
Customer: Alacrity LSD Protocol
Date: Aug 18, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Alacrity
LSD Protocol

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OU

Tags ERC20 token; Staking

Platform EVM

Language Solidity

Methodology Link

Website https://linktr.ee/alacritylsd

Changelog
23.06.2023 – Initial Review
21.07.2023 - Second Review
18.08.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://linktr.ee/alacritylsd


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C01. Invalid Calculations 10
C02. Data Inconsistency 10

High 11
H01. Contradiction In Function Name 11
H02. Funds Lock 11

Medium 12
M01. Missing Validation 12
M02. Unverifiable Logic 12
M03. Denial of Service 13

Low 13
L01. Missing Zero Address Validation 13
L02. Empty Function 13
L03. Floating Pragma 14
L04. Missing Event Emitting 14

Informational 15
I01. State Variables That Can Be Declared Immutable 15
I02. Redundant Use Of SafeMath 15
I03. Unused Functionality 16
I04. Functions That Can Be Declared External 16
I05. Redundant Require Statement 16
I06. Unused Imports 16
I07. Style Guide Violation 17
I08. Redundant Declaration 18
I09. Data Inconsistency 18
I10. Hardcoded Value 18
I11. Require Statement Without An Error Message 19

Disclaimers 20
Appendix 1. Severity Definitions 21

Risk Levels 21
Impact Levels 22
Likelihood Levels 22
Informational 22

Appendix 2. Scope 23

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Alacrity LSD Protocol (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

The Alacrity LSD Protocol audit scope consists of a staking and rewarding
protocol that accepts ERC20 and native token staking for stakers, and
distributes rewards according to their staked values. Both the staking
token and reward token can be configured, and different taking pools can be
managed by admin addresses.
The core contract of the system are the following;

● StakingPool.sol - The staking contract for a single ERC20 token
staking and reward token.

● StakingPoolFactory.sol - The contract that handles creation and
management of several staking pools, including native token staking.

● EthStakingPool.sol - The staking pool contract for the native token.
● CurrencyTransferLib.sol - The helper library for transferring native

tokens.
● RewardsDistributionRecipient.sol - Helper extendable contract to

allow calls restricted to rewards distributor.
● IVEALSD.sol - Interface for the vote escrow token of Alacrity.
● IALSD.sol - Interface for the platforms native token.
● IWETH.sol - Interface for native token wrapper.
● IStakingPool.sol - Interface for the Staking Pool.

Privileged roles
● Owner: Can interact with the StakingPoolFactory.sol and use its

privileged functions, such as deploying new pools, withdrawing excess
rewards, and adding rewards to pools.

● rewardsDistribution: This is the StakingPoolFactory.sol contract. It
can trigger privileged functions in the staking pool contracts, such
as changing reward rate by notifying reward amount and withdrawing
excess rewards.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● Development environment description is not provided.
● NatSpec is not sufficient.

Code quality
The total Code Quality score is 7 out of 10.

● Solidity style guides are not followed.
● Missing zero address checks.
● The Development Environment was not configured.

Test coverage
Code coverage of the project is 0% (branch coverage).

● Tests were not provided.

Security score
As a result of the audit, the code contains 1 medium and 2 low severity
issues. The security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 2.0.

The system users should acknowledge all the risks summed up in the risks
section of the report.

Table. The distribution of issues during the audit

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Review date Low Medium High Critical

23 June 2023 4 3 2 3

21 July 2023 4 1 2 2

18 August 2023 2 1 0 0

Risks

● There are out of scope external calls made in the
StakingPoolFactory.sol contracts' addRewards function. The security
of the functionality cannot be verified.

● Users cannot get their rewards from the system unless the owner adds
rewards via StakingPoolFactory contract. The timing and quantity of
reward additions are determined by a centralized mechanism.

● The ALSD and veALSD contracts are not part of the audit scope, and
their security cannot be verified.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I07

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Failed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

C01. Invalid Calculations

Impact High

Likelihood High

The refund functionality in the EthStakingPool contract is not
working correctly when the fee for deposits is enabled.

The user is refunded twice, first in the _transferStakingTokenFee()
function and second in the _transferStakingToken().

In both cases, the refunded amount is calculated incorrectly, but
most importantly, the refund functionality is causing double
spending.

A malicious actor can send a stake() transaction with a low amount
and a high msg.value to drain native tokens from the contract.

He will be refunded twice based on the msg.value - fee and msg.value
- amount calculations in both functions, leading to an amount of
native tokens almost equal to msg.value being extracted.

Path:
./EthStakingPool.sol : _transferStakingTokenFee(),
_transferStakingToken()

Recommendation: Fix the double refund problem or revert when
msg.value is not equal to the amount in stake() function.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

C02. Data Inconsistency

Impact High

Likelihood High

Transfer direction is incorrect in the _transferStakingTokenFee
function. Fee is getting stuck in the ETHStakingPool contract and not
getting sent to the fee manager's address.

