

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT

Date: April 04, 2023

This report may contain confidential information about IT systems and the intellectual property of the MIMO Initiative ltd, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report shall be without mandatory consent.

Document

Name	Smart Contract Code Review and Security Analysis Report for Client
Approved By	Yevheniy Bezuhlyi SC Audits Head at Hacken OU
Туре	ERC721 token; oracle;
Platform	EVM
Language	Solidity
Methodology	Link
Website	https://mimo.capital/
Changelog	22.02.2023 - Initial Review 04.04.2023 - Second Review

Table of contents

Introduction	4
Scope	4
Severity Definitions	7
Executive Summary	8
Checked Items	9
System Overview	12
Findings	13
Critical	13
High	13
Medium	13
M01. Missing Validation	13
M02. Wrong Logic	13
Low	13
L01. Undocumented Role	13
L02. Redundant Override Keyword	14
L03. Redundant Import	14
L04. Unbounded Variable	14
L05. Solidity Style Guide	14
Disclaimers	15

Introduction

Hacken OÜ (Consultant) was contracted by Mimo Initiative ltd (Customer) to conduct a Smart Contract Code Review and Security Analysis. This report presents the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts in the repository:

Repository	https://github.com/mimo-capital/mcag-contracts
Commit	ef888abde6762b90241476f9219854e21b35b8f6
Functional Requirements	https://github.com/mimo-capital/kuma-protocol/docs/README.md
Contracts	<pre>File: ./src/AccessController.sol SHA3: ba054a7b1c959bdde54fc0549acc666eb2444caf935d9c1116012d86e0f016e4</pre>
	File: ./src/Blacklist.sol SHA3: 6b005db1505557c9205030183f6dc60e359470de238734379db5294aa8b7956e
	File: ./src/interfaces/IBlacklist.sol SHA3: dcc2b3a3d84db7b4c5666d011b28e1b0e37968998c5a4514496ac2dd67861d21
	File: ./src/interfaces/IKUMABondToken.sol SHA3: ebfe6b63268a3d80fa439dc912b5850ad2457ff451572dacdec5b10a8aa0f760
	File: ./src/interfaces/IKYCToken.sol SHA3: d39da38535b3a2bfbb5a0cc4bcb11a72d3194de3e07947e56537da1e4e9e5f03
	File: ./src/interfaces/MCAGAggregatorInterface.sol SHA3: c087f97568975febc7aa2686adf66df08fe88f914eff2fc5000d5bafe5f1e41a
	File: ./src/KUMABondToken.sol SHA3: 748c48d8ede2a6c4e448246f81d559c5b31b48bce36c44a4d4bef88bb98da30e
	File: ./src/KYCToken.sol SHA3: acacaadfa7ada9cbc3b53a2b696e315fd675ceb84e6a3da60c7206ba2a533df2
	File: ./src/libraries/Errors.sol SHA3: 099e6f008fce9d2f04e4a69069373cbb355dad5d30f3be130f35ca8c053c1c5e
	File: ./src/libraries/Roles.sol SHA3: 3d966b8c10e8f2a66410bf19e7f3fd522cbe36b423a8547a3eb9fdcc9f8bc347
	File: ./src/MCAGAggregator.sol SHA3: a37d02e464fd4a5662d272c856e8b0f9611cafd4dd0266f42b91aeb9b66f467f

