
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Mimo Initiative ltd
Date: April 10, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Mimo
Initiative Ltd

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OU

Type Exchange; ERC721; Rebase Token;

Platform EVM

Language Solidity

Methodology Link

Website https://mimo.capital/

Changelog 22.02.2023 – Initial Review
10.04.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://mimo.capital/


Table of contents
Introduction 4
Scope 4
Severity Definitions 7
Executive Summary 8
Risks 9
Checked Items 10
System Overview 13
Findings 14

Critical 14
C01. Wrong Logic 14

High 14
H01. Wrong Logic 14
H02. Funds Lock 14

Medium 15
M01. Funds Lock 15
M02. Variable Name Contradiction 15
M03. Undocumented Feature 15
M04. Best Practice Violation 16
M06. Unbounded Variable 16
M09. Requirements Violation 16
M10. Unbounded Variable 16
M11. Inconsistent data 16

Low 17
L01. Redundant Code 17
L02. Redundant Override Keyword 17
L03. Unused Variables 18
L04. Redundant Read From Storage 18
L05. Solidity Style Guide 18
L06. Functionality Mismatch 18
L07. Inefficient Gas Model 18
L08. Best Practice Violation 19

Disclaimers 20

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Mimo Initiative Ltd (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository https://github.com/mimo-capital/kuma-protocol

Commit 35952f041a9689d3731d130eb0ba8064cbf763af

Functional
Requirements

https://github.com/mimo-capital/kuma-protocol/docs/README.md

Contracts File: ./src/interfaces/IKBCToken.sol
SHA3: 5fdfd5f23cd7a9536303c98eddffe66de0cea0442b57c739b8bc5856da44ec09

File: ./src/interfaces/IKIBToken.sol+
SHA3: 9316fb1a391de9a0a3492a35ccf7e311470f052b368ba33628a06e7f930c7782

File: ./src/interfaces/IKUMAAddressProvider.sol+
SHA3: f35a6a6ae2ac460ccef16da1e8644431888c955fee7004b52634a8a981f40d09

File: ./src/interfaces/IKUMAFeeCollector.sol+
SHA3: 0f469656485ae8462495170f6cf6286742094b39c38f527f1b90f5fe3ed0f370

File: ./src/interfaces/IKUMASwap.sol+
SHA3: 24e311702bf653218017ca09ca113fa1f7d7005e12bf9af6bccac16a868b1fdb

File: ./src/interfaces/IMCAGRateFeed.sol+
SHA3: 77e1ecd5ce262f344b5e6c649d697e29cc7ac8975a431320ff6d7baa1f6fb7ab

File: ./src/KBCToken.sol+
SHA3: 0a69debb6ee55c73ec1242e94fad390cbadff3035d43b67ec49095987e6cf6fb

File: ./src/KIBToken.sol+
SHA3: 065dbc8e9a237b8d78fc73ea1ed8afa1594cfd61c363672e8948dc31ac4c4222

File: ./src/KUMAAccessController.sol+
SHA3: 38676a43817395baafe61f56fc40204350d78183382870f2d95bb99d04110174

File: ./src/KUMAAddressProvider.sol+
SHA3: 3fc4d4c4f7091fad24728ec919173465beb8942f276847065f97411afe31b819

File: ./src/KUMAFeeCollector.sol+
SHA3: a79ae75d1b75017b6881092912a7132f83863e9d9f7bcfd53ba3256d4165fcb7

File: ./src/KUMASwap.sol+
SHA3: 9a2da095f660a945440bb0338f278a10c170b68bcb586695cfb88bf545a4275c

File: ./src/libraries/Errors.sol+

www.hacken.io
4

https://github.com/mimo-capital/kuma-protocol/docs/README.md


SHA3: cb696f9c23b2af89e3da1db758340b8e3fb28b1a9a4ce111853977e585dbbdfe

File: ./src/libraries/PercentageMath.sol+
SHA3: 2994326c8a8c777d1916146240e9476d01564ce558f0891055c59d9959adcc90

File: ./src/libraries/Roles.sol+
SHA3: ad84cb9878da2f12043ad770c54c7799345209baa6bf23422331703d68fb8a55

