
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Asymetrix
Date: 26 Oct, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Asymetrix

Approved By
Luis Buendia | Senior Solidity SC Auditor at Hacken OÜ

Grzegorz Trawiński | Lead Solidity SC Auditor at Hacken OU

Tags ERC20 token; Staking; Yielding; Uniswap; Balancer; Oracle

Platform EVM

Language Solidity

Methodology Link

Website https://asymetrix.io

Changelog
11.10.2023 – Initial Review
21.10.2023 – Second Review
26.10.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://asymetrix.io


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Findings 7

Critical 7
High 7

H01. Counter Not Updated to User 7
H02. Claim Rewards May Revert for Non-boosted Positions 8

Medium 9
M01. Price Oracle Manipulation 9
M02. Usage of Deprecated ChainLink Oracle Function 10
M03. unstake and extendLock May Revert Due to Access Control Modifier 11
M04. Slippage Control Can Revert Due to Inaccurate Calculation 11

Low 13
L01. createVesting Position on Claim Transaction Can Revert 13

Informational 14
I01. Use Custom Errors 14
I02. Initialized Variable to Default Value 14
I03. Shift Instead of Divide to Save Gas 15
I04. Using Bools for Storage Incurs Overhead 15
I05. validateStake Function Return Value Is Never Used 15
I06. Misleading NatSpec Documentation 16
I07. Centralization Risk 16
I08. Owner Can Renounce Itself 17
I09. Redeem Function Does Nothing 17

Disclaimers 18
Appendix 1. Severity Definitions 19

Risk Levels 19
Impact Levels 20
Likelihood Levels 20
Informational 20

Appendix 2. Scope 21

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Asymetrix (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Asymetrix protocol is the decentralized, non-custodial protocol for
asymmetric yield distribution generated from staking. The files in the
scope:

● StakePrizePoolv2 - Pool where users deposit stEth ERC20 token. Owner
adds prizes manually. Also, rewards are distributed among all the
contributors.

● OracleUniswapV3 - Contract that given a TWAP period obtains the price
of a token for a given pool. The protocol uses it to obtain the ASX
price in terms of ETH.

● OracleBalancerWeighted - Contract that obtains the price of ASX in
terms of ETH using the liquidity on a given balancer pool.

● ASXPriceFeed - Contract that returns the price of ASX by computing an
average price between the uniswap and balancer oracles.

● ValuerUniswapV3 - Contract that returns the price in USD of a
uniswapv3 pool position.

● ValuerBalancer - Contract that returns the price in USD of a balancer
pool position.

● UniswapWrapper - Contract that performs a swap on a uniswapv3 pool.
● RewardsBooster - Contract that enables users to stake their LP

positions of ASX token and boost their rewards on the stake prize
pool.

● ValidatorUniswapV3 - Contract that validates if a position is legit
on a given pool of uniswap v3.

● ValidatorBalancerWeighted - Contract that validates if a position is
legit on a balancer pool.

● ESASX - Escrowed ASX. Is a non-tradable ERC20 token, used to reward
protocol contributors.

● ESASVesting - Contract that handles the ESASX vesting tokens from
users.

Privileged roles
● The owner of each contract can set and change multiple configuration

values and also access restricted functionalities.
● The manager/operator can access certain restricted functionalities.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● High level overview documentation has been created.
● Technical descriptions have been provided and NatSpec is extensive.

Code quality
The total Code Quality score is 10 out of 10.

● The code is structured and readable.
● The Gas model is optimized.

Test coverage
Code coverage of the project is 97% (branch coverage)

● Deployment and some basic user interactions are covered with tests.
● The extended code coverage was done after the audit.

Security score
As a result of the audit, the code contains 1 medium severity issue. The
security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

11 October 2023 1 3 3 0

21 October 2023 0 1 0 0

26 October 2023 0 1 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The protocol uses illiquid pools to compute token prices. Although
the exploitation may not be direct it can represent an issue for the
protocol if it is not treated properly. Furthermore, using the
balance of a liquidity pool as an oracle is heavily discouraged.

www.hacken.io
6



Findings

Critical

No critical severity issues were found.

