
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: VOLO
Date: 22 Sep, 2023



Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another
Party. Any subsequent publication of this report shall be without
mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for VOLO

Approved By Luciano Ciattaglia | Director of Services at Hacken OÜ

Auditor Jakub Heba

Auditor Vladyslav Khomenko

Type Liquid Staking

Platform Sui

Language Move

Methodology Link

Website volo.fi

Changelog 22.08.2023 – Initial Review
22.09.2023 – Second Review

www.hacken.io 2

mailto:support@hacken.io
https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
http://volo.fi/


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Table of Contents

Document 2
Table of Contents 3
Introduction 4
System Overview 4
Executive Summary 6
Risks 7
Checked Items 8
Findings 10

Critical 10
High 10

H01. Invalid Calculations; Data Consistency 10
H02. Requirements Violation; Data Consistency 10

Medium 11
M01. Denial Of Service & Inefficient Gas Model 11

Low 11
L01. Unused Variables/Structs 11
L02. Missing Event Emit 12

Informational 12
I01. Contradiction 12

Disclaimers 13
Appendix 1. Severity Definitions 14

Risk Levels 14
Impact Levels 15
Likelihood Levels 15
Informational 15

Appendix 2. Scope 16
Initial review scope 16
Second review scope 16

www.hacken.io 3

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by VOLO (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The VOLO Liquid Staking is a protocol that allows users to exchange the SUI
tokens for special voloSUI tokens that could be used in VOLO Ecosystem and
other DeFi protocols partnered with VOLO Protocol.

The SUI tokens are staked using the native sui_system module, whose
implementation is out of the audit scope.

Stakers are able to request exchanging their voloSUI for SUI with rewards
accrued, unstaked funds will be returned in the current or the next epoch.

There are several smart contracts in the audit scope:

● ownership — manages owner and operator capabilities.
● cert — voloSUI token contract, stores and updates SUI to voloSUI

exchange rate.
● native_pool — contract allows exchange SUI for voloSUI and requests

to exchange it back at a possibly better rate.
● math — math utility contract.
● validator_set — a contract that manages validators.
● unstake_ticket — a contract that handles tickets, which serve as

proof of unstaking, while waiting to exchange tokens.

Roles

The Owner and Operator are able to transfer their permission independently
of each other.

cert:

● Owner — Update the contract and migrate the associated objects to it.

ownership:

● Owner — Transfer the owner role to another address.
● Operator - Transfer operator role to another address.

native_pool:

● Owner - Change min stake amount.
● Owner - Change unstake fee threshold (not more than 100%).
● Owner - Change base unstake fee (not more than 100%).
● Owner - Change base reward fee (not more than 100%).
● Owner - Update rewards threshold.
● Owner - Can withdraw fees from the contract.

www.hacken.io 4

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

● Owner - Can pause or unpause contract. In the paused contract it is
not possible for the owner to withdraw fees, sort validators, burn
tickets to release unstaking, stake SUI and update rewards.

● Owner — Update the contract and migrate the associated objects to it.
● Operator — Add new validators with specified priorities.
● Operator - Can increase the ratio of reward tokens.

www.hacken.io 5

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Public documentation provides the system basics.
● Internal documentation provides valuable insights into the system

architecture and general interaction flow.
● The configuration instructions are insufficient.

Code quality
The total Code Quality score is 9 out of 10.

● The code is well-written and designed.
● The code contains unused variables.
● Contradiction in variable naming exists.

Test coverage
The code coverage of the project is 82.16%.

Security score
As a result of the audit, the code contains 1 medium, and 1 low severity
issues. The security score is 9 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.5.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

22 Aug 2023 2 1 2 0

22 Sep 2023 1 1 0 0

www.hacken.io 6

mailto:support@hacken.io
https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Risks

● Users are unable to withdraw their funds immediately. They burn their
voloSUI and register in a queue to get SUI in return.

● The smart contracts system is designed to be upgradeable. The owner
may change the system logic in the future.

