
Customer: LAK3
Date: 28 Sep, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for LAK3

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Vesting; MultiSig

Platform EVM

Language Solidity

Methodology Link

Website https://lak3.io/

Changelog 08.09.2023 – Initial Review
28.09.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://lak3.io/

Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 5
Checked Items 7
Findings 10

Critical 10
High 10

H01. Undocumented Functionality; Redundant Functionality 10
H02. Race Condition; Unauthorized Access To Critical Functions 10
H03. Funds Lock 11
H04. Denial of Service 12

Medium 12
M01. Checks-Effects-Interactions Pattern Violation 12
M02. Usage of Built-in Transfer 13
M03. Inefficient Gas Modeling 13
M04. Missing Event for Critical Value Updation 14

Low 14
L01. Missing Zero Address Validation 14
L02. Documentation Contradiction 15
L03. Unfinalized Code 15
L04. Documentation Contradiction 16
L05. NatSpec Contradiction 16

Informational 17
I01. Floating Pragma 17
I02. Style Guide Violation - Naming Conventions 17
I03. Inefficient Gas Modeling 17
I04. Inefficient Gas Modeling 18
I05. Use of Hard-Coded Values 18
I06. State Variables Default Visibility 19
I07. Redundant Interface 19

Disclaimers 21
Appendix 1. Severity Definitions 22

Risk Levels 22
Impact Levels 23
Likelihood Levels 23
Informational 23

Appendix 2. Scope 24

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by LAK3 (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The LAKE project encompasses an ERC20 token-based smart contract system,
integrated within a Web3 ecosystem, with the objective of decentralizing
access to water resources with the following contracts:

● LakeToken — simple ERC-20 token. Additional minting is allowed.
It has the following attributes:

○ Name: LAKE
○ Symbol: LAK3
○ Decimals: 18
○ Total supply: 950m tokens.

● LakeVestingAdvisors — a token vesting contract for advisors. It
allows participants to deposit a specified ERC20 token and then
withdraw specified ERC20 token in phases, adhering to a lock-up
period and withdrawal restrictions.

● LakeVestingInvestors — The contract facilitates a vesting mechanism
for early investors where they deposit tokens and can later withdraw
them based on certain conditions.

● LakeVestingPrivate — The contract is a token vesting mechanism that
allows users to deposit a specified token and, in return, they can
claim and withdraw the token as rewards over time. This contract
allows users to lock tokens for 3 phases of three hundred sixty days
each (3 years). They are also allowed to claim rewards based on the
deposited amount.

● LakeVestingTeam - The contract facilitates a vesting mechanism for
the team where they deposit tokens and can later unlock them based on
certain conditions.

● TeamMultiSig - A multi-signature wallet used by the project’s team to
call some restricted functions. The initial number of owners is five,
which is also the maximum number of owners. The minimum number of
owners is four.

Privileged roles
● Owner: The only one who can call the control and management

functions, such as transferring the ownership of the token contract,
minting new tokens, or changing the receiving address of newly minted
tokens.

● MultiSig Owner: All those wallet addresses englobed by the MultiSig
wallet and that participate in its consensus mechanism.

www.hacken.io
4

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Technical description is robust.
● Functional requirements are detailed.

Code quality
The total Code Quality score is 9 out of 10.

● Solidity Style Guide violations. (I02)
● Redundant interface. (I07)

Test coverage
Code coverage of the project is 100% (branch coverage).

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

08 September 2023 5 4 4 0

28 September 2023 0 0 0 0

Risks

● Proposals lack a designated time limit or a timestamp indicating
their creation. This absence of temporal context presents a
considerable security risk, potentially resulting in erroneous

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

decision-making and the execution of transactions based on obsolete
or unreliable data.

www.hacken.io
6

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I02

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

Findings

Critical

No critical severity issues were found.

High

H01. Undocumented Functionality; Redundant Functionality

Impact Medium

Likelihood High

Proper documentation is vital for ensuring that developers, auditors,
and users understand how to interact with the contract correctly and
avoid potential vulnerabilities or misuse. To address this issue, a
comprehensive documentation should be developed for all non-standard
functionalities.