High

H01. Counter Not Updated to User

Impact Medium

Likelihood High

The function _createVestingPosition from the ESASXVesting.sol
contract does not properly handle the stored users' vesting
positions. The function uses the msg.sender to account for the
correct position and increments the counter of the address introduced
as parameter.

function _createVestingPosition(address _user, uint256 _amount) private {

uint256 _vestingPositionsCount = vestingPositionsCount[msg.sender];

VestingPosition memory vestingPosition = VestingPosition({

lockPeriod: vestingPeriod,

amount: _amount,

releasedAmount: 0,

createdAt: uint32(block.timestamp)

});

vestingPositions[_user][_vestingPositionsCount] = vestingPosition;

vestingPositionsCount[_user] += 1;

totalVestedAmount += _amount;

emit VestingPositionCreated(_vestingPositionsCount, _user, vestingPosition);

}

The external function createVestingPosition apparently should just be
called by the PrizePool whenever a user has ESASX rewards. As ESASX
is a non-tradable token, it is transferred from the Pool to the ESASX
Vesting contract, creating a vesting position for the user.

So if a user has two times rewards of ESASX that can be vested, the
second one will overwrite the previous one and so on, producing a
loss of funds.

Path: ./contracts/vesting/ESASXVesting.sol : _createVestingPosition()

www.hacken.io
7



Recommendation: Update the counter of the same account that position
belongs to. Alternatively, update the counter of the account that the
counter is taken from. Avoid overwriting storage positions.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: The counter is now taken from the user address function
parameter instead from the msg.sender.

H02. Claim Rewards May Revert for Non-boosted Positions

Impact Medium

Likelihood High

The function claim of the contract PrizePoolV2.sol reverts if a user
has provided liquidity to the protocol with stEth and has not staked
any LP position on the RewardBooster.sol contract.

Users that do not have boost should still be able to claim rewards.
The revert is triggered on the getBoost function of the
RewardsBooster.sol contract. It is a controlled error that indicates
that there is no value staked to obtain boosts. Although this
function without interacting with the protocol can be considered
correct, when integrated with the other components, the result is
disruptive to the general workflow of the protocol.

Proof of Concept: The next test case illustrates the previous
described behavior.

1. Deposit stEth on the prize pool using depositTo function.
2. Pass 7 days to obtain rewards.
3. Call the claim function.

www.hacken.io
8



Path: ./contracts/core/prize-pool/PrizePoolV2.sol : claim()

Recommendation: The fix should allow users that provided stEth
without boost to claim their corresponding rewards.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: The contract now allows to claim rewards for non-boosted
positions because the getBoost function returns zero and false
instead of reverting.

Medium

M01. Price Oracle Manipulation

Impact Medium

Likelihood Medium

The latestAnswer function of the OracleBalancerWeighted.sol contract
returns the price of the ASX token in USD. The function relies on the
available liquidity of the Balancer pool ASX/WETH to determine the
price of ASX in terms of WETH. Then it uses ChainLink oracle to
obtain the price of WETH in USD for the final calculation.

However, using directly the liquidity of a pool to compute prices is
a risk as it can be easily manipulated. Furthermore, when dealing
with illiquid pools.

The protocol uses this oracle with the Uniswap v3 oracle pool that
implements the TWAP mechanism to avoid the previous scenario.
Nevertheless, the final price is calculated using an arithmetic mean
between the two oracle values, which can still result in a price
manipulation.

Proof of Concept: The next test case illustrates the previous
described behavior.

1. Obtain the calculated price of the ASXPriceFeed.sol
2. Swap 3 ether on the Balancer pool
3. Obtain again the manipulated price of the ASXPriceFeed.sol

www.hacken.io
9



As it is possible to observe the difference in price, even doing the
arithmetic mean with Uniswap v3 result using TWAP, is about 0.7 USD
per ASX in price with just 3 ETH.

Path: ./contracts/rewards-booster/OracleBalancerWeighted.sol:
latestAnswer()

Recommendation: There are many valid approaches to mitigate the
issue. The main concept here is not to directly use the balance of a
liquidity pool to compute a price. This same issue is present on the
Eth oracles as well not included in the scope of the audit.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Acknowledged

Remediation: Asymetrix team considers that as there are only two
on-chain price sources this design meets their requirements and
ensures proper functionality.

M02. Usage of Deprecated ChainLink Oracle Function

Impact Medium

Likelihood Medium

The latestAnswer ChainLink oracle function is deprecated. As the
documentation specifies, it is strongly recommended not to use this
function.

Reference:
https://docs.chain.link/data-feeds/api-reference#latestanswer

Using a deprecated function to obtain market prices is a serious
hazard for the protocol.

