
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Genie Swap
Date: 29 September, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Genie Swap

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OÜ

Tags ERC20 token; Launchpad

Platform EVM

Language Solidity

Methodology Link

Website https://genieswap.com/

Changelog 06.09.2023 – Initial Review
29.09.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://genieswap.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Risks 7
Checked Items 8
Findings 11

Critical 11
High 11
Medium 11

M01. Checks-Effects-Interactions Pattern Violation 11
M02. Requirements Violation: Contradicting NatSpec 11
M03. Requirements Violation: Incomplete Pause Mechanism Implementation 12
M04. Requirements Violation: Insufficient Balance 12

Low 13
L01. Inefficient Gas Model 13
L02. Redundant Check 13
L03. Ambiguous Error Message 14

Informational 14
I01. Floating Pragma 14
I02. Solidity Style Guide Violation 14
I03. Missing Variable Explicit Visibility 15
I04. Missing Variable Explicit uint Size 16
I05. Redundant Modifier Usage 17
I06. Unindexed Events Emissions 17
I07. Public Functions That Should Be External 17
I08. Contracts That Should Be Interface 18
I09. Missing Events for Critical Value Updates 18
I10. Redundant Variable Assignment 18

Disclaimers 19
Appendix 1. Severity Definitions 20

Risk Levels 20
Impact Levels 21
Likelihood Levels 21
Informational 21

Appendix 2. Scope 22

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Genie Swap (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The Genie Swap audited project comprises Launchpad contracts, which offer a
foundation for token launches, enhanced by multi-level-marketing (MLM)
features. This MLM functionality enables the allocation of commissions to
individuals involved in promotional efforts, including special addresses
like launchpad partners and designated addresses.
The MLM system organizes users into a tree structure. Every user has a
referrer, except the topmost user. The tree helps in determining commission
distributions.

● Hierarchy: As you traverse up the tree (from user to referrer),
rewards are computed based on MLM levels (ranging from Level 1 to
Level n).

● Designated Address Rewards: Once all MLM levels are exhausted, if a
referrer is a designated address, it earns a designated address
share.

● Partner Benefits: If a referrer is a partner, they receive both the
MLM level share (if they are within the MLM levels) and the partner
share.

● Single Reward for Designated Addresses: Only the first designated
address identified during the upward traversal gets a reward.

● Double Incentive for Partners: Partners always receive their
partner-share, irrespective of their tree position. Moreover, they
can also earn MLM rewards based on the outlined rules.

The files in the scope:
● MyLaunchpadToken.sol - The ERC20 token that is used in the Launchpad.
● LaunchpadToken.sol - Interface for MyLaunchpadToken.sol.
● Escrow.sol - Responsible for holding and releasing assets for

beneficiaries, which also ensures certain conditions are met.
● Launchpad.sol - Facilitates token launches and sales on a launchpad.

It enables users to mint Launchpad tokens in exchange for payment
tokens. The contract is the central component of the system.

● Manager.sol - Responsible for the management of various aspects of
the system, from token exchange rates to partners and designated
addresses.

● MLM.sol - Handles the multi-level marketing (MLM) functionality of
the system. This contract is responsible for onboarding users,

www.hacken.io
4



calculating and distributing rewards based on referrals, and keeping
track of the MLM structure.

● Types.sol - The library that defines various data structures
(structs) used across the project.

● Utility.sol - The library that provides utility functions to be used
across other contracts in the project.

● Error.sol - The function that stores various error definitions to be
used in reverted calls.

● LaunchpadFactory.sol - The factory contract for deploying and
managing Launchpad contract instances.

Privileged roles
● Owner of the MLM/Manager contract: Can pause minting of tokens in

Launchpad instances, set the commission mode for MLM, set the token
exchange rate, set the start time of the Launchpad if its not started
yet, set the end time of the Launchpad if it is not ended yet, remove
partners and designated addresses, manage designated addresses,
manage partner addresses, and set MLM levels.

● Deployer of LaunchpadToken: Can use the LaunchpadFactory to deploy
Launchpad instances. Can also be an Ownable ERC20 tokens owner.

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● Description of the development environment is present.

Code quality
The total Code Quality score is 10 out of 10.

● NatSpec is consistent.
● Style Guide is followed.
● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions by several users are tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

6 September 2023 3 4 1 0

29 September 2023 0 0 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The Launchpad contract relies on external contracts (third party
tokens) and their integrity can not be certified. Admin and users
should make sure the tokens used in the Launchpad are safe and can
not bring issues to investors’ funds.

www.hacken.io
7



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Passed

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Checks-Effects-Interactions Pattern Violation

Impact Medium

Likelihood Medium

Some of the state variables are updated after the external calls.

