
amountOut = amountIn * reserveOut / (reserveIn + amountIn)

but not:

amountOut = amountIn * reserveOut / reserveIn

This formula does not take into account the actual amount of tokens
being traded.

www.hacken.io
55

This leads to the overestimation of the tokens which
may be bought on the DEX.

Path: ./contracts/facets/oracle/LibPriceConsumer.sol :
convertToStableOrWeth()

Recommendation: use the proper AMM formula to consistently calculate
the price for a specific amount of tokens.

Status: Fixed (Revised commit: ed54c7c)

C11. Frontrunning

It is possible to frontrun loan activation transactions to change the
loan parameters and decrease the APY Fee before the activation. In
case of the Network or Token collateralized loans, it may be updated
with specifying the new _newAPYOffer value.

This may lead to an unexpected low APY fee which is possible to earn
by the lender.

Paths: ./contracts/facets/market/network/NetworkMarketFacet.sol :
updateEthLoan()

./contracts/facets/market/token/TokenMarketFacet.sol :
updateTokenLoan()

Recommendation: time lock or add the loan signature, which should be
validated during the activation and updated on every loan details
change.

Status: Fixed (Revised commit: ed54c7c)

C12. Requirements Violation

The comparison operator is used instead of the assignment operator
when assigning the stableCoinAmounts[i]/_stableCoinAmount to
loanDetails.loanAmountInBorrowed.

Therefore, the correct stable coin amount will not be set.

Paths: ./contracts/facets/market/network/NetworkMarketFacet.sol :
activateLoanEth()

./contracts/facets/market/token/TokenMarketFacet.sol :
activateLoanToken()

Recommendation: replace the comparison operator with the assignment
operator.

Status: Fixed (Revised commit: ed54c7c)

C13. Data Consistency

The parameters are passed in the incorrect order when calling the
functions for the price calculation. The function
getTokenPriceFromDex is called inside the getCollateralPriceinStable
function and _stableCoin address is passed as a second argument, but

www.hacken.io
56

getTokenPriceFromDex function expects _stableCoin
address to be the first argument in the function.

This may lead to the incorrect computations and significantly affect
the price calculations.

Path: ./contracts/facets/oracle/PriceConsumerFacet.sol :
getCollateralPriceinStable(), getStablePriceInCollateral()

Recommendation: correct the order for calculation of the arguments
which are passed to the functions.

Status: Fixed (Revised commit: 3c0d52c)

High

H01. Denial of Service Vulnerability

All the approved tokens
(LibProtocolStorage.protocolRegistryStorage().allapprovedTokenContrac
ts) are processed in a loop when adding new tokens
(ProtocolRegistryFacet.isTokenApproved).

All the approved Sps
(LibProtocolStorage.protocolRegistryStorage().allApprovedSps) are
processed in a loop when checking if the Sp was added to new Sps
(LibProtocolRegistry._isAlreadyAddedSp), when getting sp index
(LibProtocolRegistry._getIndexofAddressfromArray) and when removing
it (LibProtocolRegistry._removeSpKey).

All the tokenAddress` Sps
(LibProtocolStorage.protocolRegistryStorage().approvedSps[tokenAddres
s]) are processed in a loop when getting the sp index from mapping
(LibProtocolRegistry._getWalletIndexfromMapping) and when removing it
(LibProtocolRegistry._removeSpKeyfromMapping).

If the numbers of elements in the arrays are large enough to increase
the Gas required for executing the loop over the block Gas limit, all
the mentioned functionality may become inoperable.

Paths: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol
: isTokenApproved()

./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_isAlreadyAddedSp(), _getIndexofAddressfromArray(),
_getWalletIndexfromMapping(), _removeSpKeyfromMapping(),
_removeSpKey()

Recommendation: fix the logic not to rely on the arrays` lengths.

Status: Fixed (Revised commit: 3c0d52c)

H02. Denial of Service Vulnerability

All the approved admins
(LibAdminStorage.adminRegistryStorage().allApprovedAdmins) are

www.hacken.io
57

processed in a loop when transferring super admin
(AdminRegistryFacet.transferSuperAdmin), checking if
the operation was approved by all the required admins
(AdminRegistryFacet.isDoneByAll), removing the admin from the array
(LibAdmin._removeIndex), finding the index (LibAdmin._getIndex),
checking if admin exists (LibAdmin._addressExists).

All the admins that approved the operation
(LibAdminStorage.adminRegistryStorage().areByAdmins[_key][_newAdmin])
are processed in a loop when checking if the operation was approved
by all the required admins (AdminRegistryFacet.isDoneByAll), when
checking if the admin is not approved by another admin
(LibAdmin._notAvailable) or when rejecting the admin
(AdminRegistryFacet.rejectAdmin).

All the pending keys
(LibAdminStorage.adminRegistryStorage().PENDING_KEYS) are processed
in a loop when checking if the admin is not approved by another admin
(LibAdmin._notAvailable).

The AdminRegistryFacet.isDoneByAll and LibAdmin._notAvailable
functions perform 2 loops, one inside another.

If the numbers of elements in the arrays are large enough to increase
the Gas required for executing the loop over the block Gas limit, all
the mentioned functionality may become inoperable.

Paths: ./contracts/facets/admin/AdminRegistryFacet.sol :
transferSuperAdmin(), isDoneByAll(), rejectAdmin()

./contracts/facets/admin/LibAdmin.sol : _notAvailable(),
_removeIndex(), _getIndex(), _addressExists()

Recommendation: fix the logic not to rely on the arrays` lengths.

Status: Fixed (Revised commit: ed54c7c)

H03. Denial of Service Vulnerability

All the tier levels
(LibGovTierStorage.govTierStorage().allTierLevelKeys) are processed
in a loop when getting the maximal Gov tier level
(GovTierFacet.maxGovTierLevelIndex), removing tier
(LibGovTier._removeTierLevelKey), checking if tier had been added
(LibGovTier.isAlreadyTierLevel), getting the index of tier
(LibGovTier._getIndex).

All the wallets
(LibGovTierStorage.govTierStorage().allTierLevelbyAddress) are
processed in a loop when checking if wallet has an added tier
(GovTierFacet.isAlreadyAddedWalletTier).

If the numbers of elements in the arrays are large enough to increase
the Gas required for executing the loop over the block Gas limit, all
the mentioned functionality may become inoperable.

www.hacken.io
58

Paths: ./contracts/facets/govTier/GovTierFacet.sol :
maxGovTierLevelIndex(), isAlreadyAddedWalletTier()

./contracts/facets/govTier/LibGovTier.sol : _removeTierLevelKey(),
_getIndex(), isAlreadyTierLevel()

Recommendation: fix the logic not to rely on the arrays` lengths.

Status: Fixed (Revised commit: ed54c7c)

H04. Denial of Service Vulnerability

All the whitelisted addresses
(LibMarketRegistryStorage.marketRegistryStorage().allWhitelistAddress
es) are processed in a loop when checking if user has ever been
whitelisted (MarketRegistryFacet.isWhitelisedLender).

If the number of elements in the array is large enough to increase
the Gas required for executing the loop over the block Gas limit, the
mentioned functionality may become inoperable.

Path: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
isWhitelisedLender()

Recommendation: fix the logic not to rely on the array` lengths.

Status: Fixed (Revised commit: ed54c7c)

H05. Denial of Service Vulnerability

All the NFT tiers
(LibGovNFTTierStorage.govNftTierStorage().nftTierLevelsKeys) are
processed in a loop when obtaining the user`s NFT tier
(GovNFTTierFacet.getUserNftTier), removing tier
(LibGovNFTTier._removeNftTierLevelKey), getting NFT tier index
(LibGovNFTTier._getIndexSpTier), checking if the NFT tier had been
added (LibGovNFTTier.isAlreadyNftTier).

All the Sp tiers
(LibGovNFTTierStorage.govNftTierStorage().spTierLevelKeys) are
processed in a loop when removing tier
(LibGovNFTTier._removeSingleSpTierLevelKey), getting Sp tier index
(LibGovNFTTier._getIndexNftTier)

If the numbers of elements in the arrays are large enough to increase
the Gas required for executing the loop over the block Gas limit, all
the mentioned functionality may become inoperable.

Paths: ./contracts/facets/nftTier/LibGovNFTTier.sol :
_removeSingleSpTierLevelKey(), _removeNftTierLevelKey(),
_getIndexSpTier(), _getIndexNftTier(), isAlreadyNftTier()

./contracts/facets/nftTier/GovNFTTierFacet.sol : getUserNftTier()

Recommendation: fix the logic not to rely on the arrays` lengths.

Status: Fixed (Revised commit: ed54c7c)

www.hacken.io
59

H06. Denial of Service Vulnerability

All the Gov tiers (IGovTier(address(this)).getGovTierLevelKeys()) are
processed in a loop when getting tier by Gov balance
(UserTierFacet.tierDatabyGovBalance) or when obtaining user tier set
by admin (UserTierFacet.getTierDatabyWallet).

