
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Kei Finance
Date: 15 September, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
aissapotential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Kei Finance

Approved By Arda Usman | Lead Solidity SC Auditor at Hacken OÜ

Tags ERC20 token; Presale

Platform EVM

Language Solidity

Methodology Link

Website https://kei.fi

Changelog 22.08.2023 – Initial Review
15.09.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://kei.fi

Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C01. Data Consistency 10
C02. Invalid Calculations 10

High 11
H01. Unsafe Casting 11
H02. Data Inconsistency 11
H03. Requirements Violation 12

Medium 12
M01. Unchecked Return Value 12
M02. Missing Zero Address Validation 13
M03. Incorrect Usage of Transfer 13
M04. Data Inconsistency 14

Low 14
L01. Inefficient Gas Pattern 14
L02. Style Guide Violation 15
L03. Floating Pragma 15
L04. Missing Zero Address Validation 16

Informational 16
I01. Redundant Declaration 16
I02. Unused Variable 16
I03. Unused Inheritance 17
I04. Replace "" With bytes(0) for Gas Optimization 17
I05. Replace Require Error Strings With Custom Errors for Gas
Optimization 17
I06. Unoptimized Loop 17

Disclaimers 19
Appendix 1. Severity Definitions 20

Risk Levels 20
Impact Levels 21
Likelihood Levels 21
Informational 21

Appendix 2. Scope 22

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Kei Finance (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

System Overview

Kei Finance is implementing a presale schedule with the following
contracts:

● Presale.sol — is a presale contract that allows people to
participate by purchasing tokens with PRESALE_ASSET token. Purchased
tokens are distributed within the Presale contract during the
purchase function call.

● IPresale.sol — interface of the Presale contract.
● IPresaleErrors.sol - interface that stores all custom errors.

Privileged roles
● The owner of the Presale contract can:

○ initialize the Presale contract
○ close the presale
○ set the withdrawTo address
○ transfer ownership

www.hacken.io
4

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements:
○ Project overview is detailed.
○ Business logic is provided.
○ Use cases are described and detailed.
○ All interactions are described.

● Technical description is provided:
○ Run instructions are provided.
○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 9 out of 10.

● Deployment instructions description are provided.
● The code largely adheres to the Solidity Style Guide, with a few

areas that could benefit from further refinement:
○ Function order is incorrect, private functions should go after

internal ones.

Test coverage
Code coverage of the project is 100% (branch coverage):

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage are present.
● Interactions by several users are tested.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8. The system users should acknowledge all the risks

summed up in the risks section of the report.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Table. The distribution of issues during the audit

Review date Low Medium High Critical

22 August 2023 4 4 3 2

15 September 2023 1 0 0 0

Risks

● The system has external calls in the purchase() function, which
creates a reentrancy risk.

● The payment token contract is out of the scope of this review,
indicating that it has not been assessed by Hacken. Consequently,
assurance regarding the contract's safety or security cannot be
provided.

● The owner can stop the Presale process at any time using the close()
function. Thus, it creates a centralization risk.

● The contract employs an initialize() function intended for setting
its initial states. While it uses a mechanism commonly associated
with upgradable contracts, this specific contract is not upgradable.
The initialize function, protected by the onlyOwner modifier, is
crucial to be invoked post-deployment to set the contract in its
intended operational state. Failure to call this function results in
the contract remaining in an uninitialized state, which can cause
unintended behaviors or inhibit users from interacting with it as
expected. It is essential to verify that initialize was executed
appropriately after deployment before any user interaction.

www.hacken.io
6

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Passed

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Not
Relevant

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed L02

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Passed

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

Findings

Critical

C01. Data Consistency

Impact High

Likelihood High

The current implementation gathers assets obtained from presale
purchases and reserves user allocations for future distribution
through a central mechanism that lies beyond the scope of the current
project. The system encompasses two round types:

Liquidity round type: a user pays a specified amount referred to as
X, and the _c.userAllocation is incremented by adding Y/2

Tokens round type: the _c.userAllocation is incremented by adding Y
for the same paid X amount.