Path: ./contracts/rewards-booster/oracles/OracleUniswapV3.sol:
getLatestAnswer()

./contracts/rewards-booster/oracles/OracleBalancerWeighted.sol:
latestAnswer()

./contracts/rewards-booster/oracles/OracleBalancerWeighted.sol:
latestAnswer()

Recommendation: Consider using the latestRoundData function or any
other non deprecated one.

www.hacken.io
10

https://docs.chain.link/data-feeds/api-reference#latestanswer


https://docs.chain.link/data-feeds/api-reference

If latestRoundData is used consider following best practices to
control stale prices.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: The code uses the current working Chainlink function and
the associated best practices as well.

M03. unstake and extendLock May Revert Due to Access Control Modifier

Impact Medium

Likelihood Medium

The functions unstake and extendLock from the RewardsBooster.sol
contract, whenever dealing with a staked position of uniswap, call
the public function buybackAndBurnAsx of the same contract. The
function buybackAndBurnAsx is protected with an onlyOwner modifier.
Which means, users are not able to unstake/extend their positions on
the contract.

This has serious effects by locking user funds on the contract.

Path: ./contracts/rewards-booster/RewardsBooster.sol : unstake()
externdLock()

Recommendation: Consider creating a private version of the external
one that collects the fees from uniswap v3 positions and then call
the internal _buybackAndBurn. Alternatively, create an internal
function to collect the fees, then call the internal _buybackAndBurn
function.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: The access control modifier was removed.

M04. Slippage Control Can Revert Due to Inaccurate Calculation

Impact Medium

Likelihood Medium

www.hacken.io
11

https://docs.chain.link/data-feeds/api-reference


The _buybackAndBurn function uses the price obtained through the
ASXPriceFeed.sol contract to compute the amountOut of the swap and
thus, the corresponding slippage. The oracle returns the arithmetic
average value of the balancer and uniswap pools ASX price in ETH.

The discrepancy between the pool prices can result in a higher price
than what the price of Uniswap v3 actually is. So, even subtracting
the slippage can result in a higher price than what uniswap may
return.

function _buybackAndBurn(

uint256 _wethAmount,

uint256 _asxAmount,

bool _useNative

) private returns (uint256 _asxPriceInWeth) {

IOracle _asxOracle = asxOracle;

_asxPriceInWeth = (uint256(_asxOracle.latestAnswer()) * 1e18) /

_asxOracle.decimals();

uint256 _amountOut = _wethAmount / _asxPriceInWeth;

uint256 _amountOutMin = _amountOut - ((_amountOut * slippageTolerance) /

ONE_HUNDRED_PERCENTS);

address _asx = address(rewardToken);

uint256 _swappedAsxAmount = uniswapWrapper.swapSingle{ value: _useNative ?

msg.value : 0 }(

This can result in blocking many workflows of the protocol.

Path: ./contracts/core/prize-pool/PrizePoolV2.sol : _buybackAndBurn()

./contracts/vesting/Buyback.sol : _buybackAndBurn()

Recommendation: Consider using Uniswap methods to obtain the real
amount that can be swapped from the pool. To avoid price
fluctuations, compare that price with the obtained from the oracle to
add an extra layer of security.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed.

Remediation: Although there is no change on the code base, the
Asymetrix development team decided not to use the Balancer oracle for
this operation.

www.hacken.io
12



Low

L01. createVesting Position on Claim Transaction Can Revert

Impact Low

Likelihood Low

The _claimEsAsxAndVest internal function from the PrizePoolV2.sol
contract is triggered every time the external claim function is
called. When a user has enough ESASX rewards, the pool creates a
vesting position with those rewards calling the ESASXVesting
contract.

if (_esAsxReward >= _esAsxVesting.getMinVestingAmount()) {

_esAsx.approve(address(_esAsxVesting), _esAsxReward);

_esAsxVesting.createVestingPosition(_user, _esAsxReward);

} else {

userInfo.esAsxBoostlessReward += _esAsxReward;

}

If the amount is bigger than the min amount, the pool adds those
rewards to the esAsxBoostlessReward. However, the
createVestingPosition function has other constraint. If the amount is
bigger than the withdrawable amount the transaction will revert,
preventing the user from claiming the rewards.

function createVestingPosition(address _user, uint256 _amount) external {

if (_amount < minVestingAmount) revert EsAsxErrors.WrongVestingAmount();

if (getWithdrawableASXAmount() < _amount) revert

EsAsxErrors.InvalidEsASXAmount();

esASX.safeTransferFrom(msg.sender, address(this), _amount);

_createVestingPosition(_user, _amount);

