
Customer: WhiteBIT
Date: 8 September, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for WhiteBIT

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OU

Platform EVM

Language Solidity

Methodology Link

Website https://whitebit.com

Changelog
04.07.2023 – Initial Review
01.08.2023 - Second Review
08.09.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://whitebit.com


Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10
Low 10

L01. Missing Event Emitting 10
L02. Copy Of Well Known Contract 10

Informational 11
I01. Floating Pragma 11
I02. Style Guide Violation 11

Disclaimers 12
Appendix 1. Severity Definitions 13

Risk Levels 13
Impact Levels 14
Likelihood Levels 14
Informational 14

Appendix 2. Scope 15

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by WhiteBIT (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

WB Soul Ecosystem is a WB Network blockchain - based ecosystem designed to
bring a comprehensive decentralized identity and attributes management
system. Soulbound enables users to create unique identifiers called Souls,
which are associated with their wallets, by supplying relevant information
to the network. The network, in turn, associates Souls with two types of
features - dynamic and immutable, through a system of smart contracts.
Soulbound provides users with a decentralized platform for creating and
managing digital identities with associated dynamic and permanent features
on the blockchain.

The files in the scope:
● EnumerableSet.sol - OpenZeppelin library for managing abstract data

type of primitive types.
● SoulRegistry.sol - Is a contract that enables the registration of

Souls and the management of its addresses (associating/dissociating
secondary addresses, changing the primary address). This contract is
controlled by the owner (WhiteBIT), with the possibility of granting
primary Soul addresses the ability to manage their list of secondary
addresses.

● SoulAttributeRegistry.sol - Is a contract that allows registering
Soul Attributes and binding specific attributes to specific Souls.
This contract facilitates the registration of Attribute and provides
functionality to bind specific Attributes to specific Souls.

● SoulBoundTokenRegistry.sol - The SoulBoundTokenRegistry contract is
responsible for managing the binding of SoulBound tokens to Souls.
The contract facilitates the association of a token from a specified
collection to a particular Soul.

● Ownable.sol - contract module from OpenZeppelin, which provides a
basic access control mechanism, where there is an account (an owner)
that can be granted exclusive access to specific functions.

● SoulRegistryConfig.sol - Simple registry configuration contract that
provides addresses assignment rules.

● Deployer.sol - Basic deployer contract for deploying all registries
in a single place

● SoulLevel.sol - This contract implements the ISoulAttribute interface
and represents the current Hold level of a user on WhiteBIT

www.hacken.io
4



● IsVerified.sol - This contract implements the ISoulAttribute
interface and represents the current KYC verification status of a
user on WhiteBIT

● ISoulAttributeRegistry.sol - The Interface of the
SoulAttributeRegistry.sol

● ISoulBoundTokenRegistry.sol - The Interface of the
SoulBoundTokenRegistry.sol

● Context.sol - Classic Context contract from OpenZeppelin.
● SoulAttribute.sol - Contract with a predefined IERC165 methods.
● ISoulBoundTokenCollection.sol - Interface of the

SoulBoundTokenRegistry.sol
● ISoulRegistry.sol - The Interface of the SoulRegistry.sol
● ISoulFeature.sol - ISoulFeature is an interface for defining specific

soul features.
● ISoulFeatureRegistry.sol - Interface for
● IERC165.sol - The Interface of the ERC165 standard.

Privileged roles
● Owner privilege roles for Ownable.sol:

○ Transfers ownership of the contract to a new account.
○ Renounce ownership of the contract.

● Owner privilege roles SoulFeatureRegistry.sol:
○ Ability to register new features.
○ Ability to pause registered features.
○ Ability to unpause paused features.

● Owner privilege roles SoulRegistry.sol:
○ Register new soul using specified address as a primary address.
○ Change registered soul's primary address.
○ Assign new address to existing soul.

● Owner privilege roles SoulRegistryConfig.sol:
○ Allow souls to manage addresses list.
○ Disallow souls to manage addresses list.
○ Update addresses per soul limit.

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● NatSpecs are very good.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and user interactions are covered with tests.