All the collaterals (_stakedCollateralTokens) and tier allowed suns
(_nftTierData.allowedSuns) are processed in a loop when validating
the NFT sp tier (LibUserTier.validateNFTSpTier).

All the collaterals (_stakedCollateralTokens) and tier allowed tokens
(_vcTier.spAllowedTokens) are processed in a loop when validating the
vc tier (LibUserTier.validateVCTier).

All the NFT collaterals (_stakedCollateralNFTs) and tier allowed NFTs
(_nftTierData.allowedNfts) are processed in a loop when validating
the NFT sp tier for NFTs (LibUserTier.validateNFTSpTierforNFTs).

All the NFT collaterals (_stakedCollateralNFTs) and tier allowed
tokens (_vcTier.spAllowedNFTs) are processed in a loop when
validating the vc tier for NFTs (LibUserTier.validateVCTierForNFTs).

If the numbers of elements in the arrays are large enough to increase
the Gas required for executing the loop over the block Gas limit, all
the mentioned functionality may become inoperable.

Paths: ./contracts/facets/userTier/UserTierFacet.sol :
tierDatabyGovBalance(), getTierDatabyWallet()

./contracts/facets/userTier/LibUserTier.sol : validateNFTSpTier(),
validateVCTier(), validateNFTSpTierforNFTs(), validateVCTierForNFTs()

Recommendation: fix the logic not to rely on the arrays` lengths.

Status: Fixed (Revised commit: 3c0d52c)

H07. Denial of Service Vulnerability

All the whitelisted addresses
(LibVCTierStorage.vcTierStorage().vcTiersKeys) are processed in a
loop when getting user vc tier (VCTierFacet.getUserVCNFTTier) and
when checking the tier has been added (VCTierFacet.isAlreadyVcTier).

If the number of elements in the array is large enough to increase
the Gas required for executing the loop over the block Gas limit, the
mentioned functionality may become inoperable.

Path: ./contracts/facets/vcTier/VCTierFacet.sol : getUserVCNFTTier(),
isAlreadyVcTier()

Recommendation: fix the logic not to rely on the array`s lengths.

Status: Fixed (Revised commit: 3c0d52c)

www.hacken.io
60

H08. Denial of Service Vulnerability

All the chainlink feeds
(LibPriceConsumerStorage.priceConsumerStorage().allFeedContractsChain
link) are processed in a loop when checking if the feed has been
added (LibPriceConsumer._isAddedChainlinkFeedAddress).

All the claim token peg tokens are processed in a loop when getting
sun token in stable (PriceConsumerFacet.getSunTokenInStable) and when
getting stable token in sun (PriceConsumerFacet.getStableInSunToken).

If the number of elements in the arrays is large enough to increase
the Gas required for executing the loop over the block Gas limit, all
the mentioned functionality may become inoperable.

Paths: ./contracts/facets/oracle/LibPriceConsumer.sol :
_isAddedChainlinkFeedAddress()

./contracts/facets/oracle/PriceConsumerFacet.sol :
getStableInSunToken(), getStableInSunToken()

Recommendation: fix the logic not to rely on the array`s lengths.

Status: Fixed (Revised commit: ed54c7c)

H09. Requirements Violation; Denial of Service Vulnerability

The ProtocolRegistryFacet.updateTokens function accepts the tokens
and their new Market data and emits the TokensUpdated event with this
data. However, the LibProtocolRegistry._updateToken function updates
the token only if its type should be set to TokenType.ISVIP and
gToken is zero address.

Therefore, it is impossible to update the other tokens in a different
way.

Paths: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol
: updateTokens()

./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_updateToken()

Recommendation: clarify the tokens update requirements and implement
the code according to them.

Status: Mitigated (The documentation: “Tokens with VIP type cannot be
updated as there Gtokens will be already deployed, and token with DEX
type will also be updated only once to VIP token type and there
Gtokens will also be deployed.”)

H10. Data Consistency

The super admin manually sets the users` tiers with no balance
checks.

Therefore, users` tiers may not be valid.

www.hacken.io
61

Paths: ./contracts/facets/govTier/GovTierFacet.sol :
addWalletTierLevel(), updateWalletTier(),
removeTierLevel()

./contracts/facets/userTier/UserTierFacet.sol :
getTierDatabyGovBalance()

Recommendation: dynamically check the user tier and not manually set
it.

Status: Fixed (Revised commit: 3c0d52c) (Such function behavior is
documented)

H11. Data Consistency; Requirements Violation

When adding tier through the saveTierLevel function, it is not
validated for the govHoldings amount as it is performed in the
addTierLevel function.

Therefore, the govHolding value may not be greater than last tier
level govHoldings. Due to this missed validation, the requirements
may be violated.

Path: ./contracts/facets/govTier/GovTierFacet.sol : saveTierLevel()

Recommendation: perform the missed govHoldings validations for the
saveTierLevel functionality.

Status: Fixed (Revised commit: ed54c7c)

H12. Denial of Service Vulnerability; Requirements Violation

In some cases, it is impossible to add new admins due to the fact
that 51% of approvals are required and the approval cannot be called
for self. If there is only 1 admin with the addGovAdmin access: there
is a functionality that allows to add an admin when there is 1 admin
with the addGovAdmin access and no other admins (if
(es.allApprovedAdmins.length == 1) case in the addAdmin function),
but if other admins exist (which will always be true, as the last
admin with the editGovAdmin role can not be deleted) it impossible.
And the addition is impossible if all the admins with the addGovAdmin
access are deleted.

It is impossible to edit or remove admins if there is only 1 admin
and they have the editGovAdmin role, as it is impossible to call the
operation for self.

Therefore, if there is only 1 admin with the addGovAdmin role and 1
with the editGovAdmin role, they can not add new admins and the
editGovAdmin admin can not be edited or removed. If the admin with
the editGovAdmin role removes the admin with the addGovAdmin role, it
would be impossible to manage the admins in any way.

This will lead to the restriction of the admins functionality in the
system to the functionality that is enabled to the last admin with
the editGovAdmin role.

www.hacken.io
62

Path: ./contracts/facets/admin/AdminRegistryFacet.sol
: addAdmin(), removeAdmin(), editAdmin()

Recommendation: add the functionality that allows an admin with the
addGovAdmin access to add new admin and ensure that the last admin
with the addGovAdmin access can not be deleted.

Status: Fixed (Revised commit: ed54c7c)

H13. Highly Permissive Role Access; Undocumented Behavior

The rejectAdmin function allows each admin with editGov role to
reject any pending operation for admins.

Such behavior is not described in the documentation and may lead to
manipulations.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol : rejectAdmin()

Recommendation: clarify the requirements and ensure that the
implementation matches it.

Status: Fixed (Revised commit: 3c0d52c)

H14. Data Consistency

The getMaxTotalSupply function does not indicate the maximal total
supply, it is not limited and may increase.

Therefore, this functionality may lead to incorrect assumptions about
the token information.

Path: ./contracts/facets/token/GToken.sol : getMaxTotalSupply()

Recommendation: clarify the function purpose, ensure that it does not
lead to the wrong information provided.

Status: Mitigated (The Customer notice: “Gtokens supply will always
be equal to the sp token supply, so whenever the loan is create and
token type is VIP then gtokens will be minted and supply of gtokens
will be check with sp token supply, so it will not cause any issue in
the system.”)

H15. Requirements Violation

The loans have the isPrivate parameter, but it does not change the
loans functionality behavior. The comment in the code states that the
"private loans will not appear on the loan market".

Therefore, the requirements are violated, and this may lead to the
access control violations.

Path: ./contracts/facets/market/libraries/LibMarketStorage.sol :
LoanDetailsToken.isPrivate, LoanDetailsNFT.isPrivate,
LoanDetailsNetwork.isPrivate

www.hacken.io
63

Recommendation: clarify the private loan requirements
and implement the code accordingly to them.

Status: Fixed (Revised commit: ed54c7c)

H16. Highly Permissive Role Access

The super admin may set the minimum ltv percentage
(LibMarketRegistryStorage.marketRegistryStorage().ltvPercentage)
through the MarketRegistryFacet.setLTVPercentage function.

The NetworkMarketFacet and TokenMarketFacet (LiquidatorFacet) do not
allow to repay the loan if the ltv is less than the defined in the
MarketRegistryFacet ltv limit. Therefore, the increasing of the limit
may lead to the block of the loans repaying.

Such behavior is not described in the documentation.

Paths: ./contracts/facets/liquidator/LibLiquidator.sol :
isLiquidationPending()

./contracts/facets/market/libraries/LibNetworkMarket.sol :
isLiquidationPending()

./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
setLTVPercentage()

Recommendation: ensure that the implementation matches the
requirements.