File: ./src/libraries/WadRayMath.sol+
SHA3: 33b953fcdc960ed1318a5d41b0cd23420b6ad708c44f63e7adf9e0a803adbbbd

File: ./src/MCAGRateFeed.sol+
SHA3: 46286d46185a5cdc65494d9adbaa8002928990ff7c3ee47888bb64dfedf62848

File: ./script/PrintRoles.s.sol
SHA3: ff560a7f4ad63dd5fc26d5ec40eb63e6a359d04dfa5b59afba251fd09a7e9bb4

Contracts in this repo have @mcag imports from
https://github.com/hknio/mcag-contracts-03add80cb90a85e025e9d639.

Second review scope
Repository https://github.com/mimo-capital/kuma-protocol

Commit a0939464a1123f3a4175df7b6040a72e82dd8a27

Functional
Requirements

https://github.com/mimo-capital/kuma-protocol/docs/README.md

Contracts File: ./src/KBCToken.sol
SHA3: b6391ab55311928426c2c55bd9ad23c74912ddc96b053b42d8f53f039127bfb3

File: ./src/KIBToken.sol
SHA3: 3ca19858a0d072eddc5f5f2aaa82e28add463414941f24991ded41f7e1a37d89

File: ./src/KUMAAccessController.sol
SHA3: 94d5a76d8979d17b2bae5ba5d8c1304cdbaa6f1548492c8143181de91df28a0a

File: ./src/KUMAAddressProvider.sol
SHA3: cf6808ca2374a517fd8e514d9bc2a2e9936b864d94ae6af149200ad1d7708142

File: ./src/KUMAFeeCollector.sol
SHA3: 401860c93fd8faea8968f782ca1d5ca87c1c26646f6feee6de1f5b05b0791113

File: ./src/KUMASwap.sol
SHA3: 30b6812d5edd94d67681f4eb6062e3e2f13038a840e6df9a612a9312294a6cbc

File: ./src/MCAGRateFeed.sol
SHA3: 8a369159124e52f9be80d8ffa1d07e68789b410fd7f62053056fbd79236ea8b0

File: ./src/interfaces/IKBCToken.sol
SHA3: c4beab2beafc4843bcc66d4417310dd2d811e9fa44441c7346cd2992b4036009

File: ./src/interfaces/IKIBToken.sol
SHA3: 45cb6766b0724643e5b68d65fb7a895805c485e40a0d1905a68ebe1755386431

File: ./src/interfaces/IKUMAAddressProvider.sol
SHA3: d5c6dc7d821f5c040ccaa0a9d4b9f17e236c50c7bfab469a17701330cc515046

File: ./src/interfaces/IKUMAFeeCollector.sol
SHA3: df42b076860d4d532361492743a39ee4dc441bd0c52b6f7511e3ca3a94b56f99

www.hacken.io
5

https://github.com/hknio/mcag-contracts-03add80cb90a85e025e9d639
https://github.com/mimo-capital/kuma-protocol/docs/README.md


File: ./src/interfaces/IKUMASwap.sol
SHA3: ce7a41d89280ba0a3492eb50a42f30b5d9e77839cba0467d6980ce6161907218

File: ./src/interfaces/IMCAGRateFeed.sol
SHA3: 585e876df6a4a9554f81f8bf25497f5ae5011b04e4f27515c947a3e96cc589f5

File: ./src/libraries/Errors.sol
SHA3: ec4e8a2dcce47ac405b804b6e4b9af725726f977d2a5c9cd8c2235d30ad50e6c

File: ./src/libraries/PercentageMath.sol
SHA3: 2994326c8a8c777d1916146240e9476d01564ce558f0891055c59d9959adcc90

File: ./src/libraries/Roles.sol
SHA3: 5f2933bcc623833bdcd2fa1c9d4876d117ad79bb6d881346f8e5f0ca35e43f5e

File: ./src/libraries/WadRayMath.sol
SHA3: 33b953fcdc960ed1318a5d41b0cd23420b6ad708c44f63e7adf9e0a803adbbbd

www.hacken.io
6



Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Technical specification is not provided.
● Description of the development environment is not provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.