Initial review scope

Second review scope

Repository	https://github.com/mimo-capital/mcag-contracts
Commit	e0bde9453e162def19180ff3375314c9d5ee1d6c
Functional Requirements	https://github.com/mimo-capital/kuma-protocol/docs/README.md
Contracts	File: ./src/interfaces/chainlink/AggregatorV3Interface.sol SHA3: c820cdec26eff0fff6154a5a8539c00554c88aadab00c2b120b8cd6f81b1122f
	File: ./src/interfaces/core/IAccessController.sol SHA3: c4eb1efb7b43a7c1258d871dffc2f296b3f2e01d55f3f145d2a0dbc16bd2e059
	File: ./src/interfaces/core/IAddressProvider.sol SHA3: c04dc24f9fac71892e083d72e947cd38ce05f8fc98798a286764c16a96f75f85
	File: ./src/interfaces/core/IBalancerPool.sol SHA3: a8e3307818a801d1ce5d21c2d38a114ad8d3d04a11f92dc4ad9f47ea0b2b0228
	File: ./src/interfaces/core/IBalancerVault.sol SHA3: 075aed4653f3fcbe1d8e9229100751c754fec4c218f9814b958fea4d2da7ea4e
	File: ./src/interfaces/core/IConfigProvider.sol SHA3: aca92b5ecb85c4367492cc17d6f950b40a19b26cfc14ee6757f7a68931b23940
	File: ./src/interfaces/core/IDebtNotifier.sol SHA3: 7d155e15406ab696b9368f6580730569c0f7841fdfe751ca2fa341232427b8c8
	File: ./src/interfaces/core/IFeeCollector.sol SHA3: b44c3f6c4536f4bcfc0abb182d5bad93683ca4a6bc82d13edb6e9ce0b50d492c
	File: ./src/interfaces/core/IFeeDistributor.sol SHA3: b025aac02e18d9f4c2058161b52f71844776ce0cda7f2e34465862948fa17ef9
	File: ./src/interfaces/core/IGovernanceAddressProvider.sol SHA3: c4dd048fae3181fa2b37c050376baf052c7afbbeaf0bdadaefc515a3a1fc6681
	File: ./src/interfaces/core/IGUniPool.sol SHA3: e1976c5dd6d276502742b95bbf59ddfdc4711a0aa257867b55246cf6b5b0f9c3
	File: ./src/interfaces/core/ILiquidationManager.sol SHA3: c187c7c2609b7612eb00fe5cfd604b6d70d7355158fead5962bbca34cc11c285
	File: ./src/interfaces/core/IMerkleDistributor.sol SHA3: 41129172d4a0905d71391dcaec74d94b62ceebce95754b8c11aa330d971a9098
	File: ./src/interfaces/core/IPriceFeed.sol SHA3: 058bc1aa502a7d58aa05fc837f5914f6390d5fc81dcc0609e676304739ab7afb
	File: ./src/interfaces/core/IRatesManager.sol SHA3: d6178f8d94ee797217ce763f84fd5bbeac57761daeeda8b6ce5eb3623d268a1b
	File: ./src/interfaces/core/ISTABLEX.sol SHA3: c2c701bb0d1dd7ce0c64a5d949bb049108c7c1f14b9c155ae9a4fc84ac8687ba
	File: ./src/interfaces/core/ISupplyMiner.sol SHA3: 760a578215d6d365006ce40b467d28ffff93833e500db5c086d88dfe85985fd0

