
POLKADEX SECURITY
ANALYSIS

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 2 of 30

Intro

This report may contain confidential information about IT systems and the
 intellectual property of the Customer, as well as

information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another party.
Any subsequent publication of this report shall be without

mandatory
consent.

Name Polkadex

Website https://polkadex.trade/

Repository https://github.com/Polkadex-Substrate/Polkadex

Commit 1dd8eed88b5a5181d33b4d83f16ed5bcf559528e

Platform L1

Network Polkadex

Languages Rust

Audit Methodology Blockchain Protocol and Security Analysis Methodology

Auditor
s.akermoun@hacken.io

n.lipartiia@hacken.io

y.bratashchuk@hacken.io

Approver l.ciattaglia@hacken.io

Timeline 17.04.2023 - 22.05.2023 (Preliminary Report)

TimeLine 17.10.2023 (Final Report)

https://polkadex.trade/
https://github.com/Polkadex-Substrate/Polkadex
https://github.com/Polkadex-Substrate/Polkadex/commit/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e
https://hackenio.cc/blockchain_methodology
mailto:s.akermoun@hacken.io
mailto:n.lipartiia@hacken.io
mailto:y.bratashchuk@hacken.io
mailto:l.ciattaglia@hacken.io

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 3 of 30

Table of contents

Summary
Documentation quality

Code quality

Architecture quality

Security Level

Total score

Findings count and definitions

Scope of the audit
Protocol Audit

Protocol Tests

Issues
Unhandled Error in FeesCollected Insertion Leading to Potential Node Crash

Inaccurate Signature Threshold Calculation

Vector of unlimited size in thea-executor

Polkadex Node Fails to Execute

Compilation and Linter Warnings

Employment of Sudo Pallet

Inconsistent and Misleading Comments and Logs in Thea Codebase

Incorrect Use of Bitwise OR Operator

Magic Numbers As Constants in pallets

Missing Benchmark Calculations

Non-Idiomatic Error Handling in collect_fees Function of pallet-ocex-lmp Pallet

Redundant declaration of AllowlistedTokenLimit struct

Superfluous Else Clause

Superfluous Implementation of Hooks Trait

Test coverage

TODO comments in code

Typographical Errors in the Project

Unmaintained ChainBridge pallet

Unnecessary 'hashing.rs' File in Polkadex Chainbridge Pallet

Unsafe arithmetics

Disclaimers
Hacken disclaimer

Technical disclaimer

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 4 of 30

Summary

Polkadex is a peer-to-peer cryptocurrency exchange operating within the decentralized finance (DeFi) ecosystem. It employs the

Substrate framework, aiming to provide a secure and scalable trading platform with an emphasis on performance.

A key feature of Polkadex is its decentralized orderbook, managed by off-chain workers under governance regulations. This setup allows

the exchange to operate in a decentralized manner while still maintaining the functionality of a conventional orderbook.

Polkadex integrates with a broad range of assets from different blockchains through its decentralized Thea bridge technology, which is

also managed by governance. This integration facilitates efficient and reliable asset transfers and communication within the platform.

Additionally, Polkadex has a link to the Polkadot ecosystem through a parachain. This connection allows Polkadex to utilize the resources

and features of the Polkadot network, further enhancing its capabilities and interoperability in the DeFi sector.

Documentation quality

In the course of enhancing their codebase, the Polkadex development team has made concerted efforts to standardize documentation
across both legacy and newly implemented components. They have also adopted improved Rust docstrings, thereby bolstering the overall

robustness and readability of the system's code. Notwithstanding these improvements, there remain specific areas that would benefit from
additional refinement.

With respect to the granularity of the code documentation, it is noteworthy that the majority of storage values, extrinsics, errors, and
events are comprehensively documented. The enhanced Rust docstrings further contribute to this level of detail, facilitating a nuanced

understanding of potential error states and system events, thereby contributing to a more robust interpretation of the system's operational
mechanics.

However, during the audit, it was observed that high-level architectural documentation for comprehensive system components was
conspicuously absent. This necessitated a significant investment of time on the part of the auditing team to independently interpret the

system architecture. Subsequent to this, a GitBook was furnished towards the end of the audit, which substantially enhanced our
conceptual and high-level understanding of the system.