This will lead the fee manager to not receive staking fee payments.

Path:
./EthStakingPool.sol : _transferStakingTokenFee()

www.hacken.io
10



Recommendation: Transfer the received WETH after depositing, to the
feeManager address.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

High

H01. Contradiction In Function Name

Impact Medium

Likelihood High

Although the withdrawRewards() function name in the StakingPool.sol
contract indicates that it will withdraw the rewards, it actually
allows the owner to withdraw the stakingToken in the contract that is
excess from user stakes.

The withdrawRewards() function name in the EthStakingPool.sol
contract is redundant since the funds are stored as WETH and not
native tokens that are being transferred.

This may lead to unexpected behavior.

Paths:
./EthStakingPool.sol : withdrawRewards()
./StakingPool.sol : withdrawRewards()

Recommendation: Describe the functionality and rename the functions
to express its code.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

H02. Funds Lock

Impact Medium

Likelihood High

In the stake() function of the StakingPool contract, there is a
payable modifier used, but there is no check on the msg.value.

If the transferred token is not native (in the case the interacted
contract is not EthStakingPool.sol) but there is a transfer of native
tokens (ETH), they will be locked in the contract.

Path:
./StakingPool.sol : stake()

www.hacken.io
11



Recommendation: Add a check in the stake() function so that when the
staking token is not the native token, it should revert on msg.value
> 0.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

Medium

M01. Missing Validation

Impact Medium

Likelihood Medium

In deployPool function, there is no check in case a pool is created
for the same staking token.

This will cause all the info for a staking token and its pool to be
lost and it will be impossible to add rewards to that pool.

This will lead to funds being locked.

Path:
./StakingPoolFactory.sol : deployPool()

Recommendation: Put a require statement that checks if a pool is
already created for the given token address.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed

M02. Unverifiable Logic

Impact Low

Likelihood High

StakingPoolFactory contract makes external calls to the ALSD and
veALSD contracts which are out of scope. Since their implementation
cannot be verified, Hacken does not guarantee StakingPoolFactory
safety.

Path:
./StakingPoolFactory.sol : addRewards()

Recommendation: Include the contracts in the scope or document their
functionality in the flow in detail.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Mitigated (The Customer stated that the only minter will be
the StakingPoolFactory contract for these tokens.)

www.hacken.io
12



M03. Denial of Service

Impact Medium

Likelihood Medium

In the setFeeManager function in the StakingPool.sol contract,
Address parameter is being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0 and the stake
function can revert (DoS) on transferFrom to address(0).

Path:
./StakingPool.sol : setFeeManager()

Recommendation: Implement zero address check in the function.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Medium

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./EthStakingPool.sol : constructor(), withdrawRewards()
./StakingPool.sol : constructor(), setFeeManager(), withdrawRewards()
./StakingPoolFactory.sol : constructor(), deployPool(),
withdrawRewards(), addRewards()

Recommendation: Implement zero address checks.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Reported (addRewards function is missing the zero address
validation)

L02. Empty Function

Impact Low

Likelihood Medium

www.hacken.io
13



receive function is used as empty and there is no explanation
regarding why it is implemented. This may lead to confusion and
misinterpretation about its purpose among developers/users, resulting
in potential misuse, bugs, or unwanted behavior in the contract's
execution.

Path:
./StakingPool.sol : receive

Recommendation: Put a message that explains why empty receive is
used.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Reported (remains in StakingPool.sol. Not documented.)

L03. Floating Pragma

Impact Low

Likelihood Medium

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths:
./RewardsDistributionRecipient.sol
./StakingPool.sol
./StakingPoolFactory.sol
./EthStakingPool.sol
./lib/CurrencyTransferLib.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

L04. Missing Event Emitting

Impact Low

Likelihood Medium

Events for critical state changes should be emitted for tracking
things off-chain. Some functions do not emit any event after making
important state changes.

Paths:
./EthStakingPool.sol : withdrawRewards
./StakingPool.sol : stake, withdraw, getReward, setFeeManager,
setDepositFee, notifyRewardAmount, setDepositFeeState,

www.hacken.io
14



withdrawRewards
./StakingPoolFactory.sol : withdrawRewards, addRewards

Recommendation: Emit event for critical state changes.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

Informational

I01. State Variables That Can Be Declared Immutable

Variables' StakingPool.rewardsDuration, StakingPool.rewardsToken,
StakingPool.stakingToken, EthStakingPool.wethvalue,
StakingPoolFactory.rewardsToken,
StakingPoolFactory.nativeTokenWrapper,
StakingPoolFactory.alsdContract, StakingPoolFactory.vealsdContract
are set in the constructor.