}

Path: ./contracts/core/prize-pool/PrizePoolV2.sol :
_claimEsAsxAndVest()

Recommendation: Control the withdrawable amount before calling the
create vesting function.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: All the possible scenarios are now controlled before the
function call.

www.hacken.io
13



Informational

I01. Use Custom Errors

Custom errors from Solidity 0.8.4 are cheaper than revert strings
(cheaper deployment cost and runtime cost when the revert condition
is met). Source Custom Errors in Solidity: Starting from Solidity
v0.8.4, there is a convenient and gas-efficient way to explain to
users why an operation failed through the use of custom errors. Until
now, you could already use strings to give more information about
failures (e.g., revert(‘‘Insufficient funds.‘‘);), but they are
rather expensive, especially when it comes to deployment cost, and it
is difficult to use dynamic information in them.

Path: ./contracts/core/prize-pool/PrizePoolV2.sol

./contracts/core/prize-pool/StakePrizePoolV2.sol

Recommendation: Consider replacing strings for custom errors as done
in the rest of the protocol implementation.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: Custom errors were implemented and used.

I02. Initialized Variable to Default Value

Initializing variables to default value executes an extra order that
is not required.

Path: ./contracts/rewards-booster/oracles/ASXPriceFeed.sol:
constructor, latestAnswer

./contracts/core/prize-pool/StakePrizePoolV2.sol: awardExternalERC721

./contracts/vesting/ESASXVesting.sol: release, releaseWithPenalty

./contracts/rewards-booster/Rewardsbooster.sol:
_setLockDurationSettings, _getAdditionalLockDurationBoost

Recommendation: Consider avoiding initializing variables to default
value.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: Initialized variables to default values were removed.

www.hacken.io
14



I03. Shift Instead of Divide to Save Gas

While the DIV opcode uses 5 Gas, the SHR opcode only uses 3 Gas.
Furthermore, Solidity’s division operation also includes a
division-by-0 prevention, which is bypassed using shifting.

Path: ./contracts/core/prize-pool/StakePrizePoolV2.sol: _liquidate()

./contracts/vesting/ESASXVesting.sol: buyEsAsxWithDiscount

./contracts/rewards-booster/Rewardsbooster.sol: _getBoost,
_getLockDurationBoostCoefficient

Recommendation: Consider using shift operator instead of dividing by
a constant to save Gas.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: All constant divisions of simple multiples were changed
for shifting.

I04. Using Bools for Storage Incurs Overhead

Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess
(100 Gas), and to avoid Gsset (20000 Fas) when changing from ‘false’
to ‘true’, after having been ‘true’ in the past.

See reference:
openzeppelin-contracts/contracts/security/ReentrancyGuard.sol at
58f635312aa21f947cae5f8578638a85aa2519f5 ·
OpenZeppelin/openzeppelin-contracts · GitHub

Path: ./contracts/ESASX.sol

./contracts/rewards-booster/RewardsBooster.sol

Recommendation: Consider avoiding the usage of boolean types for
storage variables.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: Boolean values were removed from storage for unsigned
integers.

I05. validateStake Function Return Value Is Never Used

The validators' contracts are used to validate if a position is valid
either on Balancer or Uniswap v3. They implement a function called

www.hacken.io
15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27


validateStake and return a boolean value if the position exists and
revert if not. The returned boolean value is never used.

Recommendation: Consider not returning any value or return false if
the position does not exist instead of reverting to be consistent
with the code.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: The return value was removed and the function reverts if
the position is not valid.

I06. Misleading NatSpec Documentation

The Natspec documentation does not seem to be accurate in all
comments with the implemented code.

Ex: On the stake function of RewardsBooster.sol contract the notice
states “Accepts deposits from users and stakes them in the specified
staking pool”. However, the function takes the position of an
authorized pool and stakes them in the contract to boost rewards.

Recommendation: Consider reading carefully the documentation to match
the code behavior.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: The documentation was improved with even more level of
detail and accuracy.

I07. Centralization Risk

The protocol is heavily centralized. This is not a risk by itself.
However, it is important to notice that any unauthorized access to
the owner accounts can jeopardize the protocol stability.

Recommendation: Use multisignature wallet for privileged accounts.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Mitigated

Remediation: The contract owner is a multisignature wallet with a ⅔
scheme. The Asymetrix team does not implement any changes before
announcing it with the community. On future releases, a DAO and a
Timelock contract will be deployed to provide a more decentralized
environment.

www.hacken.io
16



I08. Owner Can Renounce Itself

The owner can renounce itself creating a problem to operate with high
privileged functions.