The total Documentation Quality score is 7 out of 10.

Code quality

The Polkadex Layer 1 project demonstrates commendable practices in Rust programming. Running the linter with its default configuration
does not show any warnings related to flagrant idiomatic Rust issues. This adherence to Rust best practices indicates a focus on

maintainability, readability, and stability within the codebase.

All pallets are covered by tests, and sensitive functions within those pallets have also been specifically addressed through targeted

testing.

The Polkadex development team has made significant advancements in addressing previously identified gaps in the benchmarking of

pallets. Utilizing Substrate's framework, they have enhanced the computational weight calculations for extrinsics, ensuring a more
accurate representation of system performance.

During the code review phase of the audit, a substantial number of TODO comments indicated that the codebase might still need to be
completed. This raises concerns as these markers represent crucial yet unimplemented logic sections, which could impact the stability

and security of the overall system.

The codebase also exhibits usage of unsafe arithmetic operations, which can lead to unexpected behavior or vulnerabilities if not

managed properly. Employing safe alternatives where possible is recommended to avoid potential arithmetic issues such as overflow and
underflow.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 5 of 30

The total Code Quality score is 8 out of 10.

Architecture quality

The Polkadex Layer 1 project has a well-designed architecture that separates off-chain activities from on-chain settlements. This

separation ensures that the platform is scalable, secure, and flexible in its design.

The Layer 1 infrastructure settles what happens off-chain, including the operations of the orderbook relayers and Thea bridge workers.

This layered approach helps to maintain a clean and manageable codebase, making the system easier to maintain, update, and extend in
the future.

An important aspect of the project's architecture is its effective utilization of threshold cryptography in the settlement process. This
methodology ensures that transactions are validated through a threshold of signatures from off-chain participants, enhancing the security

of the platform. Threshold cryptography brings an additional layer of protection by reducing the risk of key compromise through distributing
pieces of the private key among multiple participants. This cryptographic practice enhances the overall security of the system, adding

robustness against attacks and system failures.

The project leverages a governance mechanism to manage its decentralized operations. This approach helps to ensure that the platform

remains decentralized and trustless, further bolstering its security and aligning with the principles of decentralized finance. By integrating
governance into the system architecture, Polkadex provides a framework for collective decision-making, facilitating adaptability and

resilience in the platform's evolution.

The sudo pallet is currently in use but will be removed by the team.

The architecture quality score is 9 out of 10.

Security Level

In our analysis of Polkadex, we initially identified a number of security issues requiring attention, which included 1 High, 2 Medium, and 1
Low severity issues. As of now, all of these have been resolved except for one medium severity issue. According to the development

team, this remaining issue has been mitigated and does not pose a risk.

The security score is 10 out of 10.

Total score

Considering all metrics, the total score of the report is 9.4 out of 10.

Findings count and definitions

Severity Findings Severity Definition

Critical 0

Vulnerabilities that can lead to a complete breakdown of the blockchain

network's security, privacy, integrity, or availability fall under this category.
They can disrupt the consensus mechanism, enabling a malicious entity to

take control of the majority of nodes or facilitate 51% attacks. In addition,
issues that could lead to widespread crashing of nodes, leading to a

complete breakdown or significant halt of the network, are also considered
critical along with issues that can lead to a massive theft of assets.

Immediate attention and mitigation are required.

High 1 High severity vulnerabilities are those that do not immediately risk the

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 6 of 30

complete security or integrity of the network but can cause substantial

harm. These are issues that could cause the crashing of several nodes,
leading to temporary disruption of the network, or could manipulate the

consensus mechanism to a certain extent, but not enough to execute a
51% attack. Partial breaches of privacy, unauthorized but limited access to

sensitive information, and affecting the reliable execution of smart
contracts also fall under this category.

Medium 2

Medium severity vulnerabilities could negatively affect the blockchain

protocol but are usually not capable of causing catastrophic damage.
These could include vulnerabilities that allow minor breaches of user

privacy, can slow down transaction processing, or can lead to relatively
small financial losses. It may be possible to exploit these vulnerabilities

under specific circumstances, or they may require a high level of access to
exploit effectively.