Test coverage
Code coverage of the project is 98.68% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Some negative cases coverage is missing.

Security score
As a result of the audit, the code contains 3 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

22 February 2023 6 11 2 2

10 April 2023 3 0 0 0

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The protocol is centralized.
● The calculation inside the protocol depends on the values received by

another protocol that uses an oracle to get data off-chain.
● The stablecoin used by the KUMASWAP DAO to buy bonds can be changed

without a timelock in deprecation mode. Users will receive a new
stablecoin in exchange for their KIBToken in deprecation mode.

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114


Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
11

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



System Overview

The KUMA Protocol is a blockchain-based platform that aims to tokenize
bonds to generate low-risk, stable yields while utilizing the transparency
and verifiability of smart contracts.
Mimo Capital AG (MCAG) is the centralized entity that holds the physical
bonds and mints new KUMA Bonds NFTs every time a user buys a claim to the
physical bonds off-chain. KUMA Bonds NFTs are ERC721 tokens that represent
ownership of a physical bond and can be redeemed off-chain from MCAG for
the market-rate bond value at any point. This part of the protocol is
handled by a separate repo, MCAG-Contracts.
KUMA Interest Bearing Bond Tokens (KIBT) are rebase ERC20 tokens that
represent a share of all bonds backed by the protocol, and each risk class
has its own KIBToken.
The KUMA Interest Bearing Swap Contract holds all KUMA Bonds NFTs that back
the KIBT, and users can sell and buy bonds from this contract. Each risk
class has its own KIBT Swap Contract.
The protocol uses a centralized oracle to gather the current bond coupon
for each risk class.
Keepers are centralized actors that monitor the KIBT and KUMASwap contracts
to keep the KIBT yield up-to-date, while the KUMA DAO Access Controller is
used for the decentralized contracts of the protocol.
The two main user scenarios are holding a KUMA Bonds NFT until maturity and
redeeming it from MCAG, or selling the bond to the KUMASwap contract and
receiving newly minted KIBT that can be used in the DeFi system.

Privileged roles
● KIBT_MINT_ROLE - Mints KIBTokens.
● KIBT_BURN_ROLE - Burns KIBTokens from any account without an

allowance.
● KIBT_SWAP_PAUSE_ROLE - Pauses KUMASwap, which prevents all transfers,

minting, and burning of KUMA Bonds NFTs.
● KIBT_SWAP_UNPAUSE_ROLE - Unpauses KUMASwap, which re-enables

transfers, minting, and burning of KUMA Bonds NFTs after a pause.
● KIBT_SET_EPOCH_LENGTH_ROLE - Sets KIBToken epoch length.
● KUMA_MANAGER_ROLE - Sets configs of the protocol like sellBond fees,

minGas in KIBTSwap , KUMAFeeCollector payees and shares, and contract
addresses in the KUMAAddressProvider.

● KIBT_SWAP_CLAIM_ROLE - Claims the parent bonds of a clone bond in
KIBTSwap.

www.hacken.io
13



Findings

Critical

C01. Wrong Logic

The operations to compute the new base value divide the account value
by _cumulativeYield instead of by _previousEpochCumulativeYield as
correctly done in the mint() function.

Performing the division on the wrong comulativeYield variable will
lead to a wrong computation of the base balances: two users involved
in a transfer (or the user involved in a burn) will end up with a
wrong balance. The _totalBaseSupply consistency would also be broken,
as its value won't be reflected anymore in the _baseBalances mapping.

Path: ./src/KIBToken.sol : burn(), _transfer()

Recommendation: Replace _cumulativeTield with
_previousEpochCumulativeYield in the lines computing the new base
values in the burn() and _transfer() functions.

Status: Fixed (Revised commit: a093946)

High

H01. Wrong Logic

The buyBondForStableCoin() function does not enforce any rules on
the paid amount, which could pose a risk to users' funds and the
overall trust in the protocol.

It is acknowledged that this function is called by KUMA_MANAGER_ROLE
after a DAO vote, but it is important to have consistent flow of
operations in order to minimize the trust required by users in the
protocol operators, as well as potential human errors. This is
especially important in a critical situation such as refunding users
after a Swap contract has been deprecated.