Security score
As a result of the audit, the code does not contain issues. The security
score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

04 July 2023 2 0 0 0

01 August 2023 0 0 0 0

08 September 2023 0 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent version
of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

Passed

Unchecked Call
Return Value

The return value of a message call should
be checked. Passed

Access Control
&
Authorization

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs
to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should never
be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial of
Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

www.hacken.io
7



Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

Block numbers should not be used for time
calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifiers
should always be used. All parameters from
the signature should be used in signer
recovery. EIP-712 should be followed
during a signer verification.

Passed

Shadowing
State Variable

State variables should not be shadowed. Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or be
locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency

Smart contract data should be consistent
all over the data flow. Passed

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.
Contracts shouldn’t rely on values that
can be changed in the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not
be any cases when execution fails due to
the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should be
followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on.
This should be done to protect a contract
from compromised oracles.

Not
Relevant

Tests Coverage

The code should be covered with unit
tests. Test coverage should be sufficient,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

L01. Missing Event Emitting

Impact Low

Likelihood Low

Critical state changes should emit events for tracking things
off-chain. The functions do not emit events on change of important
values.

Path: ./contracts/SoulRegistryConfig.sol : allowPublicModification(),
disallowPublicModification(), updateMaxAddressesPerSoul()

Recommendation: Emit events on critical state changes.

Found in: 3e2f867

Status: Fixed (Revised commit: 102c891)

L02. Copy Of Well Known Contract

Impact Low

Likelihood Low

Well-known contracts from projects like OpenZeppelin should be
imported directly from source as the projects are in development and
may update the contracts in future. The system uses a copy of
OpenZeppelin's EnumerableSet, Context and Ownable.

Paths: ./libraries/EnumerableSet.sol,

./contracts/Context.sol,

./contracts/Ownable.sol,

Recommendation: Import contracts directly from OpenZeppelin's
package.

www.hacken.io
10



Found in: 3e2f867

Status: Fixed (Revised commit: 102c891)

Informational

I01. Floating Pragma

The project uses floating pragmas ^0.8.19.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively

Paths: ./contracts/Context.sol :

./contracts/Ownable.sol :

./libraries/EnumerableSet.sol :

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: 3e2f867

Status: Fixed (Revised commit: 102c891)

I02. Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

Following the Solidity naming convention is strongly recommended.

Paths: ./contracts/attributes/SoulLevel.sol : description,

./contracts/attributes/IsVerified.sol : description

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Following Solidity's naming conventions further enriches the quality
of the code.

Found in: 3e2f867

Status: Mitigated (The Customer stated constants are part of the
ISoulFeature.sol interface.)

www.hacken.io
11



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
12



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
13



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
14



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/whitebit-exchange/souls-ecosystem-contracts

Commit 3e2f8675abc1cca244d23285cb3cd25e88aa3a1e

Whitepaper -

Requirements Confidential

Technical
Requirements Confidential

Contracts File: contracts/Context.sol
SHA3: fbed13e8608f0be145eb6a1ed6660d99ea7538519c8f5dec6513ec62893b6918

File: contracts/Deployer.sol
SHA3: 154e8ba18920380313876471868c022703f7251106594dc9fa34881b5dec63dd

File: contracts/Ownable.sol
SHA3: d2ad9b0c946b5c87e480d4caab8ac9f4adf4180a953ce9b7c4de1426ed68986e

File: contracts/SoulAttribute.sol
SHA3: cfabab2a56fc27050c4bb9bd53f3b58ec82f0f1ec975bb97a5a537945715790b

File: contracts/SoulAttributeRegistry.sol
SHA3: 7d428958ed3f27dd9fce73a355f9e8f696a8ec9899d7ca022e6be4c2ba49f848

File: contracts/SoulBoundTokenRegistry.sol
SHA3: 4e016dee5b92f7e30924171dc371d806e0ebfe0c616737e683cc05ddeb5b4b45

File: contracts/SoulFeatureRegistry.sol
SHA3: 7eabf67dca015a10eee777d6ec15168d118a2d209e30d3ce774dde301a5e6b1f

File: contracts/SoulRegistry.sol
SHA3: 8ff2634845af3491696e4e8b3f63b9bab22b294e4f8b2af4c20716a6a7cb21b5

File: contracts/SoulRegistryConfig.sol
SHA3: 28928288828bc54daa530c310bd7ab6ec0fb74a2bbaa703eff95648305a9f0ba