Low 1

Low severity vulnerabilities are minor flaws in the blockchain protocol that

might not have a direct impact on security but could cause minor
inefficiencies in transaction processing or slight delays in block

propagation. They might include vulnerabilities that allow attackers to
cause nuisance-level disruptions or are only exploitable under extremely

rare and specific conditions. These vulnerabilities should be corrected but
do not represent an immediate threat to the system.

Total 4

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 7 of 30

Scope of the audit

Protocol Audit

Substrate fork review

Review of all code changes and missing updates since Substrate clone date

Cryptography and Keys

Cryptography Libraries

Keys Generation

Keystore storage

Asymmetric (Signing and Verification)

Substrate client configuration review

Genesis review

Consensus

Substrate FRAME pallets usage review

Standard attacks review (replay, malleability,...)

XCM

XCM Implementation

Protocol-level vulnerabilities

Interoperability vulnerabilities

Integration vulnerabilities

Runtime & Pallets

Runtime implementation review

Pallet asset-handler review

Pallet thea review

Pallet chainbridge review

Pallet liquidity review

Pallet ocex review

Pallet pdex-migration review

Pallet rewards review

Pallet router review

Pallet support review

Pallet swap review

Pallet ocex review

Attack scenarios analysis (Weight, race, stack, DoS, state implosion, access control bypass...)

RPC

RPC implementation review

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 8 of 30

Attack scenarios analysis (defaults,DoS, overflows, ..)

Protocol Tests

Node Tests

Environment Setup

E2E sync tests

Consensus tests

E2E transaction tests

Runtime Tests

Fuzz tests

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 9 of 30

Issues

Unhandled Error in FeesCollected Insertion Leading to Potential Node Crash

The pallet-ocex-lmp pallet experiences a node crash due to an unhandled error resulting from an unchecked conversion from an

unlimited vec to a limited BoundedVec .

ID PDX-110

Scope pallet-ocex-lmp Snapshot Processing

Severity HIGH

Vulnerability Type Error handling / Data Validation

Status Fixed

Description

Within the pallet-ocex-lmp pallet , snapshots submitted via submit_snapshot are processed, and the accumulated fees are stored in

the FeesCollected storage item. However, an issue arises when the FeesCollected attempts to map each snapshot ID to a list of all

collectable fees, stored in a BoundedVec with a maximum size of AssetsLimit .

pallets/ocex/src/lib.rs:1382:

// Fees collected

#[pallet::storage]

#[pallet::getter(fn fees_collected)]

pub(super) type FeesCollected<T: Config> =

 StorageMap<_, Blake2_128Concat, u64, BoundedVec<Fees, AssetsLimit>, ValueQuery>;

The size limit for AssetsLimit is defined to be 1000:

primitives/polkadex/src/lib.rs:97:

#[derive(Debug, Clone, Copy, PartialEq, TypeInfo, Encode, Decode)]

#[cfg_attr(feature = "std", derive(Serialize, Deserialize))]

pub struct AssetsLimit;

impl Get<u32> for AssetsLimit {

 fn get() -> u32 {

 1000

 }

}

Each snapshot ID can, therefore, only have a maximum of 1000 Fees elements. The submit_snapshot implementation, does not check

the size of the number of withdrawals to process, which directly affects the number of fee elements. This results in an unexpected node

crash when the BoundedVec::try_from(working_summary.get_fees()) conversion fails due to size constraints, and unwrap() is called.

pallets/ocex/src/lib.rs:1043:

<FeesCollected<T>>::insert(

 working_summary.snapshot_id,

 BoundedVec::try_from(working_summary.get_fees()).unwrap(),

);

Despite size verification taking place in the off-chain worker before snapshot submission, it is crucial to handle potential errors within the

L1 blockchain extrinsic. This ensures robustness and resilience of on-chain code against any unexpected or malformed inputs.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 10 of 30

Proof of concept

This proof of concept effectively demonstrates a potential node crash due to an unhandled panic within the submit_snapshot function of

the pallet-ocex-lmp pallet.
 The function is designed to process a snapshot summary of account withdrawals. However, it does not

handle the scenario where the size of the withdrawals vector in the snapshot summary exceeds the maximum allowed size, defined by

AssetsLimit .

