
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: UWULEND
Date: 21 Sep, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for UWULEND

Approved By Oleksii Zaiats | SC Audits Head at Hacken OÜ

Tags Dex; Vesting; Yield Farming;

Platform EVM

Language Solidity

Methodology Link

Website http://wagmi.com/

Changelog
18.08.2023 – Initial Review
13.09.2023 - Second Review
21.09.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
http://wagmi.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 7
Risks 8
Checked Items 9
Findings 12

Critical 12
High 12
Medium 12

M01. Denial Of Service 12
M02. Denial Of Service 12
M03. CEI Pattern Violation 13

Low 13
L01. Data Inconsistency 13
L02. Missing Zero Address Validation 14
L03. Missing Events 14

Informational 15
I01. Missing Variable Explicit Visibility 15
I02. Style Guide Violation 15
I03. Functions That Should Be External 16
I04. Missing Event Indexes 16
I05. Non-Explicit Variable Unit Sizes 17
I06. State Variables Can Be Declared Constant 17

Disclaimers 18
Appendix 1. Severity Definitions 19

Risk Levels 19
Impact Levels 20
Likelihood Levels 20
Informational 20

Appendix 2. Scope 21

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by UWULEND (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Wagmi is a staking protocol with the following contracts:
● Dispatcher.sol - contract acts as a central coordinator, interfacing

between users, multipools, and strategies. It allows users to deposit
and withdraw from multipools, and it ensures rewards are correctly
distributed.

● Factory.sol - is responsible for creating new multipool instances,
ensuring each new pool adheres to specific standards and
configurations.

● Multipool.sol - handles the core functionality of liquidity pools,
such as allowing users to add or remove liquidity, processing swaps
between tokens, and internally balancing the pool's assets. The
rebalancing feature ensures that the ratio of assets remains optimal
over time.

● MultipoolToken.sol - When users deposit assets into a multipool, they
receive multipool tokens in return, representing their share of the
pool. This contract manages the minting, burning, and general ERC20
operations for these tokens.

● MultiStrategy.sol - defines and executes various investment
strategies to maximize returns.

● PlatformFeesVault.sol - is a treasury for the platform. All platform
fees, whether from swaps, withdrawals, or other operations, are sent
to this contract.

● WagmiVesting.sol - is a mechanism to release tokens to users over a
specified time period, often used to incentivize long-term
participation and loyalty.

● GMI.sol - a primary token or management mechanism for the GMI
platform, overseeing pools, users, rewards, and related interactions.

● ErrLib.sol - a library for error handling.
● IMultipool.sol - an interface for Multipool contract.
● IDispatcher.sol - an interface for Dispatcher contract.
● IFactory.sol - an interface for Factory contract
● IMultiStrategy.sol - an interface for MultiStrategy contract.
● IPlatformFeesVault.sol - an interface for PlatformFeesVault contract.

www.hacken.io
4



Privileged roles
● WagmiVesting.sol:

○ Owner:
■ getBackWagmi: Retrieves a specified amount of WAGMI

tokens from the contract and transfers them to the
specified address.

● Gmi.sol:
○ Owner:

■ setEarnBeforeMint: Allows the owner to configure a
setting related to earning before minting.

■ setEarnOperator: Allows the owner to set or modify the
earn operator.

■ getMultiPoolIndex: Allow the owner to retrieve the index
of a multipool.

■ _setOracle: Allows the owner to set or modify the oracle.
■ setPremiumInfo: Allow the owner to set or modify premium

information.
● PlatformFeesVault.sol:

○ Owner:
■ setGmiAddress: This function allows the owner to set or

modify the GMI address.
● MultiStrategy.sol:

○ Owner:
■ setStrategy: This function allows the owner to set or

modify a strategy.
● Multipool.sol:

○ Operator:
■ rebalaceAll: Allows the operator to rebalance the pools

with specific parameters.
○ Owner:

■ setQuotePoolAddress: Allows the owner to set the address
of the quote pool.