LAKE_Token and Team_MultiSig contracts contain undocumented receive()
functions. These functions are not needed for the purpose defined in
documentation. Additionally, these contracts do not need to receive
native tokens.

Paths: ./LAKE_Token.sol : receive();

./Team_MultiSig.sol : receive();

Recommendation: Provide purpose and documentation of receive()
functions in mentioned contracts or delete unneeded functionality.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

H02. Race Condition; Unauthorized Access To Critical Functions

Impact Medium

Likelihood High

www.hacken.io
10

A race condition occurs when multiple transactions or processes
attempt to access and modify shared data concurrently, leading to
unpredictable and potentially erroneous outcomes. Race conditions can
arise when multiple transactions interact with the same contract's
state simultaneously. This can result in unintended state changes,
data corruption, or inconsistent behavior, compromising the
reliability and security of the contract.

LAKE_Vesting_Team contract is designed only to be used by team
members, but the contract does not contain any access control
mechanism to ensure that it will be used only by the team. Missing
validation causes that lock() function to be called by anyone.

Lack of access control mechanism and design allows the attacker to
front run lock() function sent by the team and lock further locks,
because lock() function can be called only once (depositDone is set
to true).

Path: ./LAKE_Vesting_Team.sol : lock();

Recommendation: To avert the risks associated with unauthorized
access to critical functionality, it is imperative to establish a
robust access control mechanism that meticulously governs access to
these functions.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

H03. Funds Lock

Impact Medium

Likelihood High

Users can invoke the lock() method without verifying the sufficiency
of tokens inside the vesting contracts. If the contract does not hold
adequate tokens to satisfy the user's rewards, it can result in the
user's funds becoming lock within the contract.

Paths: ./LAKE_Vesting_Advisors.sol : lock();

./LAKE_Vesting_Investors.sol : lock();

./LAKE_Vesting_Private.sol : lock();

Recommendation: Before executing the lock() method, introduce a
validation step to ensure that the vesting contract has sufficient
funds to cater to the user's rewards.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

www.hacken.io
11

H04. Denial of Service

Impact Medium

Likelihood High

The occurrence of a Denial of Service (DoS) can arise either through
deliberate attacks or due to mishandled edge cases. This
vulnerability is rooted in its ability to disrupt the operational
integrity of a contract, leading to potential short-term or even
enduring incapacitation. In effect, the functionalities become
inaccessible to genuine users.

Team_MultiSig contract can have only one pending transaction under
voting. This can lead to possible DoS when a malicious owner will
front-run a desired proposal and lock the ability to submit a new
proposal(for example, deleting a malicious owner).

Path: ./Team_MultiSig.sol : submitTransaction();

Recommendation: Remove checks that disable submitting proposals when
there is another pending proposal under vote.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

Medium

M01. Checks-Effects-Interactions Pattern Violation

Impact Medium

Likelihood Medium

State variables are updated after the external calls to the token
contract.

As explained in Solidity Security Considerations, it is best practice
to follow the checks-effects-interactions pattern when interacting
with external contracts to avoid reentrancy-related issues.

Paths: ./LAKE_Vesting_Advisors.sol : lock();

./LAKE_Vesting_Investors.sol : lock();

./LAKE_Vesting_Private.sol : lock();

./LAKE_Vesting_Team.sol : lock();

Recommendation: Follow the checks-effects-interactions pattern when
interacting with external contracts.

www.hacken.io
12

https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

M02. Usage of Built-in Transfer

Impact Medium

Likelihood Medium

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The built-in transfer() and send() functions process a hard-coded
amount of Gas. In case if the receiver is a contract with receive or
fallback function, the transfer may fail due to the “out of Gas”
exception.

This may lead to denial of service situations for specific accounts.

Paths: ./LAKE_Vesting_Team.sol : receive();

./Team_MultiSig.sol : receive();

Recommendation: Follow common best practices, replace transfer()
functions with call().

