
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Mimo Initiative ltd
Date: April 04, 2023



This report may contain confidential information about IT systems and the
intellectual property of the MIMO Initiative ltd, as well as information
about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Client

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OU

Type ERC721 token; oracle;

Platform EVM

Language Solidity

Methodology Link

Website https://mimo.capital/

Changelog 22.02.2023 – Initial Review
04.04.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Table of contents
Introduction 4
Scope 4
Severity Definitions 7
Executive Summary 8
Checked Items 9
System Overview 12
Findings 13

Critical 13
High 13
Medium 13

M01. Missing Validation 13
M02. Wrong Logic 13

Low 13
L01. Undocumented Role 13
L02. Redundant Override Keyword 14
L03. Redundant Import 14
L04. Unbounded Variable 14
L05. Solidity Style Guide 14

Disclaimers 15

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Mimo Initiative ltd (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository https://github.com/mimo-capital/mcag-contracts

Commit ef888abde6762b90241476f9219854e21b35b8f6

Functional
Requirements

https://github.com/mimo-capital/kuma-protocol/docs/README.md

Contracts File: ./src/AccessController.sol
SHA3: ba054a7b1c959bdde54fc0549acc666eb2444caf935d9c1116012d86e0f016e4

File: ./src/Blacklist.sol
SHA3: 6b005db1505557c9205030183f6dc60e359470de238734379db5294aa8b7956e

File: ./src/interfaces/IBlacklist.sol
SHA3: dcc2b3a3d84db7b4c5666d011b28e1b0e37968998c5a4514496ac2dd67861d21

File: ./src/interfaces/IKUMABondToken.sol
SHA3: ebfe6b63268a3d80fa439dc912b5850ad2457ff451572dacdec5b10a8aa0f760

File: ./src/interfaces/IKYCToken.sol
SHA3: d39da38535b3a2bfbb5a0cc4bcb11a72d3194de3e07947e56537da1e4e9e5f03

File: ./src/interfaces/MCAGAggregatorInterface.sol
SHA3: c087f97568975febc7aa2686adf66df08fe88f914eff2fc5000d5bafe5f1e41a

File: ./src/KUMABondToken.sol
SHA3: 748c48d8ede2a6c4e448246f81d559c5b31b48bce36c44a4d4bef88bb98da30e

File: ./src/KYCToken.sol
SHA3: acacaadfa7ada9cbc3b53a2b696e315fd675ceb84e6a3da60c7206ba2a533df2

File: ./src/libraries/Errors.sol
SHA3: 099e6f008fce9d2f04e4a69069373cbb355dad5d30f3be130f35ca8c053c1c5e

File: ./src/libraries/Roles.sol
SHA3: 3d966b8c10e8f2a66410bf19e7f3fd522cbe36b423a8547a3eb9fdcc9f8bc347

File: ./src/MCAGAggregator.sol
SHA3: a37d02e464fd4a5662d272c856e8b0f9611cafd4dd0266f42b91aeb9b66f467f

www.hacken.io
4

https://github.com/mimo-capital/kuma-protocol/docs/README.md


Second review scope
Repository https://github.com/mimo-capital/mcag-contracts

Commit e0bde9453e162def19180ff3375314c9d5ee1d6c

Functional
Requirements

https://github.com/mimo-capital/kuma-protocol/docs/README.md

Contracts File: ./src/interfaces/chainlink/AggregatorV3Interface.sol
SHA3: c820cdec26eff0fff6154a5a8539c00554c88aadab00c2b120b8cd6f81b1122f

File: ./src/interfaces/core/IAccessController.sol
SHA3: c4eb1efb7b43a7c1258d871dffc2f296b3f2e01d55f3f145d2a0dbc16bd2e059

File: ./src/interfaces/core/IAddressProvider.sol
SHA3: c04dc24f9fac71892e083d72e947cd38ce05f8fc98798a286764c16a96f75f85

File: ./src/interfaces/core/IBalancerPool.sol
SHA3: a8e3307818a801d1ce5d21c2d38a114ad8d3d04a11f92dc4ad9f47ea0b2b0228

File: ./src/interfaces/core/IBalancerVault.sol
SHA3: 075aed4653f3fcbe1d8e9229100751c754fec4c218f9814b958fea4d2da7ea4e

File: ./src/interfaces/core/IConfigProvider.sol
SHA3: aca92b5ecb85c4367492cc17d6f950b40a19b26cfc14ee6757f7a68931b23940

File: ./src/interfaces/core/IDebtNotifier.sol
SHA3: 7d155e15406ab696b9368f6580730569c0f7841fdfe751ca2fa341232427b8c8

File: ./src/interfaces/core/IFeeCollector.sol
SHA3: b44c3f6c4536f4bcfc0abb182d5bad93683ca4a6bc82d13edb6e9ce0b50d492c