File: contracts/attributes/IsVerified.sol
SHA3: 77b5264737ac229308d356e432b5f869990621351729c1e551c6b407065a12e5

File: contracts/attributes/SoulLevel.sol
SHA3: 426d13926882b22530aa9a59c2ec16367c527034b82083e08b3af13406b1b72e

File: interfaces/IERC165.sol
SHA3: 0b6324b1ecdab0c61e4fb3f6f991000b1ae36ee947b8ea0100f55224a0b92f85

File: interfaces/ISoulAttribute.sol
SHA3: 1c2576f719eb0b9ce8fbff0b5ff467c8b7098449a523935da68831e094213d68

File: interfaces/ISoulAttributeRegistry.sol
SHA3: 8911a5e60b5ab157043e907de7c5e5d534269d965eab9b29538b7fe6ac1db057

www.hacken.io
15



File: interfaces/ISoulBoundTokenCollection.sol
SHA3: e5f107d13aa7368f38defa524f77588045ea9fcc6cade4611a0cd044e106a12b

File: interfaces/ISoulBoundTokenRegistry.sol
SHA3: aec4cf893067b55e36e266f2039a79e253e0ed2e78506406832718ec467b4d7b

File: interfaces/ISoulFeature.sol
SHA3: f72ddea8371da5fdeae172c53117de5256c86d9e36f8e5a7fb35850f75065e68

File: interfaces/ISoulFeatureRegistry.sol
SHA3: 9d7fc2ad838d6688e230a25366c180073ccbd5b6b7b0f6ff3534f00596a3d0a2

File: interfaces/ISoulRegistry.sol
SHA3: abc57709e7bf67923d53a3e2da2d617bb8b725289910de822746131196808bce

File: libraries/EnumerableSet.sol
SHA3: 7cdb59b33bab09cb82e8b087e8a2207cae99b79dce95e14ccf7054705424e319

Second review scope

Repository https://github.com/whitebit-exchange/souls-ecosystem-contracts

Commit 102c8911a74eb294516206a0bd43f5857fabc00f

Whitepaper -

Requirements Confidential

Technical
Requirements Confidential

Contracts File: contracts/SoulAttribute.sol
SHA3: 7a4c3f281d36e3591b69dd3d5ec5bdcf7249d7557dd69d9d5ba0b30cc4a32f61

File: contracts/SoulAttributeRegistry.sol
SHA3: 6e0d6dd51c9d0efa8730761f715af25b61f8deb247c58d92eee16285cc7f22d1

File: contracts/SoulBoundTokenRegistry.sol
SHA3: 73a9fbf71af368097e8fed8946eef8b9a840158e65af3194a5c6b1054eac6178

File: contracts/SoulFeatureRegistry.sol
SHA3: f760c25dda7ca55390b67bb39f4e53df88da78f03efb851ae568ed11e458a076

File: contracts/SoulRegistry.sol
SHA3: d8beb69c132ae0ea005813a3ea3ed0d6abb04e19be83113cd3bdb69ff007ffe4

File: contracts/SoulRegistryConfig.sol
SHA3: e3cae7016592cc1f23f3d238642baace566e41ba62bfaf6fec31e11c6cdc717c

File: contracts/attributes/HoldLevel.sol
SHA3: 2a6b9209e029df6a6a82eb4f543d8d864db2e7164296a1f841268ceff3223a44

File: contracts/attributes/IsVerified.sol
SHA3: f761a24a3554dfcab547b9a526250fc2619440b5c5c3f1cc8e1d39cf67e3c285

File: contracts/tokens/EarlyBird.sol
SHA3: 5daa5399c0dda11bfe8048a2a92ece70714f16cbd7c32e2fc923f96b402e9a21

File: interfaces/IERC165.sol
SHA3: 0b6324b1ecdab0c61e4fb3f6f991000b1ae36ee947b8ea0100f55224a0b92f85

www.hacken.io
16



File: interfaces/ISoulAttribute.sol
SHA3: a552db916f592c104bdeaf544b0234387033f84895ceb22401dc3a67526bc8e7

File: interfaces/ISoulAttributeRegistry.sol
SHA3: 3f0404462b872b35fa870a5dbdb6688bbc03b7ad6dc7cd5f610dbd5c6f1a2b4b