■ addUnderlyingPool: Allow the owner to add an underlying
pool.

■ setParam: Allows the owner to set certain parameters for
the contract.

■ manageSwapTarget: Set/restrict permission to the
aggregator's router to swap through.

● Factory.sol:
○ Owner:

■ attachWagmiTokenAddress: Allows the owner to attach the
address of the Wagmi token.

www.hacken.io
5



■ createMultipool: Allows the owner to create a new
multipool.

● Dispatcher.sol:
○ Owner:

■ setWagmiTokenAddress: Allows the owner to set the address
of the Wagmi token.

■ add: Add new multipool to dispatcher.

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are partially missed:
○ Use of oracles is explained.
○ The system implies third-party constant control, the mechanism

of this interaction is not explained.
● Technical description is robust:

○ Run instructions are provided.
○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 9 out of 10.

● Best practice violations.

Test coverage
Code coverage of the project is 65% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is presented.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the
following score: 8.14. The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

18 August 2023 3 3 0 0

13 September 2023 3 0 0 0

21 September 2023 0 0 0 0

Risks

● The logic of the Admin EOA or contract is out of scope.

● The GMI smart contract uses oracles to get prices for tokens. The
code only describes that the oracle smart contract must implement the
IOracle interface. The documentation is missing the details on which
kind of oracles will be used. The implementation of functions for
getting prices from the oracle is also unknown. Oracles’
implementation is a significant part of the system, which is out of
the audit scope and was not checked.

● The system highly depends on the Admin actions, Admin is capable to
commit the next actions:

○ Set fees for the Strategies;
○ Set Uniswap pool address for specific tokens pair;
○ Increase vesting period up to 6900 hours;
○ Specify arbitrary Oracle for Wagmi-USD price within vesting

contract.

www.hacken.io
8



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
9



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
10

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I02, I04

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Passed

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Denial Of Service

Impact Medium

Likelihood Medium

The GMI contract allows burning GMI tokens and withdrawing Wagmi
tokens to the vesting contract after at least 5
(MINIMUM_LOCK_PERIOD_IN_BLOCKS) blocks since the last mintage of the
GMI tokens. However, it is possible to mint (mintGmi) a minimum
amount of tokens to arbitrary recipient in order to block the ability
to withdraw (burnGmi) tokens to the vesting.

This might lead to temporary inability of the entity to withdraw the
token to the vesting.

Path: ./liquidity-commitment-contracts/contracts/GMI.sol : mintGmi()

Recommendation: Rework the function to disallow minting tokens to
arbitrary addresses.

Found in: 7fda42f

Status: Fixed (Revised commit: 5c7e271)

M02. Denial Of Service

Impact High

Likelihood Low

The system of the contracts has Gas demanding computations due to the
multiple loop iterations over the arrays. The list of the pools
within the ecosystem is a permanently growing array. The system has
no functionality to remove elements from the array, the maximum
number of pools is not specified.

This might lead to DoS due to the growing Gas consumption caused by
the pools array growth.

Path: ./liquidity-commitment-contracts/contracts/GMI.sol : :
_earnAll(), _precalculateMint(), _withdrawPlatformShares(),

www.hacken.io
12



Recommendation: Add limitation on the number of pools in the system,
or rework the system logic to avoid iterations over the full list of
pools.

Found in: 7fda42f

Status: Fixed (Revised commit: 5c7e271)

M03. CEI Pattern Violation

Impact Low

Likelihood High

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The Checks-Effects-Interactions pattern is violated. During the
function, some state variables are updated after the external calls.

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during implementation of new functionality.

Paths: ./concentrator/contracts/Dispatcher.sol : deposit(),
withdraw()

Recommendation: Follow common best practices and implement the
function according to the Checks-Effects-Interactions pattern.

Found in: 3071cf4

Status: Mitigated (Revised commit: 5c7e271)

Low

L01. Data Inconsistency

Impact Medium

Likelihood Low

The admin might specify the maximum supply of the Multipool tokens,
but the specified amount might exceed the existing supply.