Recommendation: Consider erasing the renounce owner function.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Mitigated

Remediation: Given the multisignature wallet, it is highly unlikely
to arrive in this scenario.

I09. Redeem Function Does Nothing

The redeem function used on the PrizePoolV2.sol and implemented on
the StakePrizePoolV2.sol returns the same amount introduced as
parameter.

Path: ./contracts/core/prize-pool/StakePrizePoolV2.sol : _redeem()

Recommendation: Consider simplifying code if there are unnecessary
sections.

Found in: 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Status: Fixed (Revised commit: 876a5a463c42)

Remediation: The unused functions were removed.

www.hacken.io
17



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
18



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
19



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
20



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://bitbucket.ideasoft.io/projects/PBON/repos/solidity/commits?unt
il=refs%2Fheads%2Ffeature%2FesASXVesting

Commit 3d1b247ce4223ef2bc8ec51a2f893a18040b8b40

Whitepaper N/A

Requirements N/A

Technical
Requirements N/A

Contracts File: contracts/rewards-booster/RewardsBooster.sol
SHA3:
ade74f5f369183abfbfe6bd6e1c73fb1052567538d847cb7b60c815017f0049
b

File: contracts/vesting/UniswapWrapper.sol
SHA3
bf484b6f59020cd3db7e398a314f1ac5090e87a6e6d6a160024a238894ae254
e

File: contracts/core/prize-pool/PrizePoolV2.sol
SHA3:3e72af37891aec162cceca4d88f858373562ab69a0785e33b65159a2c2
267b18

File: contracts/core/prize-pool/StakePrizePoolV2.sol
SHA3
aca409b72cfcf8a680a9df56684f52b627491cb2b1992517b73ed0f0858dc1d
0

File: contracts/vesting/ESASXVesting.sol
SHA3:de2033ef1302fa47e5fca3a0479f9ce51b9ba0189e0584ce91f7c3aafc
c2c8de

File: contracts/rewards-booster/valuers/ValuerUniswapV3.sol
SHA3
10830db7eedb715acef5a2ff260741244e24a70e194ad26739b9585a3836888
b

File:
contracts/rewards-booster/valuers/ValuerBalancerWeighted.sol
SHA3:2e214d339f60f0cfbdd8b3b5e497104bd82c500d82d2ce7ec85c670cf8
483cd0

File:
contracts/rewards-booster/validators/ValidatorUniswapV3.sol
SHA3:8e5d92de1c7bbb54ef353f3773f2f45ee4beb517d9e027860028217249
f60573

www.hacken.io
21



File:
contracts/rewards-booster/validators/ValidatorBalancerWeighted.
sol
SHA3:f5cdbae415f6c0157609a7c66db7f6b955c126b86de1a65d2d10c19d9c
a94ac2

File: contracts/rewards-booster/oracles/OracleUniswapV3.sol
SHA3:12a50339fcc14d73e2c1ae9d5a488134715a6d918f9dad99ffc97da48e
d897ea

File:
contracts/rewards-booster/oracles/OracleBalancerWeighted.sol
SHA3:da6add0471d4e472f4b45a7746ceb1fe9022feec8e050df047ee5ebdf2
10b994

File: contracts/rewards-booster/oracles/ASXPriceFeed.sol
SHA3:67646ea077d0ca9f6e98250fc3a120e1c711ca81ec44c5839a6e9dd6d3
8f57b2

Second review scope

Repository https://bitbucket.ideasoft.io/projects/PBON/repos/solidity/commits/876
a5a463c42c43613b49bcff313a0bcec68fe5e

Commit 876a5a463c42c43613b49bcff313a0bcec68fe5e

Whitepaper N/A

Requirements N/A

Technical
Requirements N/A

Contracts File: contracts/rewards-booster/RewardsBooster.sol
SHA3:
748daf7b5dea0dc9c464017051fe60c3b2cca3b16e54459a59320511053a4cb
d

File: contracts/vesting/UniswapWrapper.sol
SHA3
ee8786bc2172a199a579c754a0e832e846bc6203f481c23a7c0289f9b62ba96
d

File: contracts/core/prize-pool/PrizePoolV2.sol
SHA3:12d6a40af8138fa42126e2eeb9f55775743bf94d53728a002828176aab
514cce

File: contracts/core/prize-pool/StakePrizePoolV2.sol
SHA3
45d6096296319ce9fd0b41ad4c68329b56a253acc1b6509b42fc4dfe4d0bff4
d