● The owner is able to pause all the pool functionality.
● The owner may set arbitrary minimum thresholds for stake and unstake

amounts.

www.hacken.io 7

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Integer Overflow
and Underflow

All math operations should be safe from
overflows and underflows. Passed

Outdated Compiler
Version

It is recommended to use a recent version of
the Move compiler. Passed

Access Control &
Authorization

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

DoS (Denial of
Service)

Execution of the code should never be blocked
by a specific contract state unless required. Passed

Race Conditions Race Conditions and Transactions Order
Dependency should not be possible. Passed

Block values as a
proxy for time

Block numbers should not be used for time
calculations. Not Relevant

Signature Reuse Signed messages that represent an approval of
an action should not be reusable. Not Relevant

Weak Sources of
Randomness

Random values should never be generated from
Chain Attributes or be predictable. Not Relevant

Calls Only to
Trusted Addresses

All external calls should be performed only
to trusted addresses. Passed

Presence of
Unused Variables

The code should not contain unused variables
if this is not justified by design.

Failed
(L01)

Assets Integrity
Funds are protected and cannot be withdrawn
without proper permissions or be locked on
the contract.

Passed

User Balances
Manipulation

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data Consistency Smart contract data should be consistent all
over the data flow. Passed

Flashloan Attack

When working with exchange rates, they should
be received from a trusted source and not be
vulnerable to short-term rate changes that
can be achieved by using flash loans. Oracles
should be used.

Not Relevant

www.hacken.io 8

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not depend
dramatically on the amount of data stored on
the contract. There should not be any cases
when execution fails due to the block Gas
limit.

Failed
(M01)

Compiler Warnings The code should not force the compiler to
throw warnings. Passed

Style Guide
Violation

Style guides and best practices should be
followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage

The code should be covered with unit tests.
Test coverage should be sufficient, with both
negative and positive cases covered. The
usage of contracts by multiple users should
be tested.

Failed

Stable Imports
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io 9

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Findings

Critical

No critical severity issues were found.

High

H01. Invalid Calculations; Data Consistency

Impact High

Likelihood Medium

During the remove_stakes loop, the system is designed to repeatedly
process withdrawals from a vault until the total_withdrawn meets or
exceeds the requested_amount or under certain conditions related to
the vault's gap. However, there is a flaw in the current
implementation. The requested_amount is not updated to reflect the
amount already withdrawn, which leads to potential over-withdrawals
or inconsistencies in the withdrawal amounts.

Path: ./liquid_staking/sources/validator_set.move: remove_stakes(..)

Recommendation: Adjust the requested_amount to reflect the new
remaining amount that needs to be withdrawn after each successful
stake processing.

Found in: 6662d76

Status: Fixed (Revised commit: d088758)

H02. Requirements Violation; Data Consistency

Impact High

Likelihood Medium

The sort_validators function is designed to sort validators in
descending order based on their priorities. However, the current
logic does not consistently achieve this objective. The existing
sorting mechanism allows insertion in the middle of the array only
when the priorities are not greater than the size of the validator's
array. This condition is not guaranteed to be met. Consequently, if
the priorities are invariably larger than the size of the validator's
array, validators will be consistently added to the initial position,
neglecting the intended order based on priorities.

Path: ./liquid_staking/sources/validator_set.move:
sort_validators(..)

Recommendation: Revise the sorting logic to handle all possible
ranges of priorities, ensuring they are placed in the correct
position regardless of the size of the validator's array.

www.hacken.io 10

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: 6662d76

Status: Fixed (Revised commit: d088758)

Medium

M01. Denial Of Service & Inefficient Gas Model

Impact Medium

Likelihood Low

The operator of the native_pool has the authority to introduce new
validators to the contract for distributing stakes. However, since
there is no upper limit on the number of validators, certain contract
features (such as sorting validators) might become non-functional due
to excessive Gas consumption, especially when iterating through a
large list of validators.

Path: ./liquid_staking/sources/native_pool.move:
update_validators(..)

Recommendation: Set a maximum limit on the total number of supported
validators using a constant and restrict the addition of validators
beyond this specified number. Currently, there’s only restrictions on
how many validators can be updated/added in one call.