This might lead to the confusions during the interactions with the
system.

Path: ./concentrator/contracts/MultipoolToken.sol :
setMaxTotalSupply()

Recommendation: Add input data validation to verify that the new
supply limit does not contradict the existing supply value.

Found in: 3071cf4

Status: Mitigated (Revised commit: 241e81e)
www.hacken.io

13



L02. Missing Zero Address Validation

Impact Low

Likelihood Low

Additional checks against the 0x0 address should be included in the
reported functions to avoid unexpected results.

Paths: ./concentrator/contracts/Factory.sol : constructor(),
./concentrator/contracts/Multipool.sol : constructor(),
setQuotePoolAddress(), claimProtocolFees(), addUnderlyingPool(),
./concentrator/contracts/MultiStrategy.sol : setMultipool(),,
./concentrator/contracts/Dispatcher.sol : setWagmiTokenAddress(),
add();
./concentrator/contracts/PlatformFeesVault.sol : setGmiAddress();
./concentrator/contracts/MultipoolToken.sol : setMaxTotalSupply();
./liquidity-commitment-contracts/contracts/GMI.sol : constructor();
./liquidity-commitment-contracts/contracts/WagmiVesting.sol :
constructor();

Recommendation: It is recommended to add zero address checks.

Found in: 3071cf4, 7fda42f

Status: Mitigated (Revised commit: 241e81e)

L03. Missing Events

Impact Low

Likelihood Medium

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Paths:

./concentrator/contracts/Factory.sol : attachWagmiTokenAddress();

./concentrator/contracts/Multipool.sol : constructor(),
setQuotePoolAddress(), addUnderlyingPool();
./concentrator/contracts/MultiStrategy.sol : setMultipool(),,
./concentrator/contracts/Dispatcher.sol : setWagmiTokenAddress(), ,
./concentrator/contracts/PlatformFeesVault.sol : setGmiAddress();
./concentrator/contracts/MultipoolToken.sol : setMaxTotalSupply(),
./liquidity-commitment-contracts/contracts/GMI.sol :
setEarnBeforeMint(), earn();
./liquidity-commitment-contracts/contracts/WagmiVesting.sol :
startVesting();

Recommendation: Consider emitting events in the specified functions.

www.hacken.io
14



Found in: 3071cf4, 7fda42f

Status: Mitigated (Revised commit: 241e81e)

Informational

I01. Missing Variable Explicit Visibility

A variable does not have the visibility written explicitly in the
code.

That leads to readability issues.

Path: ./concentrator/contracts/Multipool.sol : operator

Recommendation: Describe the variable visibilities explicitly in the
code.

Found in: 3071cf4

Status: Fixed (Revised commit: 241e81e)

I02. Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

www.hacken.io
15



Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Paths: ./concentrator/contracts/Factory.sol,
./concentrator/contracts/Multipool.sol,
./concentrator/contracts/MultiStrategy.sol,
./concentrator/contracts/Dispatcher.sol,
./concentrator/contracts/PlatformFeesVault.sol,
./concentrator/contracts/DispatcherCode.sol,
./concentrator/contracts/MultipoolCode.sol,
./liquidity-commitment-contracts/contracts/GMI.sol,
./liquidity-commitment-contracts/contracts/WagmiVesting.sol

Recommendation:

Consistent adherence to the official Solidity style guide is
recommended. This enhances readability and maintainability of the
code, facilitating seamless interaction with the contracts. Providing
comprehensive NatSpec annotations for functions and following
Solidity's naming conventions further enrich the quality of the code.
Change order of layout to fit Official Style Guide.

Found in: 3071cf4, 7fda42f

Status: Reported (Revised commit: 5c7e271)

I03. Functions That Should Be External

Public functions that are not called from inside the contract should
be declared external to save Gas.

