
Customer: Muon
Date: 09 Aug, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Muon

Approved By Oleksii Zaiats | Head of Solidity SC Auditor department at Hacken OU

Type ERC20 token; ERC721 token;

Platform EVM

Language Solidity

Methodology Link

Website https://www.muon.net/

Changelog 17.07.2023 – Initial Review
09.08.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.muon.net/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6

Checked Items 7
Findings 10

Critical 10
High 10
Medium 10

M01. Denial of Service; Inefficient Gas Modeling 10
M02. Coarse-Grained Authorization Model; Inefficient Gas Modeling; 10
M03. Missing Storage Gaps 11
M04. CEI Pattern Violation 11

Low 12
L01. Missing Events 12

Informational 12
I01. Functions That Should Be External 12
I02. Solidity Style Guide Violation: Order Of Layout 13
I03. Redundant Function Virtualization 13
I04. Boolean Equality 13
I05. Solidity Style Guide Violation: mixedCase in State Variables Names 14
I06. Inefficient Gas Modeling 14
I07. Unnecessary Value Assignment 14
I08. Missing Event Indexes 14

Disclaimers 16
Appendix 1. Severity Definitions 17

Risk Levels 17
Impact Levels 18
Likelihood Levels 18
Informational 18

Appendix 2. Scope 19

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Muon (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Token – an upgradable, pausable, and burnable ERC20 token smart contract,
with specific roles for pausing the contract and minting new tokens.

BondedToken – a custom implementation of an ERC721 (non-fungible token)
smart contract that provides functionalities for minting, burning, and
transferring tokens. Additionally, it has unique features such as token
whitelisting, locking of assets in tokens, as well as splitting and merging
tokens while maintaining locked assets.

PION – an ERC20 token based on Token. It has the following attributes:

● Name: PioneerNetwork
● Symbol: PION
● Decimals: 18
● Total supply: unlimited

BondedPION – an ERC721 token based on BondedToken.

IToken – an interface for ERC20 tokens.

Privileged roles
● Token.sol:

○ Admin:
■ Manage other roles throughout users.

○ Pauser:
■ Pause and unpause smart contract.

○ Minter:
■ Mint unlimited amount of tokens.

● BondedToken.sol:
○ Owner:

■ Pause and unpause smart contract. Set tokens whitelist,
enable/disable public transfers, set treasury address.

○ Admin:
■ Manage other roles throughout users.

○ Transferable address:
■ Users with only this role can receive and send tokens.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements have some gaps:
○ No roles description.
○ Project overview is detailed
○ All interactions are described.

● Technical description is inadequate:
○ Run instructions are provided.
○ Technical specification is not provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 9 out of 10.

● Best practice violations.

Test coverage
Code coverage of the project is 92.86% (branch coverage).

● Tests are provided.
● Negative cases coverage is present.
● Interactions by several users are tested.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Review date Low Medium High Critical

17 July 2023 1 4 0 0

09 August 2023 0 0 0 0

Risks

No potential security risks were found during the audit research.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Not

Relevant

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Not
Relevant

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I01, I03,

I08

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Denial of Service; Inefficient Gas Modeling

Impact Medium

Likelihood Medium

The lock() function gets a parameter list of tokens to be locked. If
one token in a list was not whitelisted, the whole transaction would
be reverted.

This leads to the fact that due to one error, the entire transaction
will be reverted, but the fees were paid.

Paths:
./contracts/BondedToken.sol : lock();

Recommendation: Consider skipping the loop for tokens that are not in
the whitelist.

Found in: 78d591d

Status: Fixed (Revised commit: 22476a2).

M02. Coarse-Grained Authorization Model; Inefficient Gas Modeling;

Impact Medium

Likelihood Medium

Bonded token smart contract uses OpenZeppelin AccessControl and
Ownable. In the _initialize() function, the admin role and owner
variable are set to the same address(msg.sender).

Several functions use onlyOwner (Ownable) modifier, but they can be
used with onlyRole(DEFAULT_ADMIN_ROLE) (AccessControl) instead.

This overuse of Ownable leads to inefficient Gas usage and possible
errors when working with a smart contract.

Paths:
./contracts/BondedToken.sol : pause(), unpause(), whitelistTokens(),
setPublicTransfer(), setTreasury();

www.hacken.io
10



Recommendation: Remove Ownable usage, change modifiers for relevant
functions.