File: ./src/interfaces/core/IVaultsCore.sol SHA3: 0ff5ebc4984c6dc5c2830cdb3286f835ba0c9d22a0de744183d6b9405e23deea
File: ./src/interfaces/core/IVaultsCoreState.sol SHA3: 1882538da81670c3aea15e51536747cd26a021ee54a226ecc45075767154e110
File: ./src/interfaces/core/IVaultsDataProvider.sol SHA3: 43ad861042e4578dc4653316aab7595752d1b4133e887652626543be10184381
File: ./src/interfaces/core/IWETH.sol SHA3: 55ea3190f076959c287aedd9711be4356a5b66b8357c6452583040aeba455f05
File: ./src/interfaces/core/v1/IAddressProviderV1.sol SHA3: daeb1da8c7751a0db42731868a5d7e4faae2fd6a3f252631aea623fd13dd2aeb
File: ./src/interfaces/core/v1/IConfigProviderV1.sol SHA3: a0731b92e61f518969091573d1bdcaf3ec6b6b9f1a4f5b029ff13c6b2fb647f4
File: ./src/interfaces/core/v1/IFeeDistributorV1.sol SHA3: c0ba69a346dd3bab8bc3cb34a5f0090dd63943ec08d74eaeb2b7929060627fe2
File: ./src/interfaces/core/v1/ILiquidationManagerV1.sol SHA3: 87022e329e3d8a8d5b1d79869136062f11689b4755e37cb52a1e66bc5c56a807
File: ./src/interfaces/core/v1/IVaultsCoreV1.sol SHA3: b70e36cf6da19b9baff4a619a1a534c3e1f876ecd01dbc537a7062ce1a5acfbe
File: ./src/interfaces/core/v1/IVaultsDataProviderV1.sol SHA3: f26eab57e91c10d88e82b307ece5ce602d3aef544f117c815e3e2f6d91964fb9
File: ./src/interfaces/IBlacklistable.sol SHA3: f969a6374183380e33ce7dbedbea6f92f0a8df547d6f97c611fc966bdf859dc1
File: ./src/interfaces/IMIBToken.sol SHA3: ec629c3103ecf575ccd72a7af33195b65e10c432adfcaddad76091a65eaf9914
File: ./src/interfaces/IWrappedRebaseToken.sol SHA3: 3b4e5f2034f2e5a6ec2dd5b267fd538bd3288b701cde56772499c28307d97416
File: ./src/interfaces/IWrappedRebaseTokenOralce.sol SHA3: 688985b75dccc53117ccf741501b4c76ec973ca37ae543862468ecf60ea336e4
File: ./src/libraries/Errors.sol SHA3: ad6772143ff25b64c489e03339385d990b5d008fefb8bc629361a2a991a26279
File: ./src/libraries/Roles.sol SHA3: e72e0cec571bbb6416487a9720056fb1964ce63788fc4f43ad3d0e4730aecdc3
File: ./src/libraries/WadRayMath.sol SHA3: b9cafc4715fa55b3936f64d52cc31eed303692d17be139a05510da86e06e9064
File: ./src/libraries/WrappedRebaseTokenErrors.sol SHA3: ef413556caaa38e9bda3ab4cfec1686e16796b5b29382e5f7bec867326d91f39
File: ./src/WrappedRebaseToken.sol SHA3: f9117f844d98a176b44374a2ae8119c8b6c8eebeef82dc413946ac1899c0ab2c

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or contract state manipulation by external or internal actors.
High	High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited scope, but can still lead to the loss of user funds or contract state manipulation by external or internal actors.
Medium	Medium vulnerabilities are usually limited to state manipulations but cannot lead to asset loss. Major deviations from best practices are also in this category.
Low	Low vulnerabilities are related to outdated and unused code or minor gas optimization. These issues won't have a significant impact on code execution but affect code quality

Executive Summary

The score measurement details can be found in the corresponding section of the <u>scoring methodology</u>.

Documentation quality

The total Documentation Quality score is 7 out of 10.

- Functional requirements are partially missing.
- Technical description is not provided.

Code quality

The total Code Quality score is 9 out of 10.

• The PEP 8 recommendation for the readability of the lines is not followed.

Test coverage

Code coverage of the project is 86.21% (branch coverage).

• Deployment and basic user interactions are covered with tests.

Security score

As a result of the audit, the code contains **4** low severity issues. The security score is **10** out of **10**.

All found issues are displayed in the "Findings" section.

Summary

According to the assessment, the Customer's smart contract has the following score: **9.0**.

1	2	3	4	5	6	7	8	9	10
					The f	inal sc	ore		

Table.	The	distribution	of	issues	during	the	audit
--------	-----	--------------	----	--------	--------	-----	-------

Review date	Low	Medium	High	Critical
22 February 2023	5	2	0	0
04 Aprile 2023	4	0	0	0

Checked Items

We have audited the Customers' smart contracts for commonly known and specific vulnerabilities. Here are some items considered:

Item	Туре	Description	Status
Default Visibility	<u>SWC-100</u> SWC-108	Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously.	Passed
Integer Overflow and Underflow	<u>SWC-101</u>	If unchecked math is used, all math operations should be safe from overflows and underflows.	Not Relevant
Outdated Compiler Version	<u>SWC-102</u>	It is recommended to use a recent version of the Solidity compiler.	Passed
Floating Pragma	<u>SWC-103</u>	Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly.	Passed
Unchecked Call Return Value	<u>SWC-104</u>	The return value of a message call should be checked.	Passed
Access Control & Authorization	<u>CWE-284</u>	Ownership takeover should not be possible. All crucial functions should be protected. Users could not affect data that belongs to other users.	Passed
SELFDESTRUCT Instruction	<u>SWC-106</u>	The contract should not be self-destructible while it has funds belonging to users.	Not Relevant
Check-Effect- Interaction	<u>SWC-107</u>	Check-Effect-Interaction pattern should be followed if the code performs ANY external call.	Passed
Assert Violation	<u>SWC-110</u>	Properly functioning code should never reach a failing assert statement.	Passed
Deprecated Solidity Functions	<u>SWC-111</u>	Deprecated built-in functions should never be used.	Passed
Delegatecall to Untrusted Callee	<u>SWC-112</u>	Delegatecalls should only be allowed to trusted addresses.	Not Relevant
DoS (Denial of Service)	<u>SWC-113</u> SWC-128	Execution of the code should never be blocked by a specific contract state unless required.	Passed

Race Conditions	<u>SWC-114</u>	Race Conditions and Transactions Order Dependency should not be possible.	Passed
Authorization through tx.origin	<u>SWC-115</u>	tx.origin should not be used for authorization.	Not Relevant
Block values as a proxy for time	<u>SWC-116</u>	Block numbers should not be used for time calculations.	Not Relevant
Signature Unique Id	<u>SWC-117</u> <u>SWC-121</u> <u>SWC-122</u> <u>EIP-155</u> <u>EIP-712</u>	Signed messages should always have a unique id. A transaction hash should not be used as a unique id. Chain identifiers should always be used. All parameters from the signature should be used in signer recovery. EIP-712 should be followed during a signer verification.	Not Relevant
Shadowing State Variable	<u>SWC-119</u>	State variables should not be shadowed.	Passed
Weak Sources of Randomness	<u>SWC-120</u>	Random values should never be generated from Chain Attributes or be predictable.	Not Relevant
Incorrect Inheritance Order	<u>SWC-125</u>	When inheriting multiple contracts, especially if they have identical functions, a developer should carefully specify inheritance in the correct order.	Passed
Calls Only to Trusted Addresses	EEA-Lev el-2 SWC-126	All external calls should be performed only to trusted addresses.	Passed
Presence of Unused Variables	<u>SWC-131</u>	The code should not contain unused variables if this is not <u>justified</u> by design.	Passed
EIP Standards Violation	EIP	EIP standards should not be violated.	Passed
Assets Integrity	Custom	Funds are protected and cannot be withdrawn without proper permissions or be locked on the contract.	Passed
User Balances Manipulation	Custom	Contract owners or any other third party should not be able to access funds belonging to users.	Passed
Data Consistency	Custom	Smart contract data should be consistent all over the data flow.	Passed

Flashloan Attack	Custom	When working with exchange rates, they should be received from a trusted source and not be vulnerable to short-term rate changes that can be achieved by using flash loans. Oracles should be used.	Passed
Token Supply Manipulation	Custom	Tokens can be minted only according to rules specified in a whitepaper or any other documentation provided by the customer.	Passed
Gas Limit and Loops	Custom	Transaction execution costs should not depend dramatically on the amount of data stored on the contract. There should not be any cases when execution fails due to the block Gas limit.	Passed
Style Guide Violation	Custom	Style guides and best practices should be followed.	Failed
Requirements Compliance	Custom	The code should be compliant with the requirements provided by the Customer.	Passed
Environment Consistency	Custom	The project should contain a configured development environment with a comprehensive description of how to compile, build and deploy the code.	Passed
Secure Oracles Usage	Custom	The code should have the ability to pause specific data feeds that it relies on. This should be done to protect a contract from compromised oracles.	Passed
Tests Coverage	Custom	The code should be covered with unit tests. Test coverage should be sufficient, with both negative and positive cases covered. Usage of contracts by multiple users should be tested.	Passed
Stable Imports	Custom	The code should not reference draft contracts, which may be changed in the future.	Passed