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

M03. Inefficient Gas Modeling

Impact Medium

Likelihood Medium

The lock() function showcases a substantial consumption of Gas during
its execution. Tokens are firstly transferred from msg.sender to
theLAKE_Vesting_Advisors contract and later from contract to
BURN_ADDRESS.

This leads to high transaction costs.

Paths: ./LAKE_Vesting_Advisors.sol : lock();

./LAKE_Vesting_Investors.sol : lock();

./LAKE_Vesting_Private.sol : lock();

Recommendation: The same outcome can be achieved with much lower Gas
consumption, by transferring ERC-20 tokens from msg.sender directly
to BURN_ADDRESS.

www.hacken.io
13

SafeERC20.safeTransferFrom(IERC20(DEPOSIT_TOKEN_ADDRESS), msg.sender,
BURN_ADDRESS, _amount);.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

M04. Missing Event for Critical Value Updation

Impact Medium

Likelihood Medium

Critical state changes should emit events for tracking things
off-chain.

This may lead to inability for users to subscribe events and check
what is going on with the project.

Paths: ./LAKE_Token.sol : changeReceiver()

Recommendation: Emit events on critical state changes.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./LAKE_Vesting_Team.sol : constructor();

./LAKE_Token.sol : changeReceiver();

./LAKE_Vesting_Advisors.sol: constructor();

./LAKE_Vesting_Investors.sol: constructor();

./LAKE_Vesting_Private.sol : constructor();

Recommendation: Implement zero address checks.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

www.hacken.io
14

L02. Documentation Contradiction

Impact Low

Likelihood Low

According to the documentation:

The admin will transfer the ownership of the contract to the
MultiSig wallet address by calling the function transferOwnership()
imported from Ownable.

To ensure that this ownership transfer will happen, it can be
performed inside the constructor() of LAKE_Token contract.

Path: ./LAKE_Token.sol : constructor();

Recommendation: Add transferOwnership() inside constructor() of
LAKE_Token.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

L03. Unfinalized Code

Impact Low

Likelihood Low

The provided code should be implemented in the full logic of the
project. Since any missing parts, TODOs, or drafts can change in
time, the robustness of the audit cannot be guaranteed.

Incomplete code impacts on project reliability and makes it harder to
evaluate project security.

Paths: ./LAKE_Vesting_Advisors.sol : getUnlockableAmount(),
getTimeUntilNextUnlock();

./LAKE_Vesting_Investors.sol : getUnlockableAmount(),
getTimeUntilNextUnlock();

./LAKE_Vesting_Private.sol : getGeneratedRewards(),
getUnlockableAmount(), getTimeUntilNextUnlock();

./LAKE_Vesting_Team.sol : getUnlockableAmount(),
getTimeUntilNextUnlock();

Recommendation: It is imperative to diligently finalize the codebase
in its entirety. Remove any TODO comments and commented code parts
that indicate incomplete sections and ensure that all functions,
components, and modules are implemented according to the project's
functional requirements. By doing so, it will fortify the robustness
of the code and significantly enhance its security posture.

www.hacken.io
15

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

L04. Documentation Contradiction

Impact Low

Likelihood Low

According to the NatSpec of LAKE_Vesting_Team:

Each user goes through 2 phases divided…

However, according to the implementation, only one user can lock
tokens inside the contract.

Path: ./LAKE_Vesting_Team.sol : *;

Recommendation: Fix a mismatch.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

L05. NatSpec Contradiction

Impact Low

Likelihood Low

According to the NatSpec:

Do NOT allow to submit a new transaction if the last one is
pending (not executed and not rejected)

The NatSpec documentation instructs not to allow the submission of a
new transaction if the previous one is still pending, which is
defined as neither executed nor rejected. The contract's logic
contradicts this by using an OR (||) operator in the require
statement:

"require(prevTx.rejected || prevTx.executed, "Pending TX");"

This means that if either condition is met, the function will
proceed, not adhering to the NatSpec's specifications.