Paths:

./concentrator/contracts/PlatformFeesVault.sol : setGmiAddress();

./liquidity-commitment-contracts/contracts/GMI.sol : wagmiLockedOf(),
totalLockedWagmi(), platformOwedLiquidity(), gmiPrice();

Recommendation: Consider changing the function visibility to
external.

Found in: 3071cf4, 7fda42f

Status: Fixed (Revised commit: 241e81e)

I04. Missing Event Indexes

Use indexed events to keep track of a smart contract's activity after
it is deployed, which is helpful in reducing overall Gas.

www.hacken.io
16

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout


Path:
./concentrator/contracts/Factory.sol : CreateMultipool;
./concentrator/contracts/Multipool.sol : Deposit, Withdraw,
Rebalance, SwapTargetApproved, ParamChanged, TrustedPoolAdded,
FeesGrowth,
./concentrator/contracts/MultiStrategy.sol : SetNewStrategy,
SetMultipool;
./concentrator/contracts/Dispatcher.sol : AddNewPool, Deposit,
Withdraw, WagmiLossCompensation;
./liquidity-commitment-contracts/contracts/GMI.sol : AddPoolToGmi,
MintGmi, BurnGmi, Earn, NotEnoughWagmiBalance;
./liquidity-commitment-contracts/contracts/WagmiVesting.sol :
UpVestingPeriod, Exit, GetBackWagmi;

Recommendation: Add missed indexed keywords to easier tracking smart
contract information.

Found in: 3071cf4, 7fda42f

Status: Reported (Revised commit: 5c7e271)

I05. Non-Explicit Variable Unit Sizes

Variable types uint are used without explicitly setting their size.

Path:
./concentrator/contracts/Multipool.sol : RebalanceParams{amountIn}

Recommendation: Set variable size explicitly for uint.

Found in: 3071cf4

Status: Fixed (Revised commit: 9e4f725)

I06. State Variables Can Be Declared Constant

Compared to regular state variables, the gas costs of constant
variables are much lower.

Path:
./concentrator/contracts/Multipool.sol : protocolFeeWeightMax,
protocolFeeWeight;

Recommendation: Declare mentioned variables as constant.

Found in: 3071cf4

Status: Fixed (Revised commit: 9e4f725)

www.hacken.io
17



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
18



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
19



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
20



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/RealWagmi/concentrator

Commit 3071cf4

Whitepaper https://docs.popsicle.finance/v/wagmi-1/

Requirements https://docs.popsicle.finance/v/wagmi-1/

Technical
Requirements https://github.com/RealWagmi/concentrator/blob/main/README.md

Contracts File: ./contracts/Factory.sol
SHA3: c75994e07dba30c8ab769101bdd66907aee50750ef13441488bc11b0695c6a01

File: ./contracts/Multipool.sol
SHA3: 68a09ef9284a2fe8a76071aa363a7ee365a54aef17d33f717939a0687c887227

File: ./contracts/MultiStrategy.sol
SHA3: 6ae775ba104c065acea91c620b035753ddb1fd0237da1d68b66a73dfdcd0aa6f

File: ./contracts/Dispatcher.sol
SHA3: e8472bfb049956488d6595b919c6b55618e065f3053d5600399868c382dc8965

File: ./contracts/PlatformFeesVault.sol
SHA3: 3d953c437eaf5ba16b1b830b9a5c9e2ea11a97532f0c6023292eb0aa35ad4c83

File: ./contracts/DispatcherCode.sol
SHA3: 85df47b3fd87a165a13bfdf1325d3a9176823eadcf387832b8d7b59a1448255e

File: ./contracts/MultipoolCode.sol
SHA3: 5d0dfc5e1eea872606e1bbf52071bc1022ae3a1fcff140a268c514e9c4ffa1f4

File: ./contracts/libraries/ErrLib.sol
SHA3: a0a1f72fcace6a10bf49dacbccda84874e3f3266f789318285ed7abe71340b99

File: ./contracts/interfaces/IMultipool.sol
SHA3: 47e369dd4c6649752c0e380aed33b328b9a7c1bfc76129b0b406485cc6b16a5b