File: ./src/interfaces/core/IFeeDistributor.sol
SHA3: b025aac02e18d9f4c2058161b52f71844776ce0cda7f2e34465862948fa17ef9

File: ./src/interfaces/core/IGovernanceAddressProvider.sol
SHA3: c4dd048fae3181fa2b37c050376baf052c7afbbeaf0bdadaefc515a3a1fc6681

File: ./src/interfaces/core/IGUniPool.sol
SHA3: e1976c5dd6d276502742b95bbf59ddfdc4711a0aa257867b55246cf6b5b0f9c3

File: ./src/interfaces/core/ILiquidationManager.sol
SHA3: c187c7c2609b7612eb00fe5cfd604b6d70d7355158fead5962bbca34cc11c285

File: ./src/interfaces/core/IMerkleDistributor.sol
SHA3: 41129172d4a0905d71391dcaec74d94b62ceebce95754b8c11aa330d971a9098

File: ./src/interfaces/core/IPriceFeed.sol
SHA3: 058bc1aa502a7d58aa05fc837f5914f6390d5fc81dcc0609e676304739ab7afb

File: ./src/interfaces/core/IRatesManager.sol
SHA3: d6178f8d94ee797217ce763f84fd5bbeac57761daeeda8b6ce5eb3623d268a1b

File: ./src/interfaces/core/ISTABLEX.sol
SHA3: c2c701bb0d1dd7ce0c64a5d949bb049108c7c1f14b9c155ae9a4fc84ac8687ba

File: ./src/interfaces/core/ISupplyMiner.sol
SHA3: 760a578215d6d365006ce40b467d28ffff93833e500db5c086d88dfe85985fd0

www.hacken.io
5

https://github.com/mimo-capital/kuma-protocol/docs/README.md


File: ./src/interfaces/core/IVaultsCore.sol
SHA3: 0ff5ebc4984c6dc5c2830cdb3286f835ba0c9d22a0de744183d6b9405e23deea

File: ./src/interfaces/core/IVaultsCoreState.sol
SHA3: 1882538da81670c3aea15e51536747cd26a021ee54a226ecc45075767154e110

File: ./src/interfaces/core/IVaultsDataProvider.sol
SHA3: 43ad861042e4578dc4653316aab7595752d1b4133e887652626543be10184381

File: ./src/interfaces/core/IWETH.sol
SHA3: 55ea3190f076959c287aedd9711be4356a5b66b8357c6452583040aeba455f05

File: ./src/interfaces/core/v1/IAddressProviderV1.sol
SHA3: daeb1da8c7751a0db42731868a5d7e4faae2fd6a3f252631aea623fd13dd2aeb

File: ./src/interfaces/core/v1/IConfigProviderV1.sol
SHA3: a0731b92e61f518969091573d1bdcaf3ec6b6b9f1a4f5b029ff13c6b2fb647f4

File: ./src/interfaces/core/v1/IFeeDistributorV1.sol
SHA3: c0ba69a346dd3bab8bc3cb34a5f0090dd63943ec08d74eaeb2b7929060627fe2

File: ./src/interfaces/core/v1/ILiquidationManagerV1.sol
SHA3: 87022e329e3d8a8d5b1d79869136062f11689b4755e37cb52a1e66bc5c56a807

File: ./src/interfaces/core/v1/IVaultsCoreV1.sol
SHA3: b70e36cf6da19b9baff4a619a1a534c3e1f876ecd01dbc537a7062ce1a5acfbe

File: ./src/interfaces/core/v1/IVaultsDataProviderV1.sol
SHA3: f26eab57e91c10d88e82b307ece5ce602d3aef544f117c815e3e2f6d91964fb9

File: ./src/interfaces/IBlacklistable.sol
SHA3: f969a6374183380e33ce7dbedbea6f92f0a8df547d6f97c611fc966bdf859dc1

File: ./src/interfaces/IMIBToken.sol
SHA3: ec629c3103ecf575ccd72a7af33195b65e10c432adfcaddad76091a65eaf9914

File: ./src/interfaces/IWrappedRebaseToken.sol
SHA3: 3b4e5f2034f2e5a6ec2dd5b267fd538bd3288b701cde56772499c28307d97416

File: ./src/interfaces/IWrappedRebaseTokenOralce.sol
SHA3: 688985b75dccc53117ccf741501b4c76ec973ca37ae543862468ecf60ea336e4

File: ./src/libraries/Errors.sol
SHA3: ad6772143ff25b64c489e03339385d990b5d008fefb8bc629361a2a991a26279

File: ./src/libraries/Roles.sol
SHA3: e72e0cec571bbb6416487a9720056fb1964ce63788fc4f43ad3d0e4730aecdc3

File: ./src/libraries/WadRayMath.sol
SHA3: b9cafc4715fa55b3936f64d52cc31eed303692d17be139a05510da86e06e9064

File: ./src/libraries/WrappedRebaseTokenErrors.sol
SHA3: ef413556caaa38e9bda3ab4cfec1686e16796b5b29382e5f7bec867326d91f39

File: ./src/WrappedRebaseToken.sol
SHA3: f9117f844d98a176b44374a2ae8119c8b6c8eebeef82dc413946ac1899c0ab2c

www.hacken.io
6



Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are partially missing.
● Technical description is not provided.