Path: ./Team_MultiSig.sol : submitTransaction()

Recommendation: Fix the mismatch between the code and the Natspec.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

www.hacken.io
16

Informational

I01. Floating Pragma

The project uses floating pragmas >=0.8.0.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: ./contracts : *,

Recommendation: Lock the pragma version whenever possible and avoid
using a floating pragma in the final deployment. Consider known bugs
(https://github.com/ethereum/solidity/releases) for the compiler
version that is chosen.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

I02. Style Guide Violation - Naming Conventions

Solidity Style Guide Naming Conventions are violated.

According to Solidity Style Guide, contracts and libraries should be
named using the CapWords style.

Paths: ./LAKE_Token.sol : contract name;

./LAKE_Vesting_Advisors.sol : contract name;

./LAKE_Vesting_Investors.sol : contract name;

./LAKE_Vesting_Private.sol : contract name;

./LAKE_Vesting_Team.sol : contract name;

./Team_MultiSig.sol : contract name;

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Change contract names to CapWords style.

Found in: 11c5909

Status: Reported (Mismatch between contract names and file names
violates Solidity Style Guide. Change file names to corresponding
contract names inside.)

I03. Inefficient Gas Modeling

Time related variables can be down casted from uint256 to uint64.

That will lower transaction costs.

www.hacken.io
17

https://github.com/ethereum/solidity/releases
https://docs.soliditylang.org/en/latest/style-guide.html#contract-and-library-names

Paths: ./LAKE_Vesting_Advisors.sol : lockingTime;

./LAKE_Vesting_Investors.sol : lockingTime;

./LAKE_Vesting_Private.sol : lockingTime;

./LAKE_Vesting_Team.sol : lockingTime;

Recommendation: Down cast mentioned variables to uint64 type.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

I04. Inefficient Gas Modeling

Max number of possible wallets used in Team_MultiSig contract is 5.
Variables holding values related to voting can be down casted from
uint256 to uint8 (max possible value is 5).

That will lower transaction costs.

Path: ./Team_MultiSig.sol : numConfirmationsRequired,
Transaction.numConfirmations, Transaction.numRejections;

Recommendation: Down cast mentioned variables to uint8 type.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

I05. Use of Hard-Coded Values

There is a hardcoded '1' in the calculation in the following line of

code:

(block.timestamp - lockingTime[_wallet] - FULL_LOCKUP_PERIOD) /

TIME_1_MONTH_ADJUSTED + 1;

It is unclear what the '1' represents and why it is added, making the

code less readable and maintainable.

Paths:./LAKE_Vesting_Investors.sol: getNumUnlockPeriods()

./LAKE_Vesting_Advisors.sol: getNumUnlockPeriods()

./LAKE_Vesting_Team.sol: getNumUnlockPeriods()

Recommendation: Either explain the use of these hardcoded values in
the NatSpec or convert these variables into constants.

www.hacken.io
18

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

I06. State Variables Default Visibility

Variable depositDone visibility is not specified. Specifying state
variables visibility helps to catch incorrect assumptions about who
can access the variable.

This makes the contract`s code quality and readability higher.

Path: ./LAKE_Vesting_Team.sol: depositDone

Recommendation: Specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Found in: 11c5909

Status: Fixed (Revised commit: 56eee43)

I07. Redundant Interface

Impact Low

Likelihood Low

The interface Token is declared in LakeVestingTeam but never used.

The interface Token is declared in LakeVestingPrivate but IERC20
imported in SafeERC20 can be used instead.

The interface Token is declared in LakeVestingInvestors but IERC20
imported in SafeERC20 can be used instead.

The interface Token is declared in LakeVestingAdvisors but IERC20
imported in SafeERC20 can be used instead.

This redundancy in import operations has the potential to result in
unnecessary gas consumption during deployment and could potentially
impact the overall code quality.