Status: Fixed (Revised commit: ed54c7c)

H17. Requirements Violation

The NetworkMarketFacet and TokenMarketFacet (LiquidatorFacet) do not
allow to repay the loan and allow the loan liquidation if the ltv is
less than the defined in the MarketRegistryFacet ltv limit, but this
functionality is not implemented in the NFTMarketFacet.

This may indicate that the code is not finalized and the requirements
are violated.

Paths: ./contracts/facets/liquidator/LibLiquidator.sol :
isLiquidationPending()

./contracts/facets/market/libraries/LibNetworkMarket.sol :
isLiquidationPending()

Recommendation: clarify the requirements and implement the code
accordingly to them.

Status: Mitigated (The Customer notice: “no need to perform LTV
calculations in NFT Market.”)

www.hacken.io
64

H18. Requirements Violation; Undocumented Behavior

The apy fee that is not earned by the time (unEarnedAPYFee) goes to
the platform.

Therefore, the lender does not get all the apy fee, though it is
fully paid by the borrower.

Such behavior is not described in the documentation.

Paths: ./contracts/facets/liquidator/LibLiquidator.sol :
_liquidateCollateralAutoSellOn(), _liquidateCollateralAutoSellOff(),
fullLoanPaybackTokenEarly()

./contracts/facets/market/network/NetworkMarketFacet.sol :
fullLoanPaybackEthEarly(), liquidateLoanNetwork(),
liquidateLoanNetwork()

Recommendation: ensure that the lender gets the correct amount of apy
fee, ensure that the implementation matches the requirements.

Status: Mitigated (The documentation: “The "unearned APY%" is left in
the diamond contract, which can be voted on by the community to
determine the best use of these funds.”)

H19. Front-Running Attack

The liquidation function for the token loans swaps the funds using
the UniswapV2. The min return amount after swap is not specified
during operations with Uniswap router.

"Sandwich" attack is possible in such a case.

Path: ./contracts/facets/liquidator/LibLiquidator.sol :
_liquidateCollateralAutoSellOn()

Recommendation: calculate and provide the min return amount as a
parameter.

Status: Fixed (Revised commit: 3c0d52c) (Functionality removed)

H20. Insufficient Funds; Denial of Service Vulnerability

The total swapped amount is not validated for the amount in case it
is less than the loanAmountInBorrowed.

This may lead to the Denial of Service vulnerabilities, when the
(loanDetails.loanAmountInBorrowed + earnedAPYFee) -
autosellFeeinStable can not be transferred due to the insufficient
funds or to the situation when the funds that are intended for other
refunds are used here.

Paths: ./contracts/facets/liquidator/LibLiquidator.sol :
_liquidateCollateralAutoSellOn()

./contracts/facets/market/network/NetworkMarketFacet.sol :
liquidateLoanNetwork()

www.hacken.io
65

Recommendation: ensure that the total swapped amount
is enough for the refund.

Status: Fixed (Revised commit: ed54c7c)

H21. Data Consistency

The collateral tokens in the TokenMarketFacet and NFTMarketFacet are
only transferred when activation.

Therefore, the loan offers may not be actual.

Paths: ./contracts/facets/market/token/TokenMarketFacet.sol :
activateLoanToken()

./contracts/facets/market/nft/NFTMarketFacet.sol : activateNFTLoan()

Recommendation: transfer collaterals when creating the loan offer.

Status: Mitigated (The documentation: “Transfer of collateral tokens
from the borrower wallet to the GovWorld diamond contract will occur
upon loan activation from a stablecoin lender funding a loan offer.”)

H22. Undocumented Behavior

When activating the loans, the lender defines the loan amount to be
borrowed, and the actual loan offer amount may be re-written in case
if the maxLoanAmount is less than the loanAmountInBorrowed.

Due to this, the borrower may get less tokens as was defined.

Such behavior is not described in the documentation.

Paths: ./contracts/facets/market/network/NetworkMarketFacet.sol :
activateLoanEth()

./contracts/facets/market/nft/NFTMarketFacet.sol : activateNFTLoan()

./contracts/facets/market/token/TokenMarketFacet.sol :
activateLoanToken()

Recommendation: ensure that the borrowers get the amount of tokens as
per requirements.

Status: Mitigated (The documentation: “Upon loan activation, if the
collateral value of the borrower has decreased from the time the
original loan offer was made, and the borrower is at the max LTV%
determined by their GOV tier then, the borrower will getMaxLoanAmount
that will be less than the originally requested loan amount by the
borrower.”)

H23. Unfinalized Functionality

The msgSender function usage indicates that the meta-transactions
were implied, but the functionality for them is not implemented.

This may indicate that the functionality is not implemented or that
there is a redundant library usage in the project.

www.hacken.io
66

Path: ./contracts/shared/libraries/LibMeta.sol :
msgSender()

Recommendation: clarify the requirements and finalize the code or
remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

H24. Requirements Violation; Undocumented Behavior

After the super admin change - the previous super admin still has all
the access rights, and the new admin is not granted all the
permissions.

This may indicate that the requirements are violated.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol :
transferSuperAdmin()

Recommendation: clarify the requirements and ensure that the
implementation matches it.

Status: Fixed (Revised commit: ed54c7c)

H25. Requirements Violation; Undocumented Behavior

When creating the loan, it is checked if the collaterals sent
(msg.value) is greater than or equal (>=) to the price.

Users can mistakenly send more coins, will pay more than needed, and
the coins will be locked.

Path: ./contracts/facets/market/network/NetworkMarketFacet.sol :
createLoanEth()

Recommendation: use "equal to" operator for the sent collaterals
amount checking.

Status: Fixed (Revised commit: ed54c7c)

H26. Inconsistent Data

The changeTokensStatus function allows to set the
isTokenEnabledAsCollateral status when the token is not approved.

This may lead to the inconsistent contract state and the token access
violations. The token will be added to the approvedTokens, but not to
the allapprovedTokenContracts.

Path: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol :
changeTokensStatus()

Recommendation: verify if the token is approved before setting its
isTokenEnabledAsCollateral status.

Status: Fixed (Revised commit: ed54c7c)

www.hacken.io
67

H27. Requirements Violation; Inconsistent Data

When validating the tiers in the LibUserTier, the amounts of
collaterals are not validated for the multiToken/multiNFT tier type.

Therefore, the incorrect amount of collateral tokens may be used (1
token for the multiToken/multiNFT).

The functionality allows to set both multiToken/multiNFT and
singleToken/singleNft, which contradicts itself and breaks the
validations.

Paths: ./contracts/facets/userTier/LibUserTier.sol :
validateGovHoldingTierForToken(), validateNFTTier(),
validateNFTSpTier(), validateVCTier(),
validateGovHoldingTierForNFT(), validateNFTSpTierforNFTs(),
validateVCTierForNFTs()

./contracts/facets/nftTier/LibGovNFTTierStorage.sol :
SingleSPTierData

./contracts/facets/govTier/LibGovTierStorage.sol : TierData

Recommendation: ensure that the one type of the tier is defined and
validate it.

Status: Fixed (Revised commit: 5ff534b)

H28. Frontrunning

It is possible to frontrun loan activation transactions to change the
loan parameters and increase the amount of tokens which are sent to
the borrower during the activation. In case of the NFT collateralized
loans, it may be updated by specifying the new loanAmountInBorrowed
value and adjusting an inactive NFT loan with the tokens that have
high stakedNFTPrice value specified by the borrower to pass the
validations.

This may lead to an unexpected token transfer from the user’s wallet
to the borrower in case the allowance is higher than the initial
loanAmountInBorrowed.

Path: ./contracts/facets/market/nft/NetworkMarketFacet.sol :
updateNftLoan()

Recommendation: time lock or add the loan signature, which should be
validated during the activation and updated on every loan details
change.

Status: Fixed (Revised commit: ed54c7c)

H29. Data Consistency

It is possible to update the Chainlink Oracles addresses by the admin
when the contract is not paused and feed is enabled. The function
responsible for adding Oracle's feed address addTokenChainlinkFeed is

www.hacken.io
68

also capable of updating price feeds due to the lack
of validation. The existing validation in the
_isAddedChainlinkFeedAddress function only checks if a specific feed
is added to any token or not.

This may lead to setting wrong addresses, which may cause unexpected
behavior, DoS, or funds loss.

Path: ./contracts/facets/oracle/PriceConsumerFacet.sol :
addTokenChainlinkFeed(), addBatchTokenChainlinkFeed()

Recommendation: keep the state of the system consistent. Disable the
ability to update the price feeds in the function which is
responsible for adding it, add function which is responsible for
updating the price feed with a validation, which checks if the feed
is enabled or contract is paused and disallows update otherwise.