So, when the round type is Liquidity, the user's allocation is
determined by splitting the due amount into two. Consequently, the
$userTokensAllocated variable is updated by adding Y/2. There is no
mechanism in place to distinguish whether a user allocation was
generated using the Liquidity round type or otherwise. This leads to
a scenario where users who acquired tokens during the Liquidity round
experience a reduction of half their earnings.

Path: ./contracts/Presale.sol: _purchase()

Recommendation: Implement a distinct flag or identifier within the
system to differentiate user allocations generated from the Liquidity
round type, and prevent any reduction in earnings for users who
staked tokens during that round.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed (Liquidity round type is removed from the platform)
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

C02. Invalid Calculations

Impact High

Likelihood High

During purchasing with Ether, DAI and USDC the conversion from
tknBits to tokens does not happen, which leads to incorrect number of
USD.

Path: ./contracts/Presale.sol: purchaseDAI(), purchaseUSDC(),
purchase(), ethToUsd(), ethToTokens()

www.hacken.io
10

Proof of Concept: Kei Finance Test Cases

Recommendation: Use the necessary precision number.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed (Purchasing with different stable coins feature is
removed. Users can buy only with the PRESALE_ASSET token.) (Revised
commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

High

H01. Unsafe Casting

Impact High

Likelihood Medium

When receiving data from price oracles, the expected return is in
int256, which can have negative values, as opposed to uint256, which
only stores positive values. Price oracles often return a negative
value to indicate that the data is not valid anymore.

The referred contracts perform an unsafe casting, transforming the
oracle result in uint256 without checking if the value is negative.
This leads to the same behavior of underflows, causing the int256
number to flip to the highest uint256 number.

Path: ./contracts/Presale.sol: ethPrice()

Recommendation: Put a statement that checks if the returned price is
bigger than zero to prevent reverts during casting.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed (Purchasing with Ethereum is removed) (Revised commit:
ea0fb67db4f129e91a85541fbd48a3003f19205f)

H02. Data Inconsistency

Impact High

Likelihood Medium

Total USD allocation of a user to be saved for the transaction
receipt is only recorded if the round type is ‘Liquidity’. That
creates inconsistency and it may affect the distribution of the
presale tokens if this value is going to be used.

Path: ./contracts/Presale.sol: _purchase()

www.hacken.io
11

https://docs.google.com/document/d/1-dykTO4YT1C3jWaxtMIlpTfUDyZZsvBE9MQrQbrdGYQ/edit?usp=sharing

Recommendation: Update the total USD allocation for both ‘Liquidity’
and ‘Tokens’ round types.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed (Liquidity round type is removed from the platform)
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

H03. Requirements Violation

Impact High

Likelihood Medium

There is a mismatch between the documentation and the implementation.

The documentation says that the number of price levels will be 7 and
the minimum/maximum contribution is set to 200$ and 50000$
respectively, the documentation also has a specific range for
tokenPrice at each round, but the owner has the ability to change
this data using the functions initialize().

Another contradiction locates on line 282. Although it is stated that
the minimum contribution is set at $200, with a maximum limit of
$50,000 in the documentation, this is not validated in the require
statement. Users can purchase even with 0 amount.

Path: ./contracts/Presale.sol: initialize()

Recommendation: Consider adding the data boundaries.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Mitigated (Setter functions of related variables are removed
from the platform. There are no restrictions on maintaining the price
at $7 and allowing contributions only between $200 and $50,000.
However, the owner is now able to declare the following variables –
withdrawTo, minDepositAmount, maxUserAllocation, startDate, price,
and allocation – only once after the contract deployment.)
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

Medium

M01. Unchecked Return Value

Impact High

Likelihood Low

The function ethPrice() fetches the asset price from a Chainlink
aggregator using the latestRoundData() function.

However, there are no checks on timeStamp or roundId return values,
resulting in stale prices. The oracle wrapper calls out to a

www.hacken.io
12

Сhainlink oracle receiving latestRoundData(). The returned updatedAt
timestamp is not checked or considered at all.