Paths: ./LAKE_Vesting_Advisors.sol : Token;

./LAKE_Vesting_Investors.sol : Token;

./LAKE_Vesting_Private.sol : Token;

./LAKE_Vesting_Team.sol : Token;

Recommendation: Remove redundant Token interface and use IERC20
interface imported in SafeERC20. Ensure that the contract is imported
only in the required locations, avoiding unnecessary duplications.

www.hacken.io
19

Found in: 56eee43

Status: New

www.hacken.io
20

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
21

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
22

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
23

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/lakecompany/LAKE_SCs

Commit 11c59092241ac0c161c11059e00d614c60558dfd

Whitepaper https://files.lak3.io/LAKE_Whitepaper.pdf

Requirements https://github.com/lakecompany/LAKE_SCs/blob/main/docs/Documentation.p
df

Technical
Requirements https://github.com/lakecompany/LAKE_SCs/blob/main/README.txt

Contracts File: contracts/LAKE - Token Contract/LAKE_Token.sol
SHA3: 3a65eeb0b341097b01ac50a4d893d0815b2bcb9fd6375774c4b13c41e9fe1c7c

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Advisors.sol
SHA3: 50527aca456b04414b017dbd6de75cd35e3df9bc96a90197a8487502b4c95c9d

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Investors.sol
SHA3: 3b0e78241bd359eecac22930907547bafb326aa6f3b2c6f4cceb8658b5305166

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Private.sol
SHA3: cbb5aea0e377448cc1c66f79c7b0d6ddcb527cb62614c706b490a18ab1c3be03

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Team.sol
SHA3: 1c9f1a9f37b8098f61ef34b8d1d125324621648cfbdb023af9366c3944e23773

File: contracts/MultiSig/Team_MultiSig.sol
SHA3: 31314502b6a32faa3439620dded63df3bfa697707c8b0c9e4ea198df45758754

Second review scope

Repository https://github.com/lakecompany/LAKE_SCs

Commit 56eee439777b6dd163989a1d729d47d02bf222aa

Whitepaper https://files.lak3.io/LAKE_Whitepaper.pdf

Requirements https://github.com/lakecompany/LAKE_SCs/blob/main/docs/Documentation.p
df

Technical
Requirements https://github.com/lakecompany/LAKE_SCs/blob/main/README.txt

Contracts File: contracts/LAKE - Token Contract/LAKE_Token.sol
SHA3: 49c8a7635ca4ca732ff875c1094aa7e35a4484d7898373b29fc12c2d6480de9c

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Advisors.sol
SHA3: 29ce300235c5bb25a3d2cdfeefca36411028343c292994e8153da392e5830dc9

www.hacken.io
24

https://github.com/lakecompany/LAKE_SCs
https://files.lak3.io/LAKE_Whitepaper.pdf
https://github.com/lakecompany/LAKE_SCs/blob/main/docs/Documentation.pdf
https://github.com/lakecompany/LAKE_SCs/blob/main/docs/Documentation.pdf
https://github.com/lakecompany/LAKE_SCs/blob/main/README.txt
https://github.com/lakecompany/LAKE_SCs
https://files.lak3.io/LAKE_Whitepaper.pdf
https://github.com/lakecompany/LAKE_SCs/blob/main/docs/Documentation.pdf
https://github.com/lakecompany/LAKE_SCs/blob/main/docs/Documentation.pdf
https://github.com/lakecompany/LAKE_SCs/blob/main/README.txt

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Investors.sol
SHA3: de220f6188db31553b327952b00da2b575e42dd96730b63f4af7b8a4807e9df0

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Private.sol
SHA3: 5967ada5b1fa59eca34ffd2a9b9544abb72bc36be9023bf6b40d5dd96765aed9

File: contracts/LAKE - Vesting Contracts/LAKE_Vesting_Team.sol
SHA3: e35a5fd92a430eefb8b589acdab0a208963695115a34db57a23f654420764463

File: contracts/MultiSig/Team_MultiSig.sol
SHA3: d5d38e719c3c76976b2e7ed1d520fa7006be133b59d32011a9859f287396913d

www.hacken.io
25