This could potentially allow an attacker to submit a snapshot with an excessively large number of withdrawals, causing the chain to panic
due to the unhandled error.

"This Proof of Concept (PoC) can be utilized as part of the unit test suite for the pallet-ocex-lmp pallet .

/// This unit test is designed as a proof-of-concept (PoC) to demonstrate a potential vulnerability

/// in the `submit_snapshot` function of the pallet-ocex-lmp pallet.

/// The `submit_snapshot` function is used to submit a snapshot summary of account withdrawals. However,

/// it doesn't check whether the size of the withdrawals vector in the snapshot summary exceeds the

/// maximum allowed size (AssetsLimit). This could lead to a potential node crash due to an

/// unhandled panic where a sender could submit a snapshot with an extremely large number of withdrawals,

/// which could cause the chain to panic or significantly slow down due to excessive processing time.

#[test]

#[should_panic]

fn test_submit_snapshot_panic() {
 // Initialize test environment

 let _account_id = create_account_id();

 let mut t = new_test_ext();

 t.execute_with(|| {

 // Create a dummy snapshot with 1001 withdrawals.

 // This number is arbitrarily chosen to exceed the limit of maximum allowed assets,

 // thereby triggering a panic when the snapshot is submitted.

 let (snapshot, _public) = get_dummy_snapshot(1001);

 // Attempt to submit the snapshot. This should cause a panic because the number of

 // withdrawals in the snapshot exceeds the maximum allowed limit (AssetsLimit).

 _ = OCEX::submit_snapshot(RuntimeOrigin::none(), snapshot.clone());

 })

}

The test passes if it panics as defined by the #[should_panic] attribute of the test:

% cargo test -p pallet-ocex-lmp test_submit_snapshot_panic

running 1 test

test tests::test_submit_snapshot_panic - should panic ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 64 filtered out; finished in 0.10s

Recommendation

While it's important to have pre-checks in off-chain workers to validate the size of a snapshot before submission, these cannot be solely
relied upon for the security of the on-chain extrinsic submit_snapshot . It's critical to note that off-chain workers operate in an

environment with weaker trust assumptions, and are more prone to errors, manipulations, or even malicious attacks.

Therefore, it's strongly recommended that an additional layer of validation checks is introduced in the on-chain submit_snapshot function

to ensure robustness and resilience against any unexpected or malformed inputs. This can be achieved by checking the size of the
withdrawal vector against the maximum limit AssetsLimit before attempting the conversion to a BoundedVec .

If the withdrawal vector size exceeds AssetsLimit , the function should return an error and stop processing, thus avoiding potential node

crashes or excessive processing times. This would also help to mitigate potential Denial-of-Service (DoS) attacks that could be launched

by submitting snapshots with an exceedingly large number of withdrawals.

By ensuring the on-chain code is robust against unexpected inputs, we can help to secure the blockchain against potential threats and

maintain the integrity and performance of the network.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 11 of 30

Inaccurate Signature Threshold Calculation

ID PDX-109

Scope pallet-ocex-lmp Snapshot Processing

Severity MEDIUM

Vulnerability Type Arithmetic Errors

Status Fixed

Description

In the pallet-ocex-lmp pallet, new submitted snapshots are processed based on a signature threshold, which is intended to follow a 2/3

majority. However, the current implementation of the signature threshold calculation in the submit_snapshot function uses a "round

down" approach, which can lead to a lower signature threshold than intended.

As a result, in some cases, the actual signature threshold is below the desired 2/3 majority (66.67%). This issue occurs because the floor

division used in the code does not round up the resulting value, effectively rounding down the threshold and potentially making it easier for
a snapshot to be processed.