Path: ./contracts/Presale.sol: ethPrice()

Recommendation: Consider adding checks on the return data with
proper revert messages if the price is stale or the round is
incomplete for example:

(uint80 roundID, int256 price, , uint256 timestamp, uint80
answeredInRound) = AggregatorV3Interface(ORACLE).latestRoundData();

require(timestamp >= block.timestamp-3600, "...");
require(answeredInRound >= roundID, "Stale price");
require(price > 0, "...");

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed (Purchasing with Ethereum is removed) (Revised commit:
ea0fb67db4f129e91a85541fbd48a3003f19205f)

M02. Missing Zero Address Validation

Impact High

Likelihood Low

All purchase functions save the allocations for the given address
parameters. address account parameter is not checked whether it is
zero address or not.

This may lead to unwanted 0x0 calls and user may lose their
allocations and assets.

Path: ./contracts/Presale.sol: purchase(), purchaseUSDC(),
purchaseDAI()

Recommendation: Implement zero address checks.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

M03. Incorrect Usage of Transfer

Impact Medium

Likelihood High

www.hacken.io
13

The Presale contract has a _send() function, which uses a transfer()
method. It only has 2300 Gas (and throws errors). The execution will
fail if the sender will be a Contract and will have additional code
in the receive/fallback functions, which requires extra Gas. This can
lead to reduce interaction with the system.

Path: ./contracts/Presale.sol: _send()

Recommendation: Replace transfer() with call() and implement the
return value check.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed (Purchasing with Ethereum is removed)
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

M04. Data Inconsistency

Impact Medium

Likelihood Medium

While USDC and DAI are intended to maintain a 1:1 value ratio with
the US Dollar (USD), it is important to note that the actual value of
1 USDC or 1 DAI can occasionally differ from 1 USD. Price
fluctuations can cause different values of USDC/DAI than 1 USD.

Path: ./contracts/Presale.sol: purchaseUSDC(), purchaseDAI()

Recommendation: Do not assume that 1 USD is equal to the 1 USDC/DAI
and use oracle to bring USDC/DAI price.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed (Purchasing with DAI/USDC was removed)
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

Low

L01. Inefficient Gas Pattern

Impact Low

Likelihood Medium

There is no check implemented to validate if the user has enough
funds to purchase presale tokens.

Implementing zero balance check will prevent spending unnecessary Gas
for users when they accidentally start a transaction with 0 amount of
tokens.

Path: ./contracts/Presale.sol: purchase(), purchaseDAI(),
purchaseUSDC()

www.hacken.io
14

Recommendation: Implement checks to help users to spend unnecassary
Gas.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Mitigated (Also implement a statement that checks if the
user’s payment token balance (IERC20(payment) is equal or greater
than the parameter assetAmount.) (Revised commit:
ea0fb67db4f129e91a85541fbd48a3003f19205f)

L02. Style Guide Violation

Impact Low

Likelihood Low

Official style guide is violated. Especially pay attention to line
length, order of layout and variable naming.

Path: ./contracts/Presale.sol

Recommendation: Follow the official Solidity guidelines.
https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Reported (Max Line length is fixed. Naming inconvention and
function ordering violation are still present) (Revised commit:
ea0fb67db4f129e91a85541fbd48a3003f19205f)

L03. Floating Pragma

Impact Low

Likelihood Low

The project uses floating pragma ^0.8.9.

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Path: ./contracts/IPresale.sol

Recommendation: Consider locking the pragma version whenever possible
and consider deploying the code with any of the following versions:
0.8.19, 0.8.20.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Mitigated (IPresale contract is inherited only by the Presale
contract, which has not a floating pragma. Therefore, all the
contracts in the scope will be compiled with the 0.8.19 Solidity
version.) (Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

www.hacken.io
15

https://docs.soliditylang.org/en/v0.8.13/style-guide.html

L04. Missing Zero Address Validation

Impact Medium

Likelihood Low

Allocation functions save the allocations for the given address
parameters. address account parameter is not checked whether it is
zero address or not.