Found in: 78d591d

Status: Mitigated (with Customer notice: We do not want to have more
than one owner. With AccessControl, the role could be assigned to
more than one wallet. Some of the NFT platforms allow the owner of an
ownable token to customize some settings.And of course, msg.sender is
the default owner and will be updated later.)

M03. Missing Storage Gaps

Impact Medium

Likelihood Medium

When working with upgradeable contracts using OpenZeppelin Upgrades,
it is necessary to introduce storage gaps to make the project
compatible.

Storage gaps are a convention for reserving storage slots in a base
contract, allowing future versions of that contract to use up those
slots without affecting the storage layout of child contracts.

Paths:
./contracts/BondedToken.sol
./contracts/Token.sol

Recommendation: Introduce Storage Gaps in the contract.

To create a storage gap, declare a fixed-size array in the base
contract with an initial number of slots. This can be an array of
uint256 so that each element reserves a 32 byte slot. Use the name
__gap or a name starting with __gap_ for the array so that
OpenZeppelin Upgrades will recognize the gap.

Found in: 78d591d

Status: Mitigated (with Customer notice: We do not need to change the
types of any fields and there are no Struct fields that need __gap.
We will add new fields at the end of the existing fields if it is
necessary to add any new fields in the upgrades.)

M04. CEI Pattern Violation

Impact Medium

Likelihood Medium

The Checks-Effects-Interactions pattern is violated. During the
lock() function, state variables are updated after the external
calls.

www.hacken.io
11

https://docs.openzeppelin.com/upgrades
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps
https://docs.openzeppelin.com/upgrades


Path:
./contracts/BondedToken.sol : lock();

Recommendation: Implement the function according to the
Checks-Effects-Interactions pattern.

Found in: 78d591d

Status: Mitigated (with Customer notice: Following an in-depth
discussion with the client, we concluded that this issue does not
result in security problems; rather, it pertains more to best
practices.)

Low

L01. Missing Events

Impact Low

Likelihood Medium

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path:
./contracts/BondedToken.sol : mint(), burn();

Recommendation: Consider emitting events in said functions.

Found in: 78d591d

Status: Fixed (Revised commit: 22476a2).

Informational

I01. Functions That Should Be External

Public functions that are not called from inside the contract should
be declared external to save Gas.

Paths:
./contracts/Token.sol : pause(), unpause(), mint();
./contracts/PION.sol : initialize();
./contracts/BondedPION.sol : initialize();
./contracts/BondedToken.sol : pause(), unpause(), burn(),
supportsInterface();

Recommendation: Consider changing the function visibility to
external.

Found in: 78d591d

Status: Reported (Revised commit: 22476a2 : Functions that should be
external ./contracts/BondedToken.sol : burn(), supportsInterface()).

www.hacken.io
12



I02. Solidity Style Guide Violation: Order Of Layout

Inside each contract, library or interface, use the following order:
1. Type declarations
2. State variables
3. Events
4. Errors
5. Modifiers
6. Functions

a. constructor
b. initializer (if exists)
c. receive function (if exists)
d. fallback function (if exists)
e. external
f. public
g. internal
h. private

Paths:

./contracts/BondedToken.sol;

./contracts/Token.sol;

Recommendation: Change order of layout to fit Official Style Guide.

Found in: 78d591d

Status: Fixed (Revised commit: 22476a2).

I03. Redundant Function Virtualization

The following functions are marked as virtual in the code, but never
being overridden. Virtual functions are much more Gas expensive
compared to default functions.

Path:
./contracts/BondedToken.sol : burn(), supportsInterface();

Recommendation: Make these functions non-virtual.

Found in: 78d591d

Status: Reported

I04. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Path:
./contracts/BondedToken.sol : whitelistTokens();

Recommendation: Remove boolean equality.

www.hacken.io
13

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout


Found in: 78d591d

Status: Fixed (Revised commit: 22476a2).

I05. Solidity Style Guide Violation: mixedCase in State Variables Names

Local and State Variable names should be mixedCase: capitalize all
the letters of the initialisms, except keep the first one lower case
if it is the beginning of the name.

Path:

./contracts/BondedToken.sol;

Recommendation: follow the official Solidity guidelines.

Found in: 78d591d

Status: Fixed (Revised commit: 22476a2).

I06. Inefficient Gas Modeling

Inside loop the value of list.length taken every loop iteration.
Declaring a variable equal to the length of the list before the loop
will reduce the Gas consumption when deploying a smart contract.