File: interfaces/ISoulBoundTokenCollection.sol
SHA3: 277546552957e27b990b76dca631e2b5905bcfe0160c6be1f7d538a116415ec3

File: interfaces/ISoulBoundTokenRegistry.sol
SHA3: aec4cf893067b55e36e266f2039a79e253e0ed2e78506406832718ec467b4d7b

File: interfaces/ISoulFeature.sol
SHA3: d74f54b1c264301b20cc758d49fcd3391b400522fcc0ba8f493c34c24fd268c6

File: interfaces/ISoulFeatureRegistry.sol
SHA3: 9d7fc2ad838d6688e230a25366c180073ccbd5b6b7b0f6ff3534f00596a3d0a2

File: interfaces/ISoulRegistry.sol
SHA3: b1bdac5922e985c1d4990b8858b7fd9ef5ec7cb296c21f65b81d59d3da0dec66

Third review scope

Repository https://github.com/whitebit-exchange/souls-ecosystem-contracts

Commit f332570abecf5897e4ae9719577d78ab9f8ef0ab

Whitepaper -

Requirements Confidential

Technical
Requirements Confidential

Contracts File: contracts/SoulAttribute.sol
SHA3: b5399cb2a3662d401f232d46503cdd3845cb9de33fe1d8e36adf9a67083754c3

File: contracts/SoulAttributeRegistry.sol
SHA3: 2345907184706d3316d88ddde527ed531bab843ba60b580108b5e2db07c9062a

File: contracts/SoulBoundTokenRegistry.sol
SHA3: 73a9fbf71af368097e8fed8946eef8b9a840158e65af3194a5c6b1054eac6178

File: contracts/SoulFeatureRegistry.sol
SHA3: f760c25dda7ca55390b67bb39f4e53df88da78f03efb851ae568ed11e458a076

File: contracts/SoulRegistry.sol
SHA3: d8beb69c132ae0ea005813a3ea3ed0d6abb04e19be83113cd3bdb69ff007ffe4

File: contracts/SoulRegistryConfig.sol
SHA3: e3cae7016592cc1f23f3d238642baace566e41ba62bfaf6fec31e11c6cdc717c

File: contracts/attributes/HoldAmount.sol
SHA3: 53bce3448acd2613294276b0780615bb570100e5a52239ff41cb7e89406559e9

File: contracts/attributes/HoldLevel.sol
SHA3: f750ab70f24f2f9d3f1757b4f88907020803f2bc0be9516e313442ef3cff48d2

File: contracts/attributes/IsVerified.sol

www.hacken.io
17



SHA3: 609f12c9241b7278f68751bb777f9f3f311ea9c644ef56717e301b6860287d5f

File: contracts/tokens/EarlyBird.sol
SHA3: 5daa5399c0dda11bfe8048a2a92ece70714f16cbd7c32e2fc923f96b402e9a21

File: interfaces/IERC165.sol
SHA3: 0b6324b1ecdab0c61e4fb3f6f991000b1ae36ee947b8ea0100f55224a0b92f85

File: interfaces/ISoulAttribute.sol
SHA3: 45549c3b055bc220bfdce7bd7a4360415321725032a099613149c2bc31695ec8

File: interfaces/ISoulAttributeRegistry.sol
SHA3: 44714958075d82a744818f7bba5c347a29a5bc55cc08e23e00b6b2c870912421

File: interfaces/ISoulBoundTokenCollection.sol
SHA3: 277546552957e27b990b76dca631e2b5905bcfe0160c6be1f7d538a116415ec3

File: interfaces/ISoulBoundTokenRegistry.sol
SHA3: aec4cf893067b55e36e266f2039a79e253e0ed2e78506406832718ec467b4d7b

File: interfaces/ISoulFeature.sol
SHA3: d74f54b1c264301b20cc758d49fcd3391b400522fcc0ba8f493c34c24fd268c6

File: interfaces/ISoulFeatureRegistry.sol
SHA3: 9d7fc2ad838d6688e230a25366c180073ccbd5b6b7b0f6ff3534f00596a3d0a2

File: interfaces/ISoulRegistry.sol
SHA3: b1bdac5922e985c1d4990b8858b7fd9ef5ec7cb296c21f65b81d59d3da0dec66

www.hacken.io
18