The code snippet responsible for this calculation is:
pallets/ocex/src/lib.rs:999:

// Check if we have enough signatures

let total_validators = <Authorities<T>>::get().len();

if working_summary.signed_auth_indexes().len() >=

 total_validators.saturating_mul(2).saturating_div(3)

{

 /* Process snapshot */

}

Here, total_validators is multiplied by 2 and then divided by 3. However, because both values are usize , the division operation will

round down the result, which can lead to a lower signature threshold in certain cases.

Recommendation

To address this issue, we recommend updating the signature threshold calculation in the submit_snapshot function to use a "round up"

approach, ensuring that the actual signature threshold remains at or above the intended 2/3 majority (66.67%).

A possible implementation using the ceil function from the f64 type in Rust is as follows:

if working_summary.signed_auth_indexes().len() >=

 ((total_validators as f64 * 2.0 / 3.0).ceil() as usize)

{

 /* Process snapshot */

}

By converting the total_validators to an f64 and using the ceil function, the calculation will round up the result, ensuring that the

signature threshold remains at or above the desired 2/3 majority.

After implementing this change, the signature threshold should be closer to the intended value for for all validator counts, providing a more
robust snapshot processing mechanism that adheres to the desired 2/3 majority.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 12 of 30

Vector of unlimited size in thea-executor

The ApprovedDeposits storage value is currently using a Vec data structure, which does not have a limit on its size. This opens up the

possibility for the vector to grow infinitely.

ID PDX-116

Scope thea-executor deposit handling

Severity MEDIUM

Vulnerability Type Memory exhaustion / DoS

Status Mitigated

Details

The thea-executor pallet has a storage value called ApprovedDeposits , which is defined as following:

pallets/thea-executor/src/lib.rs:81:

#[pallet::storage]

#[pallet::getter(fn get_approved_deposits)]

pub(super) type ApprovedDeposits<T: Config> =

 StorageMap<_, Blake2_128Concat, T::AccountId, Vec<Deposit<T::AccountId>>, ValueQuery>;

The issue with an unlimited vector is that it can grow infinitely and consume an excessive amount of storage space, potentially causing
memory exhaustion.

The issue occurs in the do_deposit function, where deposits are pushed into the vector without any checks on its length:
pallets/thea-
executor/src/lib.rs:313:

for deposit in deposits {

 <ApprovedDeposits<T>>::mutate(&deposit.recipient, |pending_deposits| {

 pending_deposits.push(deposit.clone())

 })

}

This method is then used in both the incoming_message function of the thea and thea-message-handler pallets, that don't perform

any checks either.

Although there is a mechanism for deleting elements in the vector in the claim_deposit method, it can only be called by the

corresponding user and is not an effective way to regulate the length of the vector.

Recommendation

To address the issue of an unlimited vector in the ApprovedDeposits storage value, it is recommended to implement a maximum length

for the approved deposit and use a data structure that is bounded in size, such as BoundedVec :

pub(super) type ApprovedDeposits<T: Config> =

 StorageMap<_, Blake2_128Concat, T::AccountId, BoundedVec<Deposit<T::AccountId>, T::DepositsLimit>, ValueQuery>;

This will prevent the vector from growing indefinitely and exceeding storage limits.

By implementing a maximum length and using a bounded data structure, the project can help mitigate the risk of memory overflows and

DoS attacks.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 13 of 30

Polkadex Node Fails to Execute

Polkadex node cannot execute with the current Rust toolchain configuration.

ID PDX-102

Scope Polkadex Node

Severity LOW

Vulnerability Type Misconfiguration

Status Fixed

Description

The Rust toolchain used for building the project is configured in the rust-toolchain.toml file to use the latest nightly channel: rust-
toolchain.toml:

[toolchain]

channel = "nightly"

components = ["rustfmt", "clippy"]

targets = ["wasm32-unknown-unknown"]

This configuration is confirmed by the following command output:

% cargo --version

cargo 1.71.0-nightly (d0a4cbcee 2023-04-16)

Although the project compiles successfully, the Polkadex client fails to launch, and the node shuts down with the following output:

$./target/release/polkadex-node --dev

2023-04-17 14:38:19 Polkadex Node

2023-04-17 14:38:19 ✌️ version 4.0.0-ae0e998d-aarch64-macos

2023-04-17 14:38:19 ❤️ by Polkadex OÜ <https://polkadex.trade>, 2017-2023

2023-04-17 14:38:19 📋 Chain specification: Development

2023-04-17 14:38:19 🏷 Node name: panoramic-circle-4949

2023-04-17 14:38:19 👤 Role: AUTHORITY

2023-04-17 14:38:19 💾 Database: RocksDb at /var/folders/p7/q2z_t8pj49v8gc4ghk4t0kk00000gn/T/substratewCOYD4/chains/dev/d

2023-04-17 14:38:19 ⛓ Native runtime: node-282 (polkadex-official-0.tx2.au10)

Error: Service(Client(VersionInvalid("cannot deserialize module: UnknownOpcode(192)")))

2023-04-17 14:38:19 [0] 💸 generated 1 npos voters, 1 from validators and 0 nominators

2023-04-17 14:38:19 [0] 💸 generated 1 npos targets

2023-04-17 14:38:19 Cannot create a runtime error=Other("cannot deserialize module: UnknownOpcode(192)")

This issue is known in Parity, as confirmed by issue #13636 and addressed in pull request #13804.

With newer versions of LLVM, some WebAssembly features are silently enabled. The fix in the PR disables the sign-ext feature with

opcode 192 (0xC0).

The Rust nightly versions that break the runs are nightly-2023-03-19 and all subsequent versions.

Recommendation

We recommend setting a nightly version that does not use the new LLVM features prior to nightly-2023-03-19 .

Actually from our test nightly-2023-03-18 works fine.
rust-toolchain.toml:

[toolchain]

channel = "nightly-2023-03-18"

https://github.com/paritytech/substrate/issues/13636
https://github.com/paritytech/substrate/pull/13804

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 14 of 30

components = ["rustfmt", "clippy"]

targets = ["wasm32-unknown-unknown"]

The fix applied by #13804 is currently only available in the master branch of the Substrate repository and not in any new Polkadot

branches or monthly releases.

Monitor the Substrate node repository for official releases and apply the updates accordingly when available.

An alternative fix involves applying the changes described in #13804, which consists of modifying the Rust compilation flags for the
WebAssembly builder.

Compilation and Linter Warnings

Polkadex L1 Substrate chain has a clean build with a minor single dependency warning.

ID PDX-101

Scope Code Quality

Status Fixed

Description

During the security audit of Polkadex L1 substrate chain, we have compiled the project and checked for linter warnings using cargo

check and cargo clippy with default configuration. The project builds without errors or warnings related to Rust code best practices,

indicating a satisfactory level of code quality and Rust code maturity.

However, a minor issue should be addressed in future updates. The nalgebra dependency within linregress , a dependency of the

Substrate benchmarking FRAME pallet, generates the following warning:

warning: the following packages contain code that will be rejected by a future version of Rust: nalgebra v0.27.1

In Substrate repository, a pull request that resolves this warning can be found at #13310.

The proposed changes involve upgrading the linregress dependency of the benchmarking FRAME pallet from version 0.4.4 to 0.5.1
and updating the relevant syntax in frame/benchmarking/src/analysis.rs to match changes in linregress public API.

This patch has been applied to the polkadot-v0.9.39 branch.

This issue is informational and serves as a reminder to address this dependency warning in future updates. Ignoring the warning and not
addressing the nalgebra dependency issue may lead to compatibility problems with future versions of Rust. This could result in build

errors, deprecated code usage, or even security vulnerabilities as the project may no longer receive important updates and fixes from the

nalgebra library. It is crucial to maintain compatibility with the latest Rust version to ensure the stability and security of the Polkadex L1

Substrate chain.

As the issue PDX-102 was resolved by using an older toolchain instead of the latest nightly, the warning may not appear at the
moment. However, it remains an underlying concern and may resurface during future toolchain updates for Polkadex. Therefore,
the above recommendations should still be taken into consideration.

Recommendation

We recommend that the Polkadex development team consider upgrading the substrate dependencies to at least branch = "polkadot-

v0.9.39" to maintain compatibility with future Rust versions. This upgrade will help address the nalgebra dependency issue and ensure

that the project remains compatible with future updates to Rust and its associated libraries.