Code quality
The total Code Quality score is 9 out of 10.

● The PEP 8 recommendation for the readability of the lines is not
followed.

Test coverage
Code coverage of the project is 86.21% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score
As a result of the audit, the code contains 4 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.0.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

22 February 2023 5 2 0 0

04 Aprile 2023 4 0 0 0

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128


Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11



System Overview

● MCAG is the centralized part of the KUMA protocol. It takes care of:
○ Issuing and managing the ERC721 tokens that represent actual

bonds owned by Mimo Capital AG
○ Providing rates for the various bonds
○ Issuing and managing the KYC ERC721 tokens

Privileged roles
● MCAG_MINT_ROLE: can issue KUMABondToken and KYCToken
● MCAG_BURN_ROLE: can redeem KUMABondToken and burn KYCToken
● MCAG_BLACKLIST_ROLE: can add and remove addresses from a blacklist
● MCAG_PAUSE_ROLE: can pause the KUMABondToken contract
● MCAG_UNPAUSE_ROLE: can unpause the KUMABondToken contract
● MCAG_TRANSMITTER_ROLE: can provide a new answer to the oracle

contract
● MCAG_MANAGER_ROLE: can update the max answer on the oracle contract
● MCAG_SET_URI_ROLE: can update the Uri of the KUMABondToken contract

Risks
● KYCToken._kycData contains a byte32 variable ‘kycInfo’. As this

feature is not documented, it might expose sensitive information.
● Much of the protocol resides off-chain, so its logic can’t be audited

entirely.
● The presence of a central entity with the capability to manipulate

variables within the protocol presents a potential security risk in
the event of an attack or malicious behavior by said entity.

www.hacken.io
12



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Missing Validation

The internal fields of the bond data structure passed to
KUMABodToken.issueBond() are not checked or validated.

Path: ./src/AccessController.sol : constructor()

Recommendation: Implement checks on the bounds of variables such as
term, issuance, maturity, coupon, and principal.

Status: Fixed (Revised commit: e0bde94)

M02. Wrong Logic

The function transmit() reverts if the provided answer is higher than
_maxAnswer.

Path: ./src/AccessController.sol : constructor()

Recommendation: In such a case, instead of reverting, it should set
the answer to _maxAnswer.

Status: Mitigated (Intended behavior)

Low

L01. Undocumented Role

The role Roles.MCAG_SET_URI_ROLE is used but is not mentioned in the
documentation.

Path: ./src/AccessController.sol : constructor()

Recommendation: Add role description to the documentation

Status: Fixed (Revised commit: e0bde94)

L02. Redundant Override Keyword

Since solidity 0.8.8, a function that overrides only a single
interface function does not require the override specifier.

The override keyword is used multiple times where it is not needed.

www.hacken.io
13



Path: ./src/Blacklist.sol : accessController, blacklist(),
unBlacklist(), isBlacklisted()

./src/KUMABondToken.sol : accessController, blacklist, getBond(),
getTokenIdCounter(), pause(), unpause(), setUri(), redeem(),
issueBond()

./src/Blacklist.sol : mint(), burn(), setUri(), getTokenIdCounter(),
getKycData()

./src/MCAGAggregator.sol : transmit(), latestRoundData(), version(),
decimals(), maxAnswer(), description()

Recommendation: Remove redundant code

Status: Reported

L03. Redundant Import

OpenZeppelin’s Ownable is imported in KUMABondToken.sol but it’s not
used.

Path: ./src/KUMABondToken.sol

Recommendation: Remove redundant import

Status: Reported

L04. Unbounded Variable

The input parameter newMaxAnswer is not bounded in the setter
function setMaxAnswer().

Path: ./src/MCAGAggregator.sol : setMaxAnswer()

Recommendation: Bound the variable to a reasonable range.

Status: Reported

L05. Solidity Style Guide

Keeping lines under the PEP 8 recommendation to a maximum of 79 (or
99) characters helps readers easily parse the code.

Path: ./src/MCAGAggregator.sol

Recommendation: Follow the official Solidity guidelines.

Status: Reported

www.hacken.io
14

https://docs.soliditylang.org/en/v0.8.13/style-guide.html


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
15