System Overview

- MCAG is the centralized part of the KUMA protocol. It takes care of:
 - Issuing and managing the ERC721 tokens that represent actual bonds owned by Mimo Capital AG
 - Providing rates for the various bonds
 - $\circ~$ Issuing and managing the KYC ERC721 tokens

Privileged roles

- MCAG_MINT_ROLE: can issue KUMABondToken and KYCToken
- MCAG_BURN_ROLE: can redeem KUMABondToken and burn KYCToken
- MCAG_BLACKLIST_ROLE: can add and remove addresses from a blacklist
- MCAG_PAUSE_ROLE: can pause the KUMABondToken contract
- MCAG_UNPAUSE_ROLE: can unpause the KUMABondToken contract
- MCAG_TRANSMITTER_ROLE: can provide a new answer to the oracle contract
- MCAG_MANAGER_ROLE: can update the max answer on the oracle contract
- MCAG_SET_URI_ROLE: can update the Uri of the KUMABondToken contract

Risks

- KYCToken._kycData contains a byte32 variable 'kycInfo'. As this feature is not documented, it might expose sensitive information.
- Much of the protocol resides off-chain, so its logic can't be audited entirely.
- The presence of a central entity with the capability to manipulate variables within the protocol presents a potential security risk in the event of an attack or malicious behavior by said entity.

Findings

Example Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Missing Validation

The internal fields of the bond data structure passed to *KUMABodToken.issueBond()* are not checked or validated.

Path: ./src/AccessController.sol : constructor()

Recommendation: Implement checks on the bounds of variables such as term, issuance, maturity, coupon, and principal.

Status: Fixed (Revised commit: e0bde94)

M02. Wrong Logic

The function *transmit()* reverts if the provided answer is higher than _*maxAnswer*.

Path: ./src/AccessController.sol : constructor()

Recommendation: In such a case, instead of reverting, it should set the answer to _maxAnswer.

Status: Mitigated (Intended behavior)

Low

L01. Undocumented Role

The role *Roles.MCAG_SET_URI_ROLE* is used but is not mentioned in the documentation.

Path: ./src/AccessController.sol : constructor()

Recommendation: Add role description to the documentation

Status: Fixed (Revised commit: e0bde94)

L02. Redundant Override Keyword

Since *solidity 0.8.8*, a function that overrides only a single interface function does not require the *override* specifier.

The *override* keyword is used multiple times where it is not needed.

www.hacken.io

Path: ./src/Blacklist.sol : accessController, blacklist(), unBlacklist(), isBlacklisted()

./src/KUMABondToken.sol : accessController, blacklist, getBond(), getTokenIdCounter(), pause(), unpause(), setUri(), redeem(), issueBond()

./src/Blacklist.sol : mint(), burn(), setUri(), getTokenIdCounter(), getKycData()

./src/MCAGAggregator.sol : transmit(), latestRoundData(), version(), decimals(), maxAnswer(), description()

Recommendation: Remove redundant code

Status: Reported

L03. Redundant Import

OpenZeppelin's *Ownable* is imported in *KUMABondToken.sol* but it's not used.

Path: ./src/KUMABondToken.sol

Recommendation: Remove redundant import

Status: Reported

L04. Unbounded Variable

The input parameter *newMaxAnswer* is not bounded in the setter function *setMaxAnswer()*.

Path: ./src/MCAGAggregator.sol : setMaxAnswer()

Recommendation: Bound the variable to a reasonable range.

Status: Reported

L05. Solidity Style Guide

Keeping lines under the PEP 8 recommendation to a maximum of 79 (or 99) characters helps readers easily parse the code.

Path: ./src/MCAGAggregator.sol

Recommendation: Follow the official Solidity guidelines.

Status: Reported

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do not consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.