File: ./contracts/interfaces/IDispatcher.sol
SHA3: 93bdfc8cbf735026436d8ebe6f16653bff2964e4aec28a37d83173f4ce10ca7d

File: ./contracts/interfaces/IFactory.sol
SHA3: 021902a857706c4c054023452bdba25c0f54c6af6e5aec84e0118a1c52975f16

File: ./contracts/interfaces/IMultiStrategy.sol
SHA3: 923978a31dd83b1f54a8e052673faa20c719d83fd29095daf251996e33ffcc0d

File: ./contracts/interfaces/IPlatformFeesVault.sol
SHA3: 58c50a98336c50cfcbd4aee6a0b62c988a3bbec0a2422babff85e9d72805ab90

File: ./contracts/interfaces/ICode.sol
SHA3: e888a69f3eb6845a79802140dd5fc222d5d57edb8a5e5ecbe58b2c2719915fa0

www.hacken.io
21

https://github.com/RealWagmi/concentrator
https://docs.popsicle.finance/v/wagmi-1/
https://docs.popsicle.finance/v/wagmi-1/
https://github.com/hknio/concentrator-6a2f1ed79fff65743dfe4c00a2/blob/main/README.md


Repository https://github.com/ReakWagmi/liquidity-commitment-contracts

Commit 7fda42f

Whitepaper https://docs.popsicle.finance/v/wagmi-1/

Requirements https://docs.popsicle.finance/v/wagmi-1/

Technical
Requirements

https://github.com/RealWagmi/liquidity-commitment-contracts/blob/main/
README.md

Contracts File: ./contracts/GMI.sol
SHA3: d936dc47fe27d2ec7dcc451911ad27ba9188d58d377ffff9b802a37032e00ab9

File: ./contracts/WagmiVesting.sol
SHA3: 5e5bc50a81e4b7ef23667a38cd0eb6388356b0f3d5a8a333201ab0935dbebf53

File: ./contracts/interfaces/IOracle.sol
SHA3: 7d13aad1127afc6a049a5eb090b4ba2d7ece6957237fdc593561cf6b4fb1dd50

File: ./contracts/interfaces/IWagmiVesting.sol
SHA3: 6b1bc898bd0566eb6ebcf55a45fdfe074d5267ce51b118ce8759cd2760c71096

Second review scope

Repository https://github.com/RealWagmi/concentrator

Commit 81fb51a

Whitepaper https://docs.popsicle.finance/v/wagmi-1/

Requirements https://docs.popsicle.finance/v/wagmi-1/

Technical
Requirements https://github.com/RealWagmi/concentrator/blob/main/README.md

Contracts File: ./contracts/Dispatcher.sol
SHA3: a5221bcfb6a8cc7d7f386b7c3585603f8fde059f134ce6268a8a380cf429db22

File: ./contracts/DispatcherCode.sol
SHA3: 85df47b3fd87a165a13bfdf1325d3a9176823eadcf387832b8d7b59a1448255e

File: ./contracts/Factory.sol
SHA3: c75994e07dba30c8ab769101bdd66907aee50750ef13441488bc11b0695c6a01

File: ./contracts/Multipool.sol
SHA3: dcb55624ed875b8f195fcde46bf97acf5fe42df9964fa32c02e321e903feea37

File: ./contracts/MultipoolCode.sol
SHA3: 5d0dfc5e1eea872606e1bbf52071bc1022ae3a1fcff140a268c514e9c4ffa1f4

File: ./contracts/MultipoolToken.sol
SHA3: 24344050948f78f7eeb08859c997df630656aa918b087681d0969fcb09847f5f