Status: Fixed (Revised commit: 3c0d52c)

H30. Data Consistency

Uniswap V2 router is non-upgradable contract which is deployed to
the mainnet. This means that the address may not be changed, but the
project has the functionality which allows resetting the address of
the Uniswap router.

This may lead to unexpected behavior, DoS or funds loss.

Path: ./contracts/facets/oracle/PriceConsumerFacet.sol :
setSwapRouter()

Recommendation: hardcode the Uniswap address in the contract code.

Status: Fixed (Revised commit: 5ff534b)

H31. Denial of Service Vulnerability

All the liquidators are processed in the loop.

If the number of elements in the array is large enough to increase
the Gas required for executing the loop over the block Gas limit, the
mentioned functionality may become inoperable.

Paths: ./contracts/facets/liquidator/LibLiquidator.sol :
isAlreadyAddedLiquidator()

./facets/liquidator/LiquidatorFacet.sol : getAllLiquidators() (when
calling from another contract)

Recommendation: fix the logic not to rely on the array length.

Status: Fixed (Revised commit: 5ff534b)

H32. EIP Standard Violation

The GToken approve function acts like increaseAllowance function.

The EIP-20 approve function should overwrite the current allowance
with the new value, therefore, the EIP standard is violated.

www.hacken.io
69

Path: ./contracts/facets/token/GToken.sol : approve()

Recommendation: implement the approve function according to the
EIP-20 standard. Introduce the specific function that will increase
the allowance for the loans creation purposes.

Status: Fixed (Revised commit: 3c0d52c)

H33. Requirements Violation

The verifications if the amounts do not exceed the ltv were removed.

The verification if the maxLoanAmount != 0 was removed from the
TokenMarketFacet.activateLoanToken function.

Therefore, the requirements are violated.

Paths: ./contracts/facets/market/token/TokenMarketFacet.sol :
createLoanToken(), updateTokenLoan(), activateLoanToken();

./contracts/facets/market/network/NetworkMarketFacet.sol :
updateEthLoan(), createLoanEth();

./contracts/facets/liquidator/LiquidatorFacet.sol : paybackToken();

Recommendation: clarify the ltv requirements and implement the code
according to them.

Status: Fixed (Revised commit: 5ff534b)

H34. Ambiguous Third-Party Integration

The swap is performed using an external call with any msg.data, so it
is possible to call any functions.

This may lead to calling the incorrect function, which will result in
unexpected behavior.

Paths: ./contracts/facets/liquidator/LibLiquidator.sol :
_liquidateCollateralAutoSellOn();

./contracts/facets/market/network/NetworkMarketFacet.sol :
_liquidateAutoSellOn();

Recommendation: directly call the correct function using the known
interface for swap function.

Status: Fixed (Revised commit: 5ff534b)

Medium

M01. Inconsistent Data

Critical state changes should emit events for tracking things
off-chain.

The following functions do not emit events on change of important
values.

www.hacken.io
70

Paths:
./contracts/facets/addressprovider/AddressProviderFacet.sol :
setGovToken(), setgovGovToken()

./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
setMinLoanAmount(), setWhilelistAddress(), updateWhilelistAddress(),
setAllowedMultiCollateralLimit(), set1InchAggregator()

./contracts/facets/nftTier/GovNFTTierFacet.sol :
addSingleSpTierLevel(), addNftTierLevel(), addNFTTokensinNftTier(),
addNFTSunTokensinNftTier(), updateSingleSpTierLevel(),
removeSingleSpTierLevel(), removeNftTierLevel()

./contracts/facets/vcTier/VCTierFacet.sol : addVCNFTTier(),
addVCSpTokens(), addVCNftTokens()

./contracts/facets/claimtoken/ClaimTokenFacet.sol : addClaimToken(),
updateClaimToken(), enableClaimToken()

./contracts/facets/govTier/GovTierFacet.sol : govTierFacetInit()

./contracts/facets/liquidator/LiquidatorFacet.sol :
liquidatorFacetInit()

./contracts/facets/oracle/PriceConsumerFacet.sol :
priceConsumerFacetInit(), setSwapRouter()

./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol :
protocolRegistryFacetInit(), removeBulkSps()

Recommendation: emit the event whenever the corresponding action
happens.

Status: Fixed (Revised commit: 3c0d52c)

M02. Inconsistent Data; Best Practice Violation

The LibProtocolRegistry, PriceConsumerFacet, contract can be
initialized an unlimited number of times and the contracts are
operable without the initialization. The LiquidatorFacet,
GovTierFacet, AdminRegistryFacet contracts are operable without the
initialization.

Such behavior violates the best practices and may lead to an
inconsistent contract state.

Paths: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
protocolRegistryFacetInit()

./contracts/facets/oracle/PriceConsumerFacet.sol :
priceConsumerFacetInit()

./contracts/facets/liquidator/LiquidatorFacet.sol :
liquidatorFacetInit()

./contracts/facets/govTier/GovTierFacet.sol : govTierFacetInit()

www.hacken.io
71

./contracts/facets/admin/AdminRegistryFacet.sol :
adminRegistryInit()

Recommendation: ensure that the contract can be initialized once and
can not be operable without the initialization.

Status: Fixed (Revised commit: 3c0d52c)

M03. Best Practice Violation

It is not checked in the MarketRegistryFacet.changeTokensStatus
function if the lengths of the _tokenAddress and _tokenStatus arrays
are equal.

It is not checked in the LibLiquidator.setLiquidator function if the
lengths of the _newLiquidators and _newLiquidators arrays are equal.

This may lead to incorrect input data processing.

Paths: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
changeTokensStatus()

./contracts/facets/liquidator/LiquidatorFacet.sol : setLiquidator()

Recommendation: verify if the lengths of the _tokenAddress,
_tokenStatus arrays in the MarketRegistryFacet.changeTokensStatus and
_newLiquidators, _liquidatorRole in the
LibLiquidator.changeTokensStatus function are equal.

Status: Fixed (Revised commit: ed54c7c)

M04. Contradiction

According to the comment, the getSingleApproveTokenData function
should return Market struct, but it does not. ("@dev get data of
single approved token address return Market Struct")

This may indicate that the requirements are violated.

Path: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
getSingleApproveTokenData()

Recommendation: fix the mismatch.

Status: Fixed (Revised commit: ed54c7c)

M05. Inefficient Gas Model

The functions that remove elements from the array by the index,
replace all the elements after the defined index in the loop.

This will lead to the redundant Gas consumption.

Paths: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_removeSpKey(), _removeSpKeyfromMapping()

www.hacken.io
72

./contracts/facets/nftTier/LibGovNFTTier.sol :
_removeSingleSpTierLevelKey(),
_removeNftTierLevelKey()

./contracts/facets/govTier/LibGovTier.sol : _removeTierLevelKey()

./contracts/facets/admin/LibAdmin.sol : _removeIndex(),
_removePendingIndex()

Recommendation: replace the last array element to the index that
should be removed and then remove the last element.

Status: Fixed (Revised commit: 3c0d52c)

M06. Inconsistent Data

The input tiers govHoldings are not checked for being less than the
govToken total supply.

Therefore, the added tier may be unreachable and the requirements may
be violated.

Path: ./contracts/facets/govTier/GovTierFacet.sol :
govTierFacetInit()

Recommendation: ensure that the input tiers govHoldings are less than
the govToken total supply.

Status: Fixed (Revised commit: ed54c7c)

M07. Inconsistent Data

The input tiers (_bronze, _silver, _gold, _platinum) are not checked
for non-equality in the GovTierFacet.govTierFacetInit function.

As they are added through the LibGovTier._addTierLevel function
without the !LibGovTier.isAlreadyTierLevel validation, this may lead
to the repeated addition of tier to the
LibGovTierStorage.govTierStorage().allTierLevelKeys.

Path: ./contracts/facets/govTier/GovTierFacet.sol :
govTierFacetInit()

Recommendation: ensure that the input tiers levels are not equal.

Status: Fixed (Revised commit: ed54c7c)

M08. Inconsistent Data

The
LibMarketRegistryStorage.marketRegistryStorage().allWhitelistAddresse
s array stores the addresses that are not whitelisted, as when
updating a whitelisted address status to false through the
updateWhilelistAddress, it is not removed from this array.

www.hacken.io
73

The getAllWhitelisedLenders function returns this
array. Therefore, it does not indicate the real
whitelisted users and may lead to the incorrect assumptions.

When adding the whitelisted users, the setWhilelistAddress function
allows defining the status (_value).

Due to the fact that adding to the whitelist is implied to set the
status to true, the parameter is redundant and allows to make the
contract state inconsistent as the address will be added to the
LibMarketRegistryStorage.marketRegistryStorage().allWhitelistAddresse
s.