Path: ./src/KUMASwap.sol : buyBondForStableCoin()

Recommendation: It is recommended to enforce appropriate rules on the
paid amount by the buyBondForStableCoin() function. For example,
KUMA_MANAGER_ROLE could set a coupon-to-stablecoin ratio, and enforce
it in this function.

Status: Mitigated (Note by customer: Intended behavior. Hard to
enforce market value of bonds on-chain)

H02. Funds Lock

In the case of a deprecation mode users' funds are in a locked state
until the DAO purchases the bonds.

www.hacken.io
14



Users are unable to buy back the bond or continue to use KIBToken as
it was intended in a regular contract state. The funds remain
effectively inaccessible until all the bonds are repurchased.

Path: ./src/KUMASwap.sol : redeemKIBT()

Recommendation: To avoid this scenario, the contract should keep
track of the amount of bonds bought by the DAO, and unlock the
relative portion of stablecoins for the users to redeem KIBTokens.

Status: Fixed (Revised commit: a093946)

Medium

M01. Funds Lock

The KUMASwap.sol contract does not include a time lock mechanism that
would enable the protocol managers to withdraw stablecoins that
remain unclaimed by KIBT holders in a depreciation scenario.

Path: ./src/KUMASwap.sol

Recommendation: Implement a time lock to allow protocol owners to
recover unused stablecoins by users to redeem KIBTokens.

Status: Mitigated (Note by customer: Intended behavior. KIBToken
should always be backed either by a bond or by a stablecoin)

M02. Variable Name Contradiction

On line 198 a variable representing the bond value is called
bondFaceValue.

The bond face value is a standard and established concept,
semantically different from what this variable represents.

The same issue is replicated in the protocol documentation.

Path: ./src/KUMASwap.sol : buyBond()

Recommendation: Rename the variable to make it less confusing.

Status: Fixed (Revised commit: a093946)

M03. Undocumented Feature

The variable maxCoupons is arbitrarily set to term / 30 days in the
constructor. This value significantly limits the operativity of the
protocol, and has not been explained or motivated in the provided
documentation.

Path: ./src/KUMASwap.sol : constructor()

Recommendation: Explain in the documentation the reasoning behind
this limitation.

www.hacken.io
15



Status: Fixed (Revised commit: a093946)

M04. Best Practice Violation

The setter for the deprecated stablecoin does not implement a time
lock.

Path: ./src/KUMASwap.sol : setDeprecationStableCoin()

Recommendation: The contract should implement a time lock for this
setter, to show the user the change before it goes into effect.

Status: Mitigated (Note by customer: DAO responsibility)

M06. Unbounded Variable

The KIBToken.sol contract checks if the value of the variable
epochLength is higher than 0, which is insufficient to fulfill the
purpose of the variable, to allow keepers to have enough time to
expire bonds.

Path: ./src/KIBToken.sol : constructor(), setEpochLength();

Recommendation: Implement reasonable boundaries for the epochLength
variable, both in the constructor and in its setter.

Status: Fixed (Revised commit: a093946)

M09. Requirements Violation

Natspec requirements are violated for functions redeem() and
issueBond() in the KBCToken contract.

Path: ./src/KBCToken.sol : redeem(), issueBond();

Recommendation: Enforce NatSpec requirements for these functions or
adjust the Natspec.

Status: Fixed (Revised commit: a093946)

M10. Unbounded Variable

The fees’ variables _variableFee and _fixedFee are unbounded in their
setter setFees().

Path: ./src/KUMASwap.sol : setFees()

Recommendation: Bound their value to a reasonable bound.

Status: Mitigated (Note by customer: checked in DAO functions)

M11. Inconsistent data

In case of activation of the deprecation mode getting for a swap,
KUMAAddressProvider is still able to change its KIBToken address,
possibly messing up the KIBT redemption process for users.

www.hacken.io
16



Path: ./src/KUMAAddressProvider.sol : setKIBToken()

Recommendation: Implement a process to make KUMAAddressProvider aware
of the swap deprecation, and block the setKIBToken() function until a
new swap gets deployed for that same risk class.