Path:

./contracts/BondedToken.sol : whitelistTokens(), burn(), merge();

Recommendation: Declare variable above loop to decrease.

Found in: 78d591d

Status: Fixed (Revised commit: 22476a2).

I07. Unnecessary Value Assignment

The value of the isPublicTransferEnabled state variable is false by
default. Setting the value of a variable is redundant.

Path:
./contracts/BondedToken.sol : _initialize()

Recommendation: Remove value assignment.

Found in: 78d591d

Status: Fixed (Revised commit: 22476a2).

I08. Missing Event Indexes

Use indexed events to keep track of a smart contract's activity after
it is deployed, which is helpful in reducing overall Gas.

www.hacken.io
14

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#function-names


Path:
./contracts/BondedToken.sol : WhitelistTokensUpdated,
PublicTransferStatusUpdated, TreasuryUpdated;

Recommendation: Add indexed keyword.

Found in: 78d591d

Status: Reported

www.hacken.io
15



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
16



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
17



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
18



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/muon-protocol/muon-tokenomics-contracts

Commit 78d591d

Whitepaper https://rtd-muon.readthedocs.io/en/latest/introduction.html

Requirements https://github.com/muon-protocol/muon-tokenomics-contracts/wiki

Technical
Requirements

https://github.com/muon-protocol/muon-tokenomics-contracts/blob/main/R
EADME.md

Contracts File: ./contracts/BondedPION.sol
SHA3: 6e83cb922c0aeffbf850cdc69fd4da8b62baf945bcb1d5f186ec1fc67914ae6a

File: ./contracts/BondedToken.sol
SHA3: 1a1229833523731e1c54cf6996ab0284dc7681f13eb59a7ed8215ea28931ec76

File: ./contracts/PION.sol
SHA3: 62cdab091606a5f39a23d9e8a33d44c45b891a58852eb1f0cd1a629c5af026e1

File: ./contracts/Token.sol
SHA3: 68ac39c24f72266f0dff465afe42b69859b798971135fbd4c1c3313bf27bfc62

File: ./contracts/interfaces/IToken.sol
SHA3: 66d7862c2bd6d02824b7ed79c2204fe1e34d08a3bf2b9920a9ca82dce18b5940

Second review scope

Repository https://github.com/muon-protocol/muon-tokenomics-contracts

Commit 22476a2

Whitepaper https://rtd-muon.readthedocs.io/en/latest/introduction.html

Requirements https://github.com/muon-protocol/muon-tokenomics-contracts/wiki

Technical
Requirements

https://github.com/muon-protocol/muon-tokenomics-contracts/blob/main/R
EADME.md

Contracts File: ./contracts/PION.sol
SHA3: 4b8f6d2f29046fab64306c4044b4e1ec292da6ab8db6682f299952a9331fd9a3

File: ./contracts/Token.sol
SHA3: 2a7a3b016e18a7d788d337d8e9aee837461599464a2f6e9c1818a6aab20d6bf3

File: ./contracts/BondedPION.sol
SHA3: 2f7f4d8de2dfab763b5050c720dd182b54be9186762536e9d95582d4760f0ba3

www.hacken.io
19

https://github.com/muon-protocol/muon-tokenomics-contracts/tree/main
https://rtd-muon.readthedocs.io/en/latest/introduction.html
https://github.com/muon-protocol/muon-tokenomics-contracts/wiki
https://github.com/muon-protocol/muon-tokenomics-contracts/blob/main/README.md
https://github.com/muon-protocol/muon-tokenomics-contracts/blob/main/README.md
https://github.com/muon-protocol/muon-tokenomics-contracts/tree/main
https://rtd-muon.readthedocs.io/en/latest/introduction.html
https://github.com/muon-protocol/muon-tokenomics-contracts/wiki
https://github.com/muon-protocol/muon-tokenomics-contracts/blob/main/README.md
https://github.com/muon-protocol/muon-tokenomics-contracts/blob/main/README.md


File: ./contracts/BondedToken.sol
SHA3: 948ae2a2946d5c8e42195556c17ab19663d0f2f2b4bdef8f80207ba661662090

File: ./contracts/interfaces/IToken.sol
SHA3: 66d7862c2bd6d02824b7ed79c2204fe1e34d08a3bf2b9920a9ca82dce18b5940

www.hacken.io
20