Path: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
setWhilelistAddress(), updateWhilelistAddress(),
isWhitelisedLender(), getAllWhitelisedLenders()

Recommendation: automatically set status to true in the
setWhilelistAddress function. Ensure that the
LibMarketRegistryStorage.marketRegistryStorage().allWhitelistAddresse
s array stores the whitelisted users.

Status: Fixed (Revised commit: 3c0d52c)

M09. Inconsistent Data; Funds Lock

The LiquidatorFacet.paybackToken verifies if the _paybackAmount <=
ms.borrowerLoanNetwork[_loanId].loanAmountInBorrowed without taking
into account the already paid amount. The following verification
totalPayback >= loanDetails.loanAmountInBorrowed allows the total
payback amount to be greater than the borrowed amount.

Therefore, users may mistakenly pay more and the funds will be locked
in the system.

Path: ./contracts/facets/liquidator/LiquidatorFacet.sol :
paybackToken()

Recommendation: ensure that users can not pay more than required when
repaying the loans.

Status: Fixed (Revised commit: ed54c7c)

M10. Inefficient Gas Model

The contracts with the ^0.8.3 Solidity version use the SafeMath.

Starting with Solidity ^0.8.0, SafeMath functions are built-in. In
such a way, the library is redundant.

Path: ./contracts/uniswap/v2-periphery-master/*

Recommendation: remove the redundant functionality.

www.hacken.io
74

Status: Mitigated (The Customer notice: “safeMath used
in uniswap v2 is just for testing purposes, not in
production/mainnet.”)

M11. Inconsistent Data

When assigning the tier to the wallet in the addWalletTierLevel
function and updating it in the updateWalletTier function, it is not
checked if the tier exists.

Therefore, this functionality may lead to the invalid contract state.

Path: ./contracts/facets/govTier/GovTierFacet.sol :
updateWalletTier(), addWalletTierLevel()

Recommendation: validate if the tier exists when setting it to the
wallet.

Status: Fixed (Revised commit: ed54c7c)

M12. Inconsistent Data

The GovNFTTierFacet.addNFTSunTokensinNftTier,
GovNFTTierFacet.addNFTTokensinNftTier, VCTierFacet.addVCSpTokens,
VCTierFacet.addNFTSunTokensinNftTier functions allow adding tokens to
the tier when it is not added.

This may lead to the inconsistent contract state and the tiers’
access and data violations.

Paths: ./contracts/facets/nftTier/GovNFTTierFacet.sol :
addNFTTokensinNftTier(), addNFTSunTokensinNftTier()

./contracts/facets/vcTier/VCTierFacet.sol : addVCSpTokens(),
addVCNftTokens()

Recommendation: verify if the tier is created before adding tokens to
it.

Status: Fixed (Revised commit: ed54c7c)

M13. Contradiction

According to the function title, the getSingleSpTierKeys function
should return the tier for a single Sp tier, but it returns all the
Sp tiers, duplicating the getAllSpTierKeys function.

Path: ./contracts/facets/nftTier/GovNFTTierFacet.sol :
getSingleSpTierKeys()

Recommendation: clarify the getSingleSpTierKeys function requirements
and make the functionality fit it.

Status: Fixed (Revised commit: ed54c7c)

www.hacken.io
75

M14. Inefficient Gas Model

The else if case in the tierDatabyGovBalance function checks if the
user has the highest tier in each iteration.

This will lead to redundant Gas consumption.

Path: ./contracts/facets/userTier/UserTierFacet.sol :
tierDatabyGovBalance()

Recommendation: check if the user has the highest tier once before
the loop.

Status: Fixed (Revised commit: ed54c7c)

M15. Inefficient Gas Model

All the user`s tiers are obtained in the getMaxLoanAmountToValue,
isCreateLoanTokenUnderTier, isCreateLoanNftUnderTier, but the chosen
be the caller type is used.

Therefore, this functionality will lead to redundant Gas consumption.

Path: ./contracts/facets/userTier/UserTierFacet.sol :
getMaxLoanAmountToValue(), isCreateLoanTokenUnderTier(),
isCreateLoanNftUnderTier()

Recommendation: obtain the defined tier type and process it.

Status: Fixed (Revised commit: ed54c7c)

M16. Inefficient Gas Model

The NFTTierData.nftContract parameter is redundant as it is the key
in the GovNFTTierStorage.nftTierLevels.

The repeated information storage decreases the code readability and
leads to the redundant Gas consumption.

Path: ./contracts/facets/nftTier/LibGovNFTTierStorage.sol :
NFTTierData()

Recommendation: do not store the NFTTierData.nftContract.

Status: Fixed (Revised commit: 3c0d52c)

M17. Inconsistent Data

The input admins (_superAdmin, _admin1, _admin2, _admin3) are not
checked for non-equality in the AdminRegistryFacet.adminRegistryInit
function.

As they are added through the LibAdmin._makeDefaultApproved function
without the !LibAdmin._addressExists validation, this may lead to the

www.hacken.io
76

repeated addition of admin to the
LibAdminStorage.adminRegistryStorage().allApprovedAdmins.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol :
adminRegistryInit()

Recommendation: verify if the input admins are not the same in the
AdminRegistryFacet.adminRegistryInit function.

Status: Fixed (Revised commit: ed54c7c)

M18. Contradiction

The functionality limits the adding, editing, or removing only one
admin per time; therefore, only one pending admin is allowed.
However, the storage variables are designed to store more than one
address: LibAdminStorage.AdminStorage().pendingAdminKeys are the
arrays for each pending key, and the title indicates the multiple
addresses storage. The same is applicable to the
AdminRegistryFacet.getAllPendingAddedAdminKeys,
AdminRegistryFacet.getAllPendingEditAdminKeys,
AdminRegistryFacet.getAllPendingRemoveAdminKeys functions` titles.

This may indicate that the requirements are violated and the
functionality is not correctly implemented.

Paths: ./contracts/facets/admin/AdminRegistryFacet.sol :
getAllPendingAddedAdminKeys(), getAllPendingEditAdminKeys(),
getAllPendingRemoveAdminKeys()

./contracts/facets/admin/LibAdminStorage.sol :
AdminStorage.pendingAdminKeys

Recommendation: clarify the requirements and ensure that the
implementation does not contradict them.

Status: Fixed (Revised commit: 3c0d52c)

M19. Inefficient Gas Model

The isPending checks are redundant as the msg.sender can not be
pending due to "call for self" checks, and since only one admin can
be added, edited, removed at once.

Therefore, this functionality will lead to redundant Gas consumption.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol : isPending(),
approveAddedAdmin(), rejectAdmin(), approveRemovedAdmin(),
approveEditAdmin()

Recommendation: remove the redundant functionality.

Status: Fixed (Revised commit: 3c0d52c)

www.hacken.io
77

M20. Inconsistent Data

There are events for each key when the rejection (LibAdmin:
AddAdminRejected, EditAdminRejected, RemoveAdminRejected()), but
AddAdminRejected event is emitted for any key in the
AdminRegistryFacet.rejectAdmin function.

This will lead to incorrect assumptions about the admins rejection.

Paths: ./contracts/facets/admin/LibAdmin.sol : event
AddAdminRejected(), event EditAdminRejected(), event
RemoveAdminRejected()

./contracts/facets/admin/AdminRegistryFacet.sol : rejectAdmin()

Recommendation: emit the corresponding events when rejecting the
admin to be added, edited, removed.

Status: Fixed (Revised commit: ed54c7c)

M21. Contradiction

The function enableClaimToken title indicates that the function
should set token status to true, the function description tells that
the function sets token status to false ("function to make claim
token false"), but the function can both set true and false statuses.

This may indicate that the requirements are violated.

Path: ./contracts/facets/claimtoken/ClaimTokenFacet.sol :
enableClaimToken()

Recommendation: fix the mismatch.

Status: Fixed (Revised commit: 3c0d52c)

M22. Inefficient Gas Model

The calculateLTV function call from the PriceConsumerFacet is
redundant, as this value may be calculated using the already obtained
collatetralInBorrowed value.

Therefore, this functionality will lead to the redundant Gas
consumption.

Path: ./contracts/facets/market/libraries/LibTokenMarket.sol :
getltvCalculations()

Recommendation: use the collatetralInBorrowed value for the ltv
calculations.

Status: Fixed (Revised commit: ed54c7c)

www.hacken.io
78

M23. Inefficient Gas Model

The loan type setting is redundant as it can be defined based on the
collateral tokens amount.

Therefore, this functionality will lead to the redundant Gas
consumption.

Path: ./contracts/facets/market/token/TokenMarketFacet.sol :
LoanDetailsToken.loanType, LoanDetailsNFT.loanType

Recommendation: remove the redundant functionality.

Status: Fixed (Revised commit: ed54c7c)

M24. Inefficient Gas Model

The loanIds, stableCoinAmounts and _autoSell lengths equality
validation is performed in each loop iteration.