As this issue is informational and does not require immediate action, it serves to inform the development team about potential risks

associated with the nalgebra dependency and encourage proactive planning for future updates.

https://github.com/paritytech/substrate/pull/13804
https://github.com/paritytech/substrate/pull/13804
https://github.com/paritytech/substrate/pull/13310/commits
http://localhost:40835/%5BPDX-102%5D%5BLow%5Dnode_fails_to_execute.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 15 of 30

Additionally, it is crucial to keep dependencies up-to-date and regularly monitor linter warnings to identify and address potential code

quality or security issues promptly.

Employment of Sudo Pallet

The sudo FRAME pallet is currently leveraged as an alternative to the governance mechanism.

ID PDX-115

Scope Code Quality / Decentralization

Status Acknowledged (Team will remove sudo pallet after launch)

Description

The runtime configuration incorporates the sudo-pallet . runtime/src/lib.rs:1441:

construct_runtime!(

 pub enum Runtime where

 Block = Block,

 NodeBlock = polkadex_primitives::Block,

 UncheckedExtrinsic = UncheckedExtrinsic

 {

 /* ... */

 Sudo: pallet_sudo::{Pallet, Call, Config<T>, Storage, Event<T>} = 17,

 /* ... */

 }

);

The root account, initially set at genesis, is defined as follows:

node/src/chain_spec.rs:318:

let root_key = hex!["70a5f4e786b47baf52d5a34742bb8312139cfe1c747fbeb3912c197d38c53332"].into();

The Polkadex protocol administration is conducted by governance, which can configure the protocols by invoking extrinsics from pallets.
However, within the Runtime implementation of these pallets, it is apparent that the root user could potentially sidestep the governance

system, thus serving as an alternative.

Several implementations illustrate this, including the asset-handler , pallet-ocex-lmp , chainbridge , and liquidity pallets in the

Runtime.

Additionally, the pallets thea , thea-executor , and thea-message-handler still mandate the origin of extrinsics call to be the root user.

Another point of contention is the competitive advantage the root account possesses in collecting fees and redirecting them to an owned
address by invoking the collect_fees extrinsic from the orderbook pallet, thereby circumventing the democracy mechanism.

Recommendation

1. It is paramount to document comprehensively the projected use of the sudo pallet and the root account within the project. Guarantee
that both the development team and end-users are adequately informed about the potential risks and limitations associated with its

usage. If plans exist to deactivate the sudo functionality post-network launch, this process should be elaborately documented, akin to
the sudo removal outlined by Polkadot.

2. Prior to the removal of the sudo pallet, ensure the regular auditing and monitoring of the sudo pallet and the root account to verify

they are not misused or compromising the system's security.

The current implementation does not pose an immediate security risk; however, it does raise potential centralization concerns and is a

less desirable design choice. If the root account's private key were to be compromised, this issue could potentially escalate into a
vulnerability, leading to unauthorized access to privileged actions.

https://polkadot.network/launch-roadmap/governance/

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 16 of 30

Inconsistent and Misleading Comments and Logs in Thea Codebase

The codebase for Thea contains misleading comments and logs copied from Orderbook client codebase,
which can lead to confusion and
misinterpretation.

ID PDX-120

Scope Code Quality

Status Fixed

Description

The issue lies in the fact that comments and logs, which are essential for understanding the operation of the code, are copied from
Orderbook clientcodebase. This may lead to confusion, as these comments and logs could be mistakenly interpreted as belonging to the

Orderbook worker, rather than the Thea worker.

Recommendation

To enhance the readability and accuracy of the code, it is recommended to revise and update the comments and logs in the Thea

codebase. Ensure that each comment and log message accurately reflects the operation of the specific code block to which it pertains.

Incorrect Use of Bitwise OR Operator

This report highlights an issue in the code where the bitwise OR operator is used instead of the logical OR operator, potentially leading to

confusion and future maintenance issues.