File: ./contracts/MultiStrategy.sol
SHA3: c7ebd67b7db3f6039436055836f72ad9c0fe0c9f81eae2c9a3832277a3232a55

www.hacken.io
22

https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md
https://docs.popsicle.finance/v/wagmi-1/
https://docs.popsicle.finance/v/wagmi-1/
https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md
https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md
https://github.com/RealWagmi/concentrator
https://docs.popsicle.finance/v/wagmi-1/
https://docs.popsicle.finance/v/wagmi-1/
https://github.com/hknio/concentrator-6a2f1ed79fff65743dfe4c00a2/blob/main/README.md


File: ./contracts/PlatformFeesVault.sol
SHA3: 9dfaebdcc955435bbb4500e080c38a77dae4a45cdab9ed71897870383af39cb2

File: ./contracts/interfaces/ICode.sol
SHA3: e888a69f3eb6845a79802140dd5fc222d5d57edb8a5e5ecbe58b2c2719915fa0

File: ./contracts/interfaces/IDispatcher.sol
SHA3: e48cbb93ca218161b2656d8693adb12f27f743fbd69f93e39c1c4670a4fae245

File: ./contracts/interfaces/IFactory.sol
SHA3: 021902a857706c4c054023452bdba25c0f54c6af6e5aec84e0118a1c52975f16

File: ./contracts/interfaces/IMultipool.sol
SHA3: 1a238abfbb149f52c9b1c09ec71ada38c1a4d9e9358dd20e703c850f8c84cba4

File: ./contracts/interfaces/IMultipoolToken.sol
SHA3: e6e30bc081f822aa1d94cfcf173952422bda0325f5ca8561c728de07c94ff312

File: ./contracts/interfaces/IMultiStrategy.sol
SHA3: 9400d2a4a683b4752492df72be6fd9988c563ac8df2e22ce505cf77d82b71fd3

File: ./contracts/interfaces/IPlatformFeesVault.sol
SHA3: 58c50a98336c50cfcbd4aee6a0b62c988a3bbec0a2422babff85e9d72805ab90

File: ./contracts/libraries/ErrLib.sol
SHA3: a0a1f72fcace6a10bf49dacbccda84874e3f3266f789318285ed7abe71340b99

Repository https://github.com/ReakWagmi/liquidity-commitment-contracts

Commit 5c7e271

Whitepaper https://docs.popsicle.finance/v/wagmi-1/

Requirements https://docs.popsicle.finance/v/wagmi-1/

Technical
Requirements

https://github.com/RealWagmi/liquidity-commitment-contracts/blob/main/
README.md

Contracts File: ./contracts/GMI.sol
SHA3: c84b6c39c551d380ea1f38b5eacfaa32cd6190beb3332e36c5f0355a318a55c1

File: ./contracts/WagmiVesting.sol
SHA3: ca939418d9d5634bd7ccc8813e6e2d4a0755844c32b595bdea4659628f621017

File: ./contracts/interfaces/IOracle.sol
SHA3: a7bb79907e9e1cee069428d162800bd129dfccd65e9c7062e55258d077668265

File: ./contracts/interfaces/IWagmiVesting.sol
SHA3: 6b1bc898bd0566eb6ebcf55a45fdfe074d5267ce51b118ce8759cd2760c71096

Third review scope

Repository https://github.com/RealWagmi/concentrator

Commit 9e4f725

www.hacken.io
23

https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md
https://docs.popsicle.finance/v/wagmi-1/
https://docs.popsicle.finance/v/wagmi-1/
https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md
https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md
https://github.com/RealWagmi/concentrator


Whitepaper https://docs.popsicle.finance/v/wagmi-1/

Requirements https://docs.popsicle.finance/v/wagmi-1/

Technical
Requirements https://github.com/RealWagmi/concentrator/blob/main/README.md

Contracts File: ./contracts/Dispatcher.sol
SHA3: a5221bcfb6a8cc7d7f386b7c3585603f8fde059f134ce6268a8a380cf429db22

File: ./contracts/DispatcherCode.sol
SHA3: 85df47b3fd87a165a13bfdf1325d3a9176823eadcf387832b8d7b59a1448255e