This will lead to the redundant Gas consumption.

Path: ./contracts/facets/market/token/TokenMarketFacet.sol :
activateLoanToken()

Recommendation: verify the loanIds, stableCoinAmounts and _autoSell
lengths equality once.

Status: Fixed (Revised commit: ed54c7c)

M25. Inconsistent Data

When emitting the LibTokenMarket.TokenLoanOfferActivated event in the
TokenMarketFacet.activateLoanToken function, the stableCoinAmounts[i]
is passed as a _stableCoinAmount parameter, but it only may be equal
to the borrowed amount if maxLoanAmount <
loanDetails.loanAmountInBorrowed. In other cases, the
loanDetails.loanAmountInBorrowed is borrowed.

The LibTokenMarket.TokenLoanOfferActivated._stableCoinAmount,
LibNFTMarket.NFTLoanOfferActivated._loanAmount,
LibNetworkMarket.LoanOfferActivated._stableCoinAmount amounts do not
indicate the real borrowed amount with fee cuts.

Therefore, the passed value may be incorrect and may lead to wrong
assumptions on the activation result.

Paths: ./contracts/facets/market/token/TokenMarketFacet.sol :
activateLoanToken()

./contracts/facets/market/libraries/LibTokenMarket.sol :
TokenLoanOfferActivated(),

www.hacken.io
79

./contracts/facets/market/libraries/LibNFTMarket.sol :
NFTLoanOfferActivated(),

./contracts/facets/market/libraries/LibNetworkMarket.sol :
LoanOfferActivated()

Recommendation: use loanDetails.loanAmountInBorrowed instead of
stableCoinAmounts[i] when emitting the
LibTokenMarket.TokenLoanOfferActivated event in the
TokenMarketFacet.activateLoanToken function. Ensure that the
activation events provide the information about the actual borrowed
amount with fee cuts.

Status: Fixed (Revised commit: ed54c7c)

M26. Inconsistent Data

When setting the liquidator role through the
LiquidatorFacet.setLiquidator function, it is performed through the
LibLiquidator._makeDefaultApproved function, and the
LibLiquidator._makeDefaultApproved function pushes the liquidator
address to the LibLiquidatorStorage().whitelistedLiquidators.

Therefore, when updating the liquidator role, the function will
repeat the liquidator record.

Path: ./contracts/facets/liquidator/LibLiquidator.sol :
_makeDefaultApproved()

Recommendation: ensure that the liquidator can not be added to the
LibLiquidatorStorage().whitelistedLiquidators more than once.

Status: Fixed (Revised commit: 3c0d52c)

M27. Inconsistent Data

The
LibMarketRegistryStorage.LiquidatorStorage().whitelistedLiquidators
array stores the addresses that are not whitelisted, as when setting
a whitelisted address status to false through the setLiquidator, it
is added this array and not removed if it was present.

The getAllLiquidators function returns this array. Therefore, it does
not indicate the real whitelisted liquidators and may lead to the
incorrect assumptions.

Path: ./contracts/facets/liquidator/LiquidatorFacet.sol :
getAllLiquidators(), setLiquidator()

Recommendation: ensure that the
LibMarketRegistryStorage.LiquidatorStorage().whitelistedLiquidators
array stores the whitelisted addresses.

Status: Fixed (Revised commit: ed54c7c)

www.hacken.io
80

M28. Denial of Service Vulnerability

The (type(uint8).max - d + 1) calculation is incorrect as it will
overflow on d values that are bigger than the type(uint8).max.

This will make the functionality inoperable with some input data.

Path:
./contracts/uniswap/v2-periphery-master/dependencies/uniswap-lib/cont
racts/libraries/FullMath.sol : fullDiv()

Recommendation: do not change the external libraries and their
versions, import them.

Status: Mitigated (The Customer notice: “used in uniswap v2 just for
testing purposes, not in production/mainnet.”)

M29. Inefficient Gas Model

APY Fee + Platform Fee transferring to the same contract is
redundant.

This functionality will lead to the redundant Gas consumption and
code readability decreasing.

Path: ./contracts/facets/market/token/TokenMarketFacet.sol :
activateLoanToken()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

M30. Tests Failing

Some of the tests are failing. (PriceConsumer: Should get the latest
usd price from chainlink, Should get the latest usd prices in batch
from chainlink, Should get the altcoin price from chainlink).

All the tests should pass.

Path: ./test/5_priceConsumer.test.js

Recommendation: ensure that all tests are passing.

Status: Fixed (Revised commit: ed54c7c)

M31. Best Practice Violation; Inconsistent Data

The functions that find indexes return 0 for the found 0 index and
for the not found index.

Therefore, the function result is not accurate and may lead to
incorrect data processing.

Paths: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_getIndexofAddressfromArray(), _getWalletIndexfromMapping()

www.hacken.io
81

./contracts/facets/admin/LibAdmin.sol : _getIndex()

./contracts/facets/govTier/LibGovTier : _getIndex()

./contracts/facets/nftTier/LibGovNFTTier.sol : _getIndexSpTier(),
_getIndexNftTier()

Recommendation: revert when the index is not found.

Status: Mitigated (The Customer notice: “checking index already, no
need for revert”)

M32. Inconsistent Data

It is considered to keep any data as accurately as possible until
losses are quite small.

The functions have the code which performs division before
multiplication during the calculation.

This may lead to a loss of precision.

Paths: ./contracts/facets/market/libraries/LibMarketProvider.sol :
getautosellAPYFee(), getAPYFee()

./contracts/facets/liquidator/LibLiquidator.sol :
getTotalPaybackAmount()

./contracts/facets/market/libraries/LibNetworkMarket.sol :
getTotalPaybackAmount()

Recommendation: keep data actual to current system state, perform
multiplication before division, multiply value by 10**decimals to
keep some decimals.

Status: Fixed (Revised commit: 3c0d52c)

M33. Inefficient Gas Model

It is considered to avoid inefficient Gas models. The project has
fields in the data structures that may be considered as redundant.
loanType is a redundant field in the structure for NFT collateralized
loans because it is possible to detect the collateral type using the
length of stakedCollateralNFTId array, same for the loan type and
LoanTypeToken enum.

This may lead to higher deployment Gas expenses and higher contract
calls Gas expenses.

Path: ./contracts/facets/market/LibMarketStorage.sol :
LoanDetailsToken.loanType, LoanDetailsNFT.loanType

Recommendation: rework the logic to remove the redundant fields and
interactions with them.

Status: Fixed (Revised commit: 3c0d52c)

www.hacken.io
82

M34. Redundant Variable

It is considered to avoid inefficient Gas models. The project has
redundant fields. The project stores the loan ids in the array
similar to loanOfferIdsNFTs, which makes the loanIdNft value
redundant as it is possible to extract the amount of loans using the
array length value.

This may lead to higher deployment Gas expenses and higher contract
calls Gas expenses.

Paths: ./contracts/facets/market/libraries/LibMarketStorage.sol :
loanIdNetwork

./contracts/facets/market/libraries/LibMarketStorage.sol : loanIdNft

./contracts/facets/market/libraries/LibMarketStorage.sol :
loanIdToken

Recommendation: rework the logic to remove the redundant fields and
interactions with them.

Status: Fixed (Revised commit: ed54c7c)

M35. Best Practice Violation

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The Checks-Effects-Interactions pattern is violated. Some state
variables are updated after the external calls.

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during implementation of new functionality.

Paths: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_updateToken()

./contracts/facets/market/network/NetworkMarketFacet.sol :
_liquidateAutoSellOn()

./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_addToken()

Recommendation: implement the code according to the
Checks-Effects-Interactions pattern.

Status: Fixed (Revised commit: 5ff534b)

M36. Denial of Service Vulnerability

All the staked collaterals are processed in the loops when
transferring them to the contract and to the lender in the
LibLiquidator, LibTokenMarket, LibNFTMarket functions.

If the number of elements in the array is large enough to increase
the Gas required for executing the loop over the block Gas limit, the
mentioned functionality may become inoperable.

www.hacken.io
83

Paths: ./contracts/facets/liquidator/LibLiquidator.sol
: _liquidateCollateralAutoSellOn(),
_liquidateCollateralAutoSellOff(), fullLoanPaybackTokenEarly()

./contracts/facets/market/libraries/LibNFTMarket.sol :
checkApprovedandTransferNFTs()

./contracts/facets/market/libraries/LibTokenMarket.sol :
transferCollateralsandMintSynthetic()

./contracts/facets/oracle/PriceConsumerFacet.sol : calculateLTV()

Recommendation: fix the logic not to rely on the array`s lengths.

Status: Fixed (Revised commit: ed54c7c)

M37. Best Practice Violation

The input _newOwner parameter in the transferOwnership function is
not checked for being non-zero address.