As explained in Solidity Security Considerations, it is best practice
to follow the checks-effects-interactions pattern when interacting
with external contracts to avoid reentrancy-related issues.

Path: ./contracts/LaunchpadFactory.sol : deployLaunchpad()

Recommendation: Follow the checks-effects-interactions pattern when
interacting with external contracts.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

M02. Requirements Violation: Contradicting NatSpec

Impact Low

Likelihood High

In some functions of the Manager.sol contract, the implementations
are contradicting their NatSpec descriptions.

● In the managePartnerAddress() function, events are in fact
emitted, contradicting the NatSpec.

● In the getDesignatedAddresses() and getPartners() functions,
any address can make the call, contradicting the NatSpec.

This may lead to unexpected behavior.

Path: ./contracts/lib/Manager.sol : managePartnerAddress(),
getDesignatedAddresses(), getPartners()

Recommendation: Fix the mismatch between the NatSpec and
implementation.

www.hacken.io
11

https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern


Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

M03. Requirements Violation: Incomplete Pause Mechanism Implementation

Impact High

Likelihood Low

The contract Manager extends the Pausable contract from OpenZeppelin.
It implements the pause() function, but there is no unpause()
function in the contract.

When paused, the function isActive() returns false and that blocks
the functionalities of the Launchpad contract, that extends the
Manager contract and uses the onlyWhenActive() modifier.

Path: ./contracts/lib/Manager.sol

Recommendation: Implement a “unpause” feature or change the purpose,
naming and documentation of the pause() function.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

M04. Requirements Violation: Insufficient Balance

Impact High

Likelihood Low

In the function _release() from the Escrow contract, there is the
following code:

/* As we pay out commissions in the launchpad token, this might
happen */
if (token.balanceOf(address(this)) < amount) {

revert FatalEscrowError();
}

The comment explicits that issues may happen with mixed balances and
invalid calculations, resulting in insufficient balance to pay out
launchpad participants.

Path: ./contracts/lib/Escrow.sol: _release()

Recommendation: Improve code in order to make it impossible to have
such issues with insufficient balance.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

www.hacken.io
12



Low

L01. Inefficient Gas Model

Impact Low

Likelihood Medium

In some functions, there are loops that iterate over storage
variables, causing Gas usage to be higher.

Path: ./contracts/lib/Manager.sol: removePartner(),
removeDesignatedAddress(), manageDesignatedAddress(),
managePartnerAddress()

Recommendation: Use memory instead of storage for read purposes.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

L02. Redundant Check

Impact Low

Likelihood Medium

In the removeDesignatedAddress() function, the following checks are
done:

if (da == address(0)) {
revert InvalidAddress();

}

if (!_knownDesignatedAddresses[da]) {
revert InvalidAddress();

}

The first check is useless as the second check asserts that the
address is set. The 0x0 address will never be a valid key for the
_knownDesignatedAddresses mapping as when calling the
manageDesignatedAddress() function, it is not possible to set the 0x0
address as a designated address.

Path: ./contracts/lib/Manager.sol: removeDesignatedAddress()

Recommendation: Remove redundant code.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

www.hacken.io
13



L03. Ambiguous Error Message

Impact Medium

Likelihood Low

In the managePartnerAddress() function, the error OutOfBoundary() is
being used for both cases: when the _partners would exceed the
maximum size and if the totalPartnerShares would exceed the maximum
total shares.

This can cause confusion to the final user, not knowing what exactly
was the issue — either exceeding the maximum partners amount or the
maximum total shares amount.

Path: ./contracts/lib/Manager.sol: managePartnerAddress()

Recommendation: Improve error emission in order to be descriptive and
not cause confusion.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

Informational

I01. Floating Pragma

The project uses floating pragmas ^0.8.9.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: ./contracts/*.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I02. Solidity Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

www.hacken.io
14

https://github.com/ethereum/solidity/releases


The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Paths:
./contracts/interfaces/LaunchpadToken.sol: LaunchpadToken →
ILaunchpadToken (naming convention)
./contracts/lib/Escrow.sol
./contracts/lib/Launchpad.sol
./contracts/lib/Manager.sol
./contracts/lib/Manager.sol: MlmUserExists → mlmUserExists (naming
convention)
./contracts/lib/MLM.sol
./contracts/LaunchpadFactory.sol

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Providing comprehensive NatSpec annotations for functions and
following Solidity's naming conventions further enrich the quality of
the code.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I03. Missing Variable Explicit Visibility

Some variable visibilities are not explicitly set. This results in
harder code maintenance and readability.

www.hacken.io
15



Functions and state variables visibility should be set explicitly.
Visibility levels should be specified consciously.