These variables can be declared immutable.

This will lower the Gas taxes.

Paths:
./EthStakingPool.sol
./StakingPool.sol
./StakingPoolFactory.sol

Recommendation: Declare mentioned variables as immutable.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

I02. Redundant Use Of SafeMath

Since Solidity v0.8.0, the overflow/underflow check is implemented
via ABIEncoderV2 on the language level - it adds the validation to
the bytecode during compilation.

There is no need to use the SafeMath library.

Paths:
./EthStakingPool.sol
./StakingPool.sol
./StakingPoolFactory.sol

Recommendation: Remove the SafeMath library.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Reported (Revised commit: 204f265)

www.hacken.io
15



I03. Unused Functionality

The StakingPool.sol contract inherits the Ownable contract but never
uses its functionality. Unused functionality leads to increasing
deployment Gas price and decrease code quality.

Path:
./contracts/StakingPool.sol : Ownable

Recommendation: Remove unused functionality to save Gas on deployment
and increase code quality.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

I04. Functions That Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./StakingPool.sol: withdraw(), getReward()
./StakingPoolFactory.sol: getStakingPoolAddress(), deployPool()

Recommendation: Declare the functions as external.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

I05. Redundant Require Statement

On line 8, require statement that compares two same number is
redundant since it's meaningless.

Redundant declarations cause extra Gas consumption and decrease code
readability.

Path:
./RewardsDistributionRecipient.sol : onlyRewardsDistribution()

Recommendation: Remove the require statement.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

I06. Unused Imports

Unused imports should be removed from the contracts. Unused imports
are allowed in Solidity and do not pose a direct security issue. It
is best practice to avoid them as they can decrease readability.

Path:
./StakingPool.sol : CurrencyTransferLib

Recommendation: Remove the redundant import.
www.hacken.io

16



Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

I07. Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Paths:
./StakingPool.sol
./EthStakingPool.sol

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Providing comprehensive NatSpec annotations for functions and
following Solidity's naming conventions further enrich the quality of
the code.

Follow the official Solidity guidelines.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974
www.hacken.io

17



Status: Reported (Revised commit: 204f265)

I08. Redundant Declaration

uint256 variables are zero as default. Therefore, there is no need to
assign a zero value to them during declaration.

address variables are zero as default. Therefore, there is no need to
assign a zero address value to them during declaration.

Redundant declarations consume unnecessary Gas and decrease code
readability.

Path:
./StakingPool.sol: periodFinish, rewardRate, feeManager

Recommendation: Remove the assigning.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

I09. Data Inconsistency

It is not clear or logical why the ERC20Upgradable's interface was
used even though the tokens utilized in the system are not
upgradeable. Reading this code could potentially cause confusion for
users. It is important to ensure that the code and its various
components align with their intended functionality, to minimize
misunderstandings and ensure proper use.

Path:
./CurrencyTransferLib.sol

Recommendation: Use IERC20 to represent tokens.

Found in: 0c8faac784e9d366b309501f5b3f3eb550599974

Status: Fixed (Revised commit: 204f265)

I10. Hardcoded Value

In the StakingPool.stake() functions check for native token, the
address of WETH is hardcoded.

Hardcoding values is against best practices and can decrease the
reliability of the code.

Path: ./StakingPool.sol : stake()

Recommendation: Declare mentioned address as a variable and use that
instead of hardcoded value.

Found in: 204f265d3447faa59cc9586614146e035ccf9ca3

Status: New

www.hacken.io
18



I11. Require Statement Without An Error Message

Require statements on line 32 in CurrencyTransferLib contract and on
line 213 in StakingPool contract lack a proper error message. The
absence of clear and informative error messages in these "require"
statements can lead to confusion during debugging, maintenance, and
error resolution processes.

Paths: ./StakingPool.sol: withdrawExcess()

./lib/CurrencyTransferLib.sol: safeTransferNativeToken()

Recommendation: Put proper error messages for require statements.

Found in: 204f265d3447faa59cc9586614146e035ccf9ca3

Status: New

www.hacken.io
19



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
20



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
21



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
22



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/AlacrityLSD/smartcontracts

Commit 0c8faac784e9d366b309501f5b3f3eb550599974

Whitepaper Link

Requirements Link

Technical
Requirements -

Contracts File: EthStakingPool.sol
SHA3: c1ae318b4c7acf32d54a05df56f2a82b7817613645fa0be9d79a13d21db4fc5b

File: RewardsDistributionRecipient.sol
SHA3: 461e6bfd82d13fb834451583cab563252a56a56af854376a925dc666eac47184

File: StakingPool.sol
SHA3: 9269bd75738ae8a96adb38fe06c72b5673b31289193e4e7119ae82ecd3e36a2b