Found in: 6662d76

Status: Reported

Low

L01. Unused Variables/Structs

Unused variables and structs should be removed from the contracts.
Although unused variables and structs are allowed in Move and do not
pose a direct security issue, it is best practice to avoid them as
they can cause an increase in computations (and unnecessary Gas
consumption) and decrease the code readability.

Paths:

● ./liquid_staking/sources/native_pool.move: TicketMintedEvent,
TicketBurnedEvent;

● ./liquid_staking/sources/validator_set.move: VERSION;

Recommendation: Remove unused variables/structs.

Found in: 6662d76

Status: Reported

www.hacken.io 11

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

L02. Missing Event Emit

The functions are considered to perform valuable configuration
changes, which users should be notified about.

Path:

● ./liquid_staking/sources/native_pool.move:
update_validators(..)

Recommendation: Implement and emit corresponding events to notify
users about the changes.

Found in: 6662d76

Status: Fixed (Revised commit: d088758)

Informational

I01. Contradiction

Impact Low

Likelihood Low

The collect_fee function incorrectly labels the OwnerCap variable as
_operator_cap, which can cause confusion and misunderstanding.

Path: ./liquid_staking/sources/native_pool.move: collect_fee(..);

Recommendation: Make sure that function should be available for Owner
(not Operator) and rename the variable.

Found in: 6662d76

Status: Fixed (Revised commit: d088758)

www.hacken.io 12

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io 13

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io 14

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io 15

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Ankr-network/stakefi-sui-smart-contract

Commit 6662d76109670a458cde7f739938b203cf183780

Requirements VOLO Liquid Staking

Contracts File: cert.move
SHA3: 936fbe01f122ee82e3153cb2163659ac00c4156e9111b7d00ab1cd5963ee8a33

File: math.move
SHA3: a3b3d370c221acba91d02cd2c83c9e62a88d0f71a9e652d0383fd6a781759c14

File: native_pool.move
SHA3: b7287d6c7455e7c4923a01bf0842e399a511ad003b461b7e35409251acfec3d1

File: ownership.move
SHA3: 575331cea032b4fca206721b7bf61c4af7654284b55286385f123c0061d10c82

File: unstake_ticket.move
SHA3: d7fce315dc1bc5cbe52b2fec5b48dd399e9c75a70ee7994e7136c26e2d5c375b

File: validator_set.move
SHA3: d0b56628c3cf2f11a91bec5f23fc6037623b1a5284aa40e24fb2bb40c283a469

Second review scope

Repository https://github.com/Sui-Volo/volo-liquid-staking-contracts

Commit d088758139f34f27a2acf65cdc3e1f89dfcd6596

Requirements VOLO Liquid Staking

Contracts File: liquid_staking/sources/cert.move
SHA3: e17d707a1dc1edb6e0db8940cf766add7b1621a8a1c0bc0c81a6565e0b8823fa

File: liquid_staking/sources/math.move
SHA3: a3b3d370c221acba91d02cd2c83c9e62a88d0f71a9e652d0383fd6a781759c14

File: liquid_staking/sources/native_pool.move
SHA3: 756c319ee895fdf8039d4364184d3fac2a08af8fd4c30a6ef3600ee8dcb24103

File: liquid_staking/sources/ownership.move
SHA3: 575331cea032b4fca206721b7bf61c4af7654284b55286385f123c0061d10c82

File: liquid_staking/sources/unstake_ticket.move
SHA3: 2c83a7c9b89e42f2dfc141803846bc9a465fb34847ea2cd39bd33ac5627c449f

File: liquid_staking/sources/validator_set.move
SHA3: f342b6303c17a9959d3637b22cefa20289e3b5ab25032fc0f0e37cc4525ae712

www.hacken.io 16

mailto:support@hacken.io
https://github.com/Ankr-network/stakefi-sui-smart-contract/
https://volosui.gitbook.io/volo/liquid-staking/overview
https://github.com/Sui-Volo/volo-liquid-staking-contracts
https://volosui.gitbook.io/volo/liquid-staking/overview