Paths:
./contracts/LaunchpadFactory.sol : _launchpadTokens,
./contracts/lib/Manager.sol : _mlmCommissionMode

Recommendation: Set the visibilities of variables explicitly.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I04. Missing Variable Explicit uint Size

Some uint variable sizes are not explicitly set. This results in
harder code maintenance and readability.

uint variable sizes should be set explicitly.

Paths:
./contracts/lib/Escrow.sol : Released.amount, _holdings,
releasable()(uint), _release()(uint), _release.amount

./contracts/lib/Launchpad.sol : TokensMinted.amount,
TokensMinted.tokenExchangeRate,
mint(amountPaymentToken)(amountLaunchpadToken),
_mint(amountPaymentToken)(amountLaunchpadToken),
mint().totalPaymentTokenCommission, _mint().paymentTokenCommission,
_mint().launchpadTokenCommission, _mint().remainingPaymentToken,
getPrice()(price), getPrice().answer, getPrice().timeStamp,
quota(amountPaymentToken)(payout), quota().usdValuePaymentToken,
quota().launchpadTokenDecimals, quota().base,
topUpLaunchpadTokens(topUpAmount), recoverLaunchpadToken().amount,
release()(uint)

./contracts/lib/Manager.sol : PartnerChanged.share,
DesignatedAddressChanged.share, StartChanged.start, EndChanged.end,
MlmLevelsChanged.levels, BASIS, MAX_LAUNCHPAD_TIME,
MAX_TOKEN_EXCHANGE_RATE, MAX_MLM_LEVELS, MAX_NUM_PARTNERS,
MAX_NUM_DESIGNATED_ADDRESSES, MAX_MLM_TREE_DEPTH,
MAX_TOTAL_SHARE_PARTNERS, MAX_TOTAL_SHARE_MLM_LEVELS,
MAX_TOTAL_SHARE_DESIGNATED_ADDRESS, _tokenExchangeRate, _start, _end,
_designatedAddressesShare, _mlmLevels,
setTokenExchangeRate(tokenExchangeRate),
getTokenExchangeRate()(uinit), setStart(start), setEnd(end),
removePartner.indexToDelete, removeDesignatedAddress.indexToDelete,
manageDesignatedAddress(share), getStart()(uint), getEnd()(uint),
managePartnerAddress(share),
managePartnerAddress().totalPartnerShares, setMlmLevels(mlmLevels),
setMlmLevels.totalRate, getMlmLevels()(uint[])

./contracts/lib/MLM.sol : _getCommissions(amountPaymentToken,
amountLaunchpadToken), _getCommissions.rewardCounter,
_getCommissions.treeDepth, _getCommissions.share

www.hacken.io
16



./contracts/lib/Types.sol : Commission.amount, CommissionPaid.amount,
PartnerConfig.share, DesignatedAddressConfig.share, LaunchpadConfig,

Recommendation: Set the uint sizes explicitly.

Found in: 358803d

Status: Reported (contract Manager.sol contains “uint” variables)

I05. Redundant Modifier Usage

In some occurrences of the nonReentrant modifier, the usage is
redundant, as the functions do not perform state updates.

This will result in unoptimized Gas usage.

Paths:
./contracts/lib/Launchpad.sol : topUpLaunchpadTokens(),
recoverLaunchpadToken()

Recommendation: Remove redundant modifier call.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I06. Unindexed Events Emissions

Some events emitted in the system are not using indexed variables.

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Paths:
./contracts/lib/Escrow.sol : Released → asset
./contracts/lib/MLM.sol : UserOnboarded → user
./contracts/lib/Types.sol : CommissionPaid

Recommendation: Use the indexed keyword to the relevant event
parameters

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I07. Public Functions That Should Be External

Functions that are meant to be exclusively invoked from external
sources should be designated as external rather than public. This is
essential to enhance both the Gas efficiency and the overall security
of the contract.

Path: ./contracts/lib/Manager.sol : isPending(), getMlmLevels()

www.hacken.io
17



Recommendation: Transition the relevant functions, which are
exclusively utilized by external entities, from their current public
visibility setting to the external visibility setting.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I08. Contracts That Should Be Interface

Contracts without any logic and only type definition should be
interfaces.

Path: ./contracts/lib/Error.sol

Recommendation: Transform the Error contract into an interface.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I09. Missing Events for Critical Value Updates

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Path: ./contracts/lib/Manager.sol: setTokenExchangeRate()

Recommendation: Consider emitting events in said functions.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

I10. Redundant Variable Assignment

When updating mappings, instead of reassigning the variable value in
order to reset its value, it is cheaper to use the delete statement
instead of reassigning the default value.