This may lead to unwanted 0x0 calls and owner can allocate zero
addresses.

Path: ./contracts/Presale.sol: allocate(), constructor()

Recommendation: Implement zero address checks.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed
(The Customer removed the ‘allocate’ function.) (Revised commit:
ea0fb67db4f129e91a85541fbd48a3003f19205f)

Informational

I01. Redundant Declaration

On line 316, _c.remainingUSD variable is already updated in the
previous if statement(line 308).

Path: ./contracts/Presale.sol: _purchase()

Recommendation: Remove the redundant declaration on line 316.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed

(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

I02. Unused Variable

The variable USD_PRECISION is declared, but its value is never used.
Redundant declarations spend unnecessary Gas and decrease code
readability.

Path: ./contracts/Presale.sol

Recommendation: Remove the unused variable.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed

(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

www.hacken.io
16

I03. Unused Inheritance

The Presale contract inherits the ReentrancyGuard, but there is no
way to use its functionalities.

Path: ./contracts/Presale.sol

Recommendation: Remove or implement the unused inheritance.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

I04. Replace "" With bytes(0) for Gas Optimization

There is an empty string, which was passed to the purchase() function
via the receive() function. It can be substituted with the new
bytes(0) for Gas optimization.

Path: ./contracts/Presale.sol

Recommendation: Consider the Gas optimization for the aforementioned
code.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

I05. Replace Require Error Strings With Custom Errors for Gas
Optimization

The functions _setConfig(), _purchase() use error string messages for
reverting behavior. They can be changed with the custom errors for
Gas optimization.

Path: ./contracts/Presale.sol: _setConfig(), _purchase()

Recommendation: Consider optimizing the code using the custom errors.

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Fixed
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

I06. Unoptimized Loop

Since Solidity 0.8.0, underflow/overflow checks are automatic, they
can be disabled for Gas optimization.

Path: ./contracts/Presale.sol: _setRounds()

Recommendation: Consider loop optimization via the unchecked{}
keyword.

www.hacken.io
17

Found in: 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Status: Mitigated (The function _setRounds() is now can be called
only once, the emphasis on Gas optimization diminishes)
(Revised commit: ea0fb67db4f129e91a85541fbd48a3003f19205f)

www.hacken.io
18

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
19

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
20

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
21

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Kei-Finance/presale-contract

Commit 0ea9e6ff7aa5aad8966a0d59420300b262108f13

Whitepaper Link

Requirements Link

Technical
Requirements Natspec

Contracts File: contracts/Presale.sol
SHA3: 27524a44a480bdff51659a546977da2b4d1945f4e5d1085ce6a5c47e871d223f

File: contracts/IPresale.sol
SHA3: dbd5315348298875ed8d0edb21dea226c10c97bd1d1894076f40fb65fdc9e581

Second review scope

Repository https://github.com/Kei-Finance/presale-contract

Commit ea0fb67db4f129e91a85541fbd48a3003f19205f

Whitepaper Link

Requirements Link

Technical
Requirements Natspec

Contracts File: contracts/interfaces/IPresaleErrors.sol
SHA3: 4d45cc9b672ed57036c3b84eef610c1cc1b79a02f8bd319354648e8b16ade089

File: contracts/interfaces/IPresale.sol
SHA3: 1b6d013523e0d184b4f6d0ae54849bb731956e9ef34c4a0ca6b3279d55ab125f

File: contracts/Presale.sol
SHA3: 83137a6178e007b6c4cf796857b65c7d040819dedfb63c6d89a43ac67def26db

www.hacken.io
22

https://github.com/Kei-Finance/presale-contract
https://docs.kei.fi/welcome-to-kei-finance/readme
https://docs.kei.fi/welcome-to-kei-finance/readme
https://github.com/Kei-Finance/presale-contract
https://github.com/Kei-Finance/presale-contract
https://docs.kei.fi/welcome-to-kei-finance/readme
https://docs.kei.fi/welcome-to-kei-finance/readme
https://github.com/Kei-Finance/presale-contract