This may lead to the ownership transferring to the zero address.

Path: ./contracts/shared/facets/OwnershipFacet.sol :
transferOwnership()

Recommendation: validate the _newOwner for being non-zero address.

Status: Fixed (Revised commit: ed54c7c)

M38. Inefficient Gas Model

Both _saveTierLevel and _addTierLevel functions perform the total
supply verification.

This leads to the redundant Gas consumption.

Path: ./contracts/facets/govTier/LibGovTier.sol : _saveTierLevel(),
_addTierLevel()

Recommendation: ensure that the verification is not duplicated.

Status: Fixed (Revised commit: 3c0d52c)

M39. Inconsistent Data

The _newClaimtokendata.pegOrSunTokens.length and
_newClaimtokendata.pegOrSunTokensPricePercentage.length are not
checked for equality.

This may lead to the inconsistent contract state.

Path: ./contracts/facets/claimtoken/ClaimTokenFacet.sol :
updateClaimToken()

Recommendation: verify the arrays lengths for equality.

Status: Fixed (Revised commit: 3c0d52c)

www.hacken.io
84

M40. Inconsistent Data

Each sp may belong to different tokens.

This may lead to the inconsistent contract state.

Path: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol :
addSp()

Recommendation: clarify this point in the requirements and ensure
that the implementation matches it.

Status: Mitigated (The Customer notice: “each sp(strategic partner)
wallet can also belong to another sp token, so like if there is one
sp wallet that is also the part of some other sp token, can also be
part of another sp token.”)

M41. Contradiction

The term of days parameters have different variable types.

This may indicate that the requirements are violated.

Paths: ./contracts/facets/market/libraries/LibMarketStorage.sol :
LoanDetailsTokenData, LoanDetailsNFTData, LoanDetailsNetworkData,
LoanDetailsToken, LoanDetailsNFT, LoanDetailsNetwork

./contracts/facets/market/network/NetworkMarketFacet.sol :
updateEthLoan()

./contracts/facets/market/nft/NFTMarketFacet.sol : updateNftLoan()

./contracts/facets/market/token/TokenMarketFacet.sol :
updateTokenLoan()

Recommendation: fix the types.

Status: Fixed (Revised commit: 3c0d52c)

Low

L01. Redundant Imports

The contracts contain redundant imports.

Redundant code decreased code readability.

Paths: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
IProtocolRegistry, AppStorage

./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
LibAppStorage, AppStorage

./contracts/facets/vcTier/VCTierFacet.sol : LibGovTierStorage

./contracts/facets/liquidator/LiquidatorFacet.sol : LibAppStorage,
LibTokenMarket, IUserTier, IClaimToken, LibMarketProvider

./contracts/facets/liquidator/LibLiquidator.sol : LibAppStorage
www.hacken.io

85

./contracts/facets/market/libraries/LibNetworkMarket.sol :
IERC20Metadata, LibAppStorage

./contracts/facets/market/libraries/LibTokenMarket.sol :
LibAppStorage, IMarketRegistry

./contracts/facets/nftTier/LibGovNFTTier.sol : IERC20,
LibGovTierStorage

./contracts/facets/oracle/PriceConsumerFacet.sol : IDexFactory,
IDexPair, IPriceConsumer

./contracts/facets/oracle/LibPriceConsumerStorage.sol : IClaimToken

./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
LibAppStorage

./contracts/facets/userTier/LibUserTier.sol : Modifiers,
LibAppStorage

./contracts/shared/libraries/LibAppStorage.sol : LibProtocolStorage

Recommendation: remove the redundant imports.

Status: Fixed (Revised commit: 3c0d52c)

L02. Incorrect Functions Titles

The titles setWhilelistAddress and updateWhilelistAddress have the
incorrect word "while".

Incorrect functions` titles decrease the code readability.

Path: ./contracts/facets/marketRegistry/MarketRegistryFacet.sol :
setWhilelistAddress(), updateWhilelistAddress()

Recommendation: fix the functions titles.

Status: Fixed (Revised commit: 3c0d52c)

L03. Floating Pragma

The contracts use the floating pragma.

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.
Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version.

Paths: all the contracts

Recommendation: lock the pragma.

Status: Fixed (Revised commit: 3c0d52c)

www.hacken.io
86

L04. Contradiction

The walletAddresses parameter of the BulkSpWalletAdded event is used
to represent one wallet address.

This may indicate that more than one address should be used in the
walletAddresses parameter or that the parameter title is incorrect.

Path: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
BulkSpWalletAdded()

Recommendation: fix the mismatch.

Status: Fixed (Revised commit: ed54c7c)

L05. Unused Events

There are events in the contracts that are not used.

The redundant events decrease the code readability.

Path: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
AdminPercentageUpdated(), UpdatedUnearnedAPYPer()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

L06. Public Functions That Could Be Declared External

There are public functions in the contracts that are not called
inside the system.

Functions with external visibility use less Gas.

Paths: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
setAutosellFee()

./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol :
setGovPlatfromFee(), setThresholdFee(), setAutosellFee()

./contracts/facets/market/token/TokenMarketFacet.sol :
createLoanToken(), updateTokenLoan(), tokenLoanOfferCancel(),
activateLoanToken()

./contracts/facets/liquidator/LiquidatorFacet.sol : paybackToken(),
getLenderSUNTokenBalances()

./contracts/facets/market/network/NetworkMarketFacet.sol :
createLoanEth(), updateEthLoan(), ethLoanOfferCancel(),
activateLoanEth(), paybackEth()

./contracts/facets/market/nft/NFTMarketFacet.sol : createLoanNft(),
nftloanOfferCancel(), updateNftLoan(), activateNFTLoan(),
nftLoanPaybackBeforeTermEnd(), liquidateBorrowerNFT()

www.hacken.io
87

Recommendation: use external visibility for the
functions that are never used inside the contracts.

Status: Fixed (Revised commit: 3c0d52c)

L07. Code Duplication

The getallApprovedTokens and getTokenMarket functions execute the
same logic.

Duplicated code decreases the code readability.

Path: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol :
getallApprovedTokens(), getTokenMarket()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

L08. Redundant Property

The addressProvider property of the GovTierStorage struct is never
used.

Redundant code decreases the code readability.

Path: ./contracts/facets/govTier/LibGovTierStorage.sol :
GovTierStorage.addressProvider

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

L09. Redundant Property

The reverseLoan property of the TierData struct is never used.

Redundant code decreases the code readability.

Path: ./contracts/facets/govTier/LibGovTierStorage.sol :
TierData.reverseLoan

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

L10. Commented Code

There is a commented code in the UniswapV2Library contract.

This decreases the code readability.

Path:
./contracts/uniswap/v2-periphery-master/libraries/UniswapV2Library.so
l

Recommendation: remove the commented code.

www.hacken.io
88

Status: Mitigated (The Customer notice: “used for
testing purposes, not in production/mainnet.”)

L11. Incorrect Function Title

The getAllTierlevelbyAddress function returns all tier levels by all
the addresses, but the title indicates that the function should
return a tier for the specific address.

This may lead to the incorrect assumption of the function purpose and
decrease the code readability.

Path: ./contracts/facets/govTier/GovTierFacet.sol :
getAllTierlevelbyAddress()

Recommendation: fix the function title to match its functionality.

Status: Fixed (Revised commit: ed54c7c)

L12. Redundant Variable Reference

When returning the function result, the es.allTierLevelbyAddress is
obtained, but the _tierLevels can be used.

This leads to the redundant Gas consumption.

Path: ./contracts/facets/govTier/GovTierFacet.sol :
getAllTierlevelbyAddress()

Recommendation: remove the redundant variable reference.

Status: Fixed (Revised commit: ed54c7c)

L13. Unclear Error Message

The "allowed sp token" error messages do not indicate revert reason.

Therefore, the failing reason is not clear.

Path: ./contracts/facets/vcTier/VCTierFacet.sol : addVCSpTokens(),
addVCNftTokens()

Recommendation: make the revert reason comprehensive.

Status: Fixed (Revised commit: 3c0d52c)

L14. Unclear Error Message

The "GTL: set govHolding error" error messages do not indicate revert
reason.

Therefore, the failing reason is not clear.

Paths: ./contracts/facets/govTier/LibGovTier.sol : _saveTierLevel(),
_addTierLevel()

www.hacken.io
89

./contracts/facets/govTier/GovTierFacet.sol :
addTierLevel(), updateTierLevel()

Recommendation: make the revert reason comprehensive.

Status: Fixed (Revised commit: 3c0d52c)

L15. Redundant Check

The verification if the new admin is not a msg.sender in the
approveAddedAdmin function is redundant as the already presented
admin can not be added in the addAdmin function.