File: contracts/vesting/ESASXVesting.sol
SHA3:29fc4b47c095a9a5deebf4cba59a8faacc83fd537d0ad0d46ce8b1cc86
8ebc22

www.hacken.io
22



File: contracts/rewards-booster/valuers/ValuerUniswapV3.sol
SHA3
09e1c9ea8c903491e2b603af7c394cbee0d1ec4c7e925b2f920be6cbd8d9537
8

File:
contracts/rewards-booster/valuers/ValuerBalancerWeighted.sol
SHA3:cf6e9bb6b180ac6dea7f7c6dc3a48834dc9d9d1e52fbfbf09c45b64135
91e3b8

File:
contracts/rewards-booster/validators/ValidatorUniswapV3.sol
SHA3:4db1290338560c8de827b36a9bc7c5a41321b04642b69dae4d70e42296
422b79

File:
contracts/rewards-booster/validators/ValidatorBalancerWeighted.
sol
SHA3:acb797565a49ece95b70e82b9502359a60e5d08221f8169bb9f6b6b309
98bf31

File: contracts/rewards-booster/oracles/OracleUniswapV3.sol
SHA3:d69fb03d156dd24279ec7a253f7355715b0fc5e977cadc938915865abc
44f921

File:
contracts/rewards-booster/oracles/OracleBalancerWeighted.sol
SHA3:d684c8c7d817f7c688701f0be9e490700b63a554b0d910156b2596b35f
63b3d1

File: contracts/rewards-booster/oracles/ASXPriceFeed.sol
SHA3:77dd8de36be60c03f83b886d49fda6b705a51fc53970040e5bca289db7
2d12d0

Third review scope

Repository https://bitbucket.ideasoft.io/projects/PBON/repos/solidity/commits/876
a5a463c42c43613b49bcff313a0bcec68fe5e

Commit 6a79c024e1c2a2b21fa8fc07b2960e1aadfa97cc

Whitepaper N/A

Requirements N/A

Technical
Requirements N/A

Contracts File: contracts/rewards-booster/RewardsBooster.sol
SHA3:
16ea0b9e2766f42deb06ecf77802bed49efda62e39314d91af4bdd1bc849193
4

www.hacken.io
23



File: contracts/vesting/UniswapWrapper.sol
SHA3
ee8786bc2172a199a579c754a0e832e846bc6203f481c23a7c0289f9b62ba96
d

File: contracts/core/prize-pool/PrizePoolV2.sol
SHA3:c4382e3f08d4d4090578e87266c4f78faa603b2e41cf3ca8543b20610d
354d2f

File: contracts/core/prize-pool/StakePrizePoolV2.sol
SHA3
45d6096296319ce9fd0b41ad4c68329b56a253acc1b6509b42fc4dfe4d0bff4
d

File: contracts/vesting/ESASXVesting.sol
SHA3:42f7fe32bd2e9c97d6fc097413f76c9bc5c2cf7f1a6ddebe2a9e76c752
0e1252

File: contracts/rewards-booster/valuers/ValuerUniswapV3.sol
SHA3
09e1c9ea8c903491e2b603af7c394cbee0d1ec4c7e925b2f920be6cbd8d9537
8

File:
contracts/rewards-booster/valuers/ValuerBalancerWeighted.sol
SHA3:cf6e9bb6b180ac6dea7f7c6dc3a48834dc9d9d1e52fbfbf09c45b64135
91e3b8

File:
contracts/rewards-booster/validators/ValidatorUniswapV3.sol
SHA3:4db1290338560c8de827b36a9bc7c5a41321b04642b69dae4d70e42296
422b79

File:
contracts/rewards-booster/validators/ValidatorBalancerWeighted.
sol
SHA3:acb797565a49ece95b70e82b9502359a60e5d08221f8169bb9f6b6b309
98bf31

File: contracts/rewards-booster/oracles/OracleUniswapV3.sol
SHA3:d6e3ac6be20f12ca073ca7817dcca701c4c83707cc26409abab1e354ac
86a7df

File:
contracts/rewards-booster/oracles/OracleBalancerWeighted.sol
SHA3:d684c8c7d817f7c688701f0be9e490700b63a554b0d910156b2596b35f
63b3d1

File: contracts/rewards-booster/oracles/ASXPriceFeed.sol
SHA3:77dd8de36be60c03f83b886d49fda6b705a51fc53970040e5bca289db7
2d12d0

www.hacken.io
24