Path: ./contracts/lib/Manager.sol:
● removePartner() → _knownPartners[partner]
● removeDesignatedAddress() → __knownDesignatedAddresses[da],

_designatedAddressesShare[da]

Recommendation: Use the delete keyword instead of reassigning the
variable value.

Found in: 358803d

Status: Fixed (revised commit: 090f9f4)

www.hacken.io
18



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
19



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
20



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
21



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/PROJECT-ONRAMP/launchpad-contracts

Commit 358803d6e92c45dda120ca87efefe7bcb23f1af0

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/LaunchpadFactory.sol
SHA3: 5ed2969c8d6d339dba5dee9d0f25d88b2a6bd49f3f84acd8a9696ebf2df0b3db

File: contracts/examples/MyLaunchpadToken.sol
SHA3: 628cd616f67c40df8dcad57932267b348478d3fbde4c4abaa60a546302ecba10

File: contracts/interfaces/LaunchpadToken.sol
SHA3: f6a3347a13455139b1d2dd46a50354591d97cdfb273757557599a863cac23fb1

File: contracts/lib/Error.sol
SHA3: 6ae802b18d2f863b8109b3594dc29cce0bab74fa8ba282112e12df3e6a86a7d9

File: contracts/lib/Escrow.sol
SHA3: bcff40c7438519f498cfe70d90ed74bb4b8223fa05648785670a58864a29af9c

File: contracts/lib/Launchpad.sol
SHA3: 3433e9bfb96bb13eb0bc3c634f52f01d960e0465c642762c5f38e2ada1cf3ce2

File: contracts/lib/Manager.sol
SHA3: 87f7651c410599efcf59538b5a7b2994b354f8963c75a3c15a7508a3bbe37f88

File: contracts/lib/MLM.sol
SHA3: 89eec2f0f85fd53d04fb9789953354864ac07c399f551e900ed56664bab49546

File: contracts/lib/Types.sol
SHA3: 216169eaaa3c61d0417201bd9095299053b354cc204ef235d3f640d4086665e8

File: contracts/lib/Utility.sol
SHA3: 0d8311276efe42050101f54e1cc3a4829cc21577b8f14a1b83430084587a8258

Second review scope

Repository https://github.com/PROJECT-ONRAMP/launchpad-contracts

Commit 090f9f4496364eb95c3c415892b5e0e78b3db7d9

Whitepaper Link

Requirements Link

www.hacken.io
22

https://github.com/PROJECT-ONRAMP/launchpad-contracts
https://genieswap.com/whitepaper/
https://github.com/PROJECT-ONRAMP/launchpad-contracts/blob/main/README.md
https://github.com/PROJECT-ONRAMP/launchpad-contracts/tree/main/doc
https://github.com/PROJECT-ONRAMP/launchpad-contracts
https://genieswap.com/whitepaper/
https://github.com/PROJECT-ONRAMP/launchpad-contracts/blob/main/README.md


Technical
Requirements Link

Contracts File: contracts/LaunchpadFactory.sol
SHA3: 2cac10d7322787e2ef1d50dace6caa30a922fb7829ac96e4f0859b95b7c05893

File: contracts/examples/MyLaunchpadToken.sol
SHA3: 13c9968afbc3c93d1fe31f7be5a6c8d1869660e073a152371f2af6a41a0d9033

File: contracts/interfaces/ILaunchpadToken.sol
SHA3: f56f73aac0a731e8323d2aa7665eda725590c7c383eac88bf0b8fdac2a5dca07

File: contracts/lib/Error.sol
SHA3: 278d44b423655fb4fc8ef5f2f207c4936cf04f5ba2ae4df3a87af4ecb4594cda

File: contracts/lib/Escrow.sol
SHA3: 90541ac9d9c1780bb8d9a240338d6bc40d203cf3c6bc18a456d3b688b7a390f4

File: contracts/lib/Launchpad.sol
SHA3: 5b4586791e304e780a96711674b348f9b7f199bdadfabab97b16a750b084a119

File: contracts/lib/Manager.sol
SHA3: 80cb17ae56641e7e27eeb61a0e4c89f5029293cc3e02dc3e1688c53f63a01cef

File: contracts/lib/MLM.sol
SHA3: 49f6284e289171daceedb137d82bb229e5e8a087a534be3197b81f5d41831f36

File: contracts/lib/Utility.sol
SHA3: 72b40388b336176a7965769832ddcbd679e23e486a05cebc23e60d09d22e23bc

File: contracts/lib/Types.sol
SHA3: c54efb9b2a00787771d16c2076f5b8dfbfaec68ae01e6ec0464e59e2a4f7e06c

www.hacken.io
23

https://github.com/PROJECT-ONRAMP/launchpad-contracts/tree/main/doc