Therefore, this will lead to redundant Gas consumption.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol :
approveAddedAdmin()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: 3c0d52c)

L16. Redundant Check

The verification if the es.allApprovedAdmins[i] != _newAdmin is
redundant for the PENDING_ADD_ADMIN_KEY as the admin to be added can
not be present in the allApprovedAdmins array.

Therefore, this will lead to redundant Gas consumption.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol : isDoneByAll()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: 3c0d52c)

L17. Contradiction

The function isPending returns true if _sender is not pending and
false in case it is.

Therefore, the function title indicates the opposite of actual
function behavior and may lead to the incorrect assumption of the
function purpose.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol : isPending()

Recommendation: fix the title to match the functionality.

Status: Fixed (Revised commit: 3c0d52c)

L18. Contradiction

The function _notAvailable returns true if _sender is available and
false in case it is not.

www.hacken.io
90

Therefore, the function title indicates the opposite
of actual function behavior and may lead to the
incorrect assumption of the function purpose.

Path: ./contracts/facets/admin/LibAdmin.sol : _notAvailable()

Recommendation: fix the title to match the functionality.

Status: Fixed (Revised commit: ed54c7c)

L19. Redundant Parameter

The tokenType field is never used.

The redundant code decreases the code readability.

Path: ./contracts/facets/claimtoken/LibClaimTokenStorage.sol :
ClaimTokenData.tokenType

Recommendation: remove the redundant code.

Status: Mitigated (The Customer notice: “tokenType is just a
representation for peg or sun token, to show token type for external
use.”)

L20. Contradiction

The pegTokens and pegTokensPricePercentage may contain information
for both peg and sun tokens, but the titles do not contain the "sun".

Therefore, the titles do not indicate the variables' purposes, which
decreases the code readability.

Path: ./contracts/facets/claimtoken/LibClaimTokenStorage.sol :
ClaimTokenData.pegTokens, ClaimTokenData.pegTokensPricePercentage

Recommendation: fix the variables' titles.

Status: Fixed (Revised commit: ed54c7c)

L21. Redundant Functionality

The aggregator1Inch value is never used, but the functionality for
its setting and storage is implemented.

The redundant functionality decreases the code readability and leads
to the unnecessary Gas consumption.

Paths: ./contracts/facets/liquidator/LiquidatorFacet.sol :
approveCollateralTo1inch()

./contracts/facets/liquidator/LibLiquidatorStorage.sol :
LiquidatorStorage.aggregator1Inch

Recommendation: remove the redundant functionality.

Status: Fixed (Revised commit: 3c0d52c)
www.hacken.io

91

L22. Redundant Parameter

The _stableCoinAmount parameter is redundant as this value may be
obtained from loanDetailsNFT.loanAmountInBorrowed.

Therefore, the usage of this parameter will lead to the unnecessary
Gas consumption.

Path: ./contracts/facets/market/nft/NFTMarketFacet.sol :
activateNFTLoan()

Recommendation: remove the redundant functionality.

Status: Fixed (Revised commit: ed54c7c)

L23. Contradiction

The comment states that the "contract will the repay staked
collateral tokens to the borrower", but the tokens are transferred to
the lender.

Incorrect comments decrease the code readability.

Path: ./contracts/facets/market/nft/NFTMarketFacet.sol :
liquidateBorrowerNFT()

Recommendation: fix the mismatch.

Status: Fixed (Revised commit: ed54c7c)

L24. Unclear Error Message

The "loan status inactive" error messages do not indicate revert
reason. They indicate that the current loan state is inactive, but it
should indicate that the loan status has to be active, and it is not.

Therefore, the failing reason is not clear.

Paths: ./contracts/facets/market/token/TokenMarketFacet.sol :
updateTokenLoan()

./contracts/facets/market/nft/NFTMarketFacet.sol : updateNftLoan()

./contracts/facets/market/network/NetworkMarketFacet.sol :
updateEthLoan()

Recommendation: fix the mismatch.

Status: Fixed (Revised commit: 3c0d52c)

L25. Redundant Variable

The s variable is never used.

Redundant variables decrease the code readability.

Path: ./contracts/shared/libraries/LibAppStorage.sol : Modifiers.s
www.hacken.io

92

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

L26. Code Duplication

The getautosellAPYFee and getAPYFee functions execute the same logic.

Duplicated code decreases the code readability.

Path: ./contracts/facets/market/libraries/LibMarketProvider.sol :
getautosellAPYFee(), getAPYFee()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: ed54c7c)

L27. Misleading Variable Title

The project has a variable whose name contradicts the purpose. The
loanActivateLimit stores the number which represents the total number
of ever-activated loans, but this number does not decrease on loan
deactivation.

Path: ./contracts/facets/market/libraries/LibMarketStorage.sol :
loanActivateLimit

Recommendation: rename the variable according to the purpose (e.g.
loanActivatedLimit) or add the logic to decrease the counter after
loan is closed.

Status: Fixed (Revised commit: ed54c7c)

L28. Best Practice Violation

The Sp and NFT tokens are not verified for being unique.

This may lead to the inconsistent contract state.

Path: ./contracts/facets/vcTier/VCTierFacet.sol : addVCNFTTier(),
addVCSpTokens(), addVCNftTokens()

Recommendation: verify that tokens are unique.

Status: Fixed (Revised commit: 3c0d52c)

L29. Code Duplication

The checkApprovedAdmins can be used in the _key ==
es.PENDING_EDIT_ADMIN_KEY condition.

The duplicated code decreases the code readability.

Path: ./contracts/facets/admin/AdminRegistryFacet.sol : isDoneByAll()

www.hacken.io
93

Recommendation: use the checkApprovedAdmins in the
_key == es.PENDING_EDIT_ADMIN_KEY condition.

Status: Fixed (Revised commit: 3c0d52c)

L30. Code Duplication

The getSingleApproveToken() and getSingleApproveTokenData() functions
execute the same logic.

The duplicated code decreases the code readability.

Path: ./contracts/facets/protocolRegistry/ProtocolRegistryFacet.sol :
getSingleApproveToken(), getSingleApproveTokenData()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: 3c0d52c)

L31. Inefficient Gas Model

The key variable may be used in the Max SP Tier Keys Exceeded require
statement.

The redundant variable reference increases the Gas consumption.

Path: ./contracts/facets/nftTier/GovNFTTierFacet.sol :
addSingleSpTierLevel()

Recommendation: use the key variable in the require statement.

Status: Fixed (Revised commit: 3c0d52c)

L32. Redundant Import

The contract contains the redundant import.

This decreases the code readability.

Path: ./contracts/facets/market/libraries/LibNFTMarket.sol :
IProtocolRegistry()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: 3c0d52c)

L33. Data Consistency

The verification if the sp has been already added was removed.

This may lead to the duplications and inconsistent contract state.

Path: ./contracts/facets/protocolRegistry/LibProtocolRegistry.sol :
_addSp

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: 3c0d52c)

www.hacken.io
94

L34. Data Consistency

The verification if the tier has been already added was removed.

This may lead to the duplications and inconsistent contract state.

Path: ./contracts/facets/govTier/GovTierFacet.sol : addTierLevel()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: 3c0d52c)

L35. Redundant Imports

There are redundant imports in the contract.

Redundant code decreases the code readability.

Path: ./contracts/facets/oracle/LibPriceConsumer.sol : IDexPair,
IERC20Extras

Recommendation: remove the redundant code.

Status: Fixed (Revised commit: 5ff534b)

L36. Code Duplication

The getPool function and DEFAULT_FEE, FEE_1, FEE_2 variables are
present in both UniswapOracleV3 and LibPriceConsumer.

Duplicated code decreases the code readability.

Paths: ./contracts/facets/oracle/UniswapOracleV3.sol : getPool(),
DEFAULT_FEE, FEE_1, FEE_2;

./contracts/facets/oracle/LibPriceConsumer.sol: getPool(),
DEFAULT_FEE, FEE_1, FEE_2;

Recommendation: remove the duplicated code.

Status: Fixed (Revised commit: 5ff534b)

L37. Default Visibility Usage

The visibility is not set for the DEFAULT_FEE, FEE_1, FEE_2
variables.

This is a best practice violation and can lead to incorrect access to
the variable.

Path: ./contracts/facets/oracle/LibPriceConsumer.sol: DEFAULT_FEE,
FEE_1, FEE_2;

Recommendation: set the visibility to the variables.

Status: Fixed (Revised commit: 5ff534b)

www.hacken.io
95

L38. Incorrect Comment

The _claimTokenAddress the key to remove comment is incorrect as the
_claimTokenAddress is not always removed.

This may lead to incorrect assumptions on the code's purposes.

Path: ./contracts/facets/claimtoken/ClaimTokenFacet.sol :
enableClaimToken()

Recommendation: fix the comment.

Status: Fixed (Revised commit: 5ff534b)

www.hacken.io
96

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
97