Status: Mitigated (Note by customer: DAO responsibility)

Low

L01. Redundant Code

The constructor is not using an onlyValidAddress() modifier,
repeating the code instead.

Path: ./src/KUMAAddressProvider.sol : constructor()

Recommendation: Remove redundant code.

Status: Reported

L02. Redundant Override Keyword

Since solidity 0.8.8, a function that overrides only a single
interface function does not require the override specifier.

The override keyword is used many times where it was not needed.

Path: ./src/KBCToken.sol : issueBond(), getBond(), redeem(),
getTokenIdCounter();
./src/KIBToken.sol : setEpochLength(), refreshYield(), mint(), burn(),
getYield(), getTotalBaseSupply(), getBaseBalance(), getEpochLength(),
getCumulativeYield(), getUpdatedCumulativeYield();
./src/KUMAAddressProvider.sol : setKBCToken(), setRateFeed(),
setKUMABondToken(), setKIBToken(), setKUMASwap(), setKUMAFeeCollector(),
getKBCToken(), getRateFeed(), getKUMABondToken(), getKIBToken(),
getKUMASwap(), getKUMAFeeCollector();
./src/KUMAFeeCollector.sol : release(), addPayee(), removePayee(),
updatePayeeShare(), changePayees();
.src/KUMASwap.sol : sellBond(), buyBond(), buyBondForStableCoin(),
claimBond(), redeemKIBT(), expireBond(), pause(), unpause(), setFees(),
setDeprecatedStablecoin(), initializeDeprecationMode(),
unintializeDeprecationMode(), enableDeprecationMode(),
isDeprecationModeInitialized(), getDeprecationModeInitializedAt(),
getVariableFee(), getFixedFee(), getDeprecationStablecoin(),
getMinCoupon(), getCopouns(), getExpiredBonds(), getCouponIndex(),
getBondReserve(), getBondIndex(), getCloneBond(), getCouponInventory(),
isInReserve(), isExpired(), getBondBaseValue(), onERC721Received();
./src/MCAGRateFeed.sol : setOracle(), getRate(), getOracle(),
minRateCoupon(), decimals();

Recommendation: Remove redundant code.

Status: Fixed (Revised commit: a093946)
www.hacken.io

17



L03. Unused Variables

The variables _expirationDelay and MAX_YIELD are never used.

Path: ./src/KUMASwap.sol; ./src/KIBToken.sol;

Recommendation: Remove unused variable.

Status: Fixed (Revised commit: a093946)

L04. Redundant Read From Storage

The storage variable KUMAAddressProvider has been loaded into memory
in the _KUMAAddressProvider variable to be used for computations.

On line 156 the storage variable is read again, instead of using the
memory copy.

Path: ./src/KUMASwap.sol : sellBond()

Recommendation: Remove redundant code.

Status: Fixed (Revised commit: a093946)

L05. Solidity Style Guide

The KUMAFeeCollector() function order does not follow the official
guidelines.

Path: ./src/KYCToken.sol

Recommendation: Follow the official Solidity guidelines.

Status: Fixed (Revised commit: a093946)

L06. Functionality Mismatch

The function’s name getUpdatedCumulativeYield() and its functionality
do not match. This should be for the previous epoch cumulative yield,
not the updated one.

Path: ./src/KIBToken.sol : getUpdatedCumulativeYield();

Recommendation: Rename the function.

Status: Reported

L07. Inefficient Gas Model

Functions mint(), burn(), transfer() do not return on amount = 0,
possibly wasting the user's gas.

Path: ./src/KIBToken.sol : mint(), burn(), _transfer();

Recommendation: Check if the amount is equal to 0 before doing
calculations inside the function and let these functions return in
such cases.

www.hacken.io
18

https://docs.soliditylang.org/en/v0.8.13/style-guide.html


Status: Reported

L08. Best Practice Violation

The setter for the deprecated stablecoin does not implement a time
lock.

Path: ./src/KUMASwap.sol : setDeprecationStableCoin()

Recommendation: The contract should implement a time lock for this
setter, to show the user the change before it goes into effect.

Status: Mitigated (Note by customer: DAO responsibility)

www.hacken.io
19



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
20