File: ./contracts/Factory.sol
SHA3: c75994e07dba30c8ab769101bdd66907aee50750ef13441488bc11b0695c6a01

File: ./contracts/Multipool.sol
SHA3: 94371ee59dd6569000d79c55000cf1c2cff13447ad2fe20fc262f86c78dfb14b

File: ./contracts/MultipoolCode.sol
SHA3: 5d0dfc5e1eea872606e1bbf52071bc1022ae3a1fcff140a268c514e9c4ffa1f4

File: ./contracts/MultipoolToken.sol
SHA3: 9496a3617e7f4155c12ea9d17dd8183d8702cc132ad55dd7add5701aa1e40cfe

File: ./contracts/MultiStrategy.sol
SHA3: c7ebd67b7db3f6039436055836f72ad9c0fe0c9f81eae2c9a3832277a3232a55

File: ./contracts/PlatformFeesVault.sol
SHA3: 214f0c476eb4d77f9f8d14462a6626a5d5c259b5d9c4fc2b02fb99b2e245cc96

File: ./contracts/interfaces/ICode.sol
SHA3: e888a69f3eb6845a79802140dd5fc222d5d57edb8a5e5ecbe58b2c2719915fa0

File: ./contracts/interfaces/IDispatcher.sol
SHA3: e48cbb93ca218161b2656d8693adb12f27f743fbd69f93e39c1c4670a4fae245

File: ./contracts/interfaces/IFactory.sol
SHA3: 021902a857706c4c054023452bdba25c0f54c6af6e5aec84e0118a1c52975f16

File: ./contracts/interfaces/IMultipool.sol
SHA3: 1a238abfbb149f52c9b1c09ec71ada38c1a4d9e9358dd20e703c850f8c84cba4

File: ./contracts/interfaces/IMultipoolToken.sol
SHA3: e6e30bc081f822aa1d94cfcf173952422bda0325f5ca8561c728de07c94ff312

File: ./contracts/interfaces/IMultiStrategy.sol
SHA3: 9400d2a4a683b4752492df72be6fd9988c563ac8df2e22ce505cf77d82b71fd3

File: ./contracts/interfaces/IPlatformFeesVault.sol
SHA3: 58c50a98336c50cfcbd4aee6a0b62c988a3bbec0a2422babff85e9d72805ab90

File: ./contracts/libraries/ErrLib.sol
SHA3: a0a1f72fcace6a10bf49dacbccda84874e3f3266f789318285ed7abe71340b99

Repository https://github.com/ReakWagmi/liquidity-commitment-contracts

Commit 241e81e

www.hacken.io
24

https://docs.popsicle.finance/v/wagmi-1/
https://docs.popsicle.finance/v/wagmi-1/
https://github.com/hknio/concentrator-6a2f1ed79fff65743dfe4c00a2/blob/main/README.md
https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md


Whitepaper https://docs.popsicle.finance/v/wagmi-1/

Requirements https://docs.popsicle.finance/v/wagmi-1/

Technical
Requirements

https://github.com/RealWagmi/liquidity-commitment-contracts/blob/main/
README.md

Contracts File: ./contracts/GMI.sol
SHA3: 5ac297ef215c11ccc36b8c1c8c2d1cea2602e85085f9480f674470ff259b941e

File: ./contracts/WagmiVesting.sol
SHA3: ab702379405133b09da2618c40d5943e87187b6170289d501ee624e8faf0eb5e

File: ./contracts/interfaces/IOracle.sol
SHA3: a7bb79907e9e1cee069428d162800bd129dfccd65e9c7062e55258d077668265

File: ./contracts/interfaces/IWagmiVesting.sol
SHA3: 6b1bc898bd0566eb6ebcf55a45fdfe074d5267ce51b118ce8759cd2760c71096

www.hacken.io
25

https://docs.popsicle.finance/v/wagmi-1/
https://docs.popsicle.finance/v/wagmi-1/
https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md
https://github.com/hknio/liquidity-commitment-contracts-57ba0c73/blob/main/README.md