File: StakingPoolFactory.sol
SHA3: 5b1e18086e87d79288740537a5b9e8ef9f0a34a9a957574522ae203cf51fca71

File: interfaces/IALSD.sol
SHA3: 4df8b51155ec43cca450d90dd3a846e31853ea0a8e0ed2297d979049c2fa9648

File: interfaces/IStakingPool.sol
SHA3: 9838faa10acada96aa32f7ee97120f4b3aa8919980520c3a00a9ef6643554ceb

File: interfaces/IVEALSD.sol
SHA3: 86570988a324ad91422bf5a9b2f35326014c3cc9c380cedd345d7f1c8fbaee2f

File: interfaces/IWETH.sol
SHA3: 6253e3d4eec3c5c3124bd0f3a231cfc2f54943790a1d9e5d2ee2eff413a4407f

File: contracts/lib/CurrencyTransferLib.sol
SHA3: 2dcc5df67834083c8b3e575f1c1c757088993c1a6f82c7cf119af3c90f96a254

Second review scope

Repository -

Commit -

Whitepaper Link

Requirements Link

Technical
Requirements -

www.hacken.io
23

https://github.com/AlacrityLSD/smartcontracts
https://alacrity-lsd.gitbook.io/alacrity/
https://alacrity-lsd.gitbook.io/alacrity/
https://alacrity-lsd.gitbook.io/alacrity/
https://alacrity-lsd.gitbook.io/alacrity/


Contracts File: EthStakingPool.sol
SHA3: e5839084608838556e48ed1472e060f8baaabf2287b093863db544adbddc9edf

File: RewardsDistributionRecipient.sol
SHA3: 707e0223e0e972163c7f43c45f44261b644122723e4707e62e18be65622c1345

File: StakingPool.sol
SHA3: b447ec8958baf3e28ba1493f4449d7f22df761c9b689c26c2945db108dab5e54

File: StakingPoolFactory.sol
SHA3: df6712f0e2b0a99db7d8a9435ff721e311af54eac32fcd0c89b291a7db85398b

File: interfaces/IALSD.sol
SHA3: 4df8b51155ec43cca450d90dd3a846e31853ea0a8e0ed2297d979049c2fa9648

File: interfaces/IStakingPool.sol
SHA3: 92d895b16c2f202f945d1c15894eeb6f4e0e956b86a869b9fde6295da7bc7995

File: interfaces/IVEALSD.sol
SHA3: 34ad030ba015e1fe10368efe4dd26008df5c1061fa6c4607fc8b4d73982d69b1

File: interfaces/IWETH.sol
SHA3: f41508a3b0b4e7268a9aa4c752d2f74f2b61678178c1eade0e1c5950d2bf267f

File: contracts/lib/CurrencyTransferLib.sol
SHA3: 510c8ca0ddc8d31027a3ee511958c66e86c65c40a4dce6a6e4f8f623836696c6

Third review scope

Repository https://github.com/AlacrityProtocolLSD/smartcontracts

Commit 204f265d3447faa59cc9586614146e035ccf9ca3

Whitepaper Link

Requirements Link

Technical
Requirements -

Contracts File: EthStakingPool.sol
SHA3: f2c49cfb7fe00c20b41eef41b1ed6ce011bd11c2cab24b827f4c97f56c5d5149

File: RewardsDistributionRecipient.sol
SHA3: 7f2d0644cda152aff46ebec98dbb729332bd23269dcdff95ef31c6464ce45d70

File: StakingPool.sol
SHA3: 98389339c779ebe1f9a09e04689ba66da791e3620f1d3ec6a560b9e0c07b40b9

File: StakingPoolFactory.sol
SHA3: 86268d056d93e28b6b472f3592d956cd779d7f64f82c725019a65accbaf9dbc8

File: interfaces/IALSD.sol
SHA3: a226979af274a0901ffa3748ab30427cfe644d2abc440c8189304dfbd6fe1c5f

File: interfaces/IStakingPool.sol
SHA3: d9864f935a7106b3e0ec693b47037289ad64d12df425e297dc9083a2ebc92526

File: interfaces/IVEALSD.sol
SHA3: fe6c64321cc3ddbbaaff64f1843b5a13edaa2defe29431d6416fb76e9279a4e3

www.hacken.io
24

https://github.com/AlacrityProtocolLSD/smartcontracts
https://alacrity-lsd.gitbook.io/alacrity/
https://alacrity-lsd.gitbook.io/alacrity/


File: interfaces/IWETH.sol
SHA3: f2220c80fbd6236eb23cef1a661bf2db01e3bac92807bb437bbfb1af6a4b3d6d

File: lib/CurrencyTransferLib.sol
SHA3: 67056c7152028de64a8b56c67e3ea3f07923783329fdd68ed04b45e2f0ebd733

www.hacken.io
25