ID PDX-108

Scope Code Quality

Status Fixed

Description

In the do_withdraw function within the thea-executor pallet, the following line of code uses the bitwise OR operator (|) instead of the

logical OR operator (||):
pallets/thea-executor/src/lib.rs:345:

if pending_withdrawals.is_full() | pay_for_remaining { /* ... */ }

While the bitwise OR operator does not cause incorrect behavior in this particular case, it is not idiomatic and can lead to confusion and

potential issues when the code is modified in the future.

Recommendation

Replace the bitwise OR operator (|) with the logical OR operator (||) to improve code readability and maintainability:

if pending_withdrawals.is_full() || pay_for_remaining { /* ... */ }

By making this change, the code will be more in line with standard Rust idioms and less prone to issues caused by misunderstandings or

changes in the future.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 17 of 30

Magic Numbers As Constants in pallets

Usage of magic numbers as constant, directly hardcoded in pallets code, can lead to maintainability, readability, and potential security
issues.

ID PDX-105

Scope Code Quality

Status Fixed

Description

Hardcoding values in the code makes it harder to maintain and can introduce bugs, as the same value may need to be updated in multiple
places. It may also make the code less readable, as the meaning behind the hardcoded values might not be immediately clear to other

developers working on the project.

In addition, hardcoded values can lead to security vulnerabilities if these values are related to security-sensitive parameters, such as

timeouts, limits, or key sizes. An attacker may exploit these vulnerabilities by taking advantage of hardcoded limits or other constraints in
the system.

Here is a list of all usage of hardcoded values in the project:

pallets/asset-handler/src/lib.rs:98:

impl Get<u32> for WithdrawalLimit {

 fn get() -> u32 {

 5 // TODO: Arbitrary value

 }

}

pallets/asset-handler/src/lib.rs:106:

impl Get<u32> for AllowlistedTokenLimit {

 fn get() -> u32 {

 50 // TODO: Arbitrary value

 }

}

pallets/asset-handler/src/lib.rs:193:

#[pallet::storage]

#[pallet::getter(fn get_thea_assets)]

pub type TheaAssets<T: Config> =

 StorageMap<_, Blake2_128Concat, u128, (u8, u8, BoundedVec<u8, ConstU32<1000>>), ValueQuery>;

pallets/ocex/src/lib.rs:127:

impl Get<u32> for AllowlistedTokenLimit {

 fn get() -> u32 {

 50 // TODO: Arbitrary value

 }

}

pallets/thea-executor/src/lib.rs:247:

ensure!(beneficiary.len() <= 1000, Error::<T>::BeneficiaryTooLong);

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 18 of 30

Recommendation

To mitigate these issues and improve the code quality, we recommend to move configurable constants to the pallet configuration, allowing

them to be adjusted at runtime. this provides flexibility and allows for easier tuning of the system's behavior.

Missing Benchmark Calculations

The project currently lacks benchmark calculations for the extrinsic weights of several pallets.
Additionally, some hooks are returning
incorrect weights.

ID PDX-111

Scope Code Quality / Performance

Status Fixed

Details

Accurate weight calculations are a critical aspect of maintaining stable and efficient runtime.
However, some pallets assign default values
for weights.
The pallets with missing benchmark calculations are:

liquidity

pdex-migration

router

thea

thea-executor

thea-message-handler

All these pallets use #[pallet::weight(Weight::default())] instead. It returns zero values, which can lead to inaccurate transaction

fee calculations, imbalanced resource consumption and even vulnerabilities or attack vectors, such as denial-of-service (DoS) attacks.

There are also issues with extrinsics of the chainbridge and ocex pallets.
 The chainbridge pallet provides a default weight of #

[pallet::weight(195_000_000)] for most of its functions.
Meanwhile, the ocex pallet's whitelist_orderbook_operator method has a

constant weight of #[pallet::weight(10000)] without any accompanying comments or computations. This approach is less desirable

compared to automatically generated weights.

Another issue worth noting is the default weights that are returned by on_initialize hooks:

pallets/chainbridge/src/lib.rs:260:

#[pallet::hooks]

impl<T: Config> Hooks<T::BlockNumber> for Pallet<T> {

 fn on_initialize(_n: T::BlockNumber) -> Weight {

 // Clear all bridge transfer data

 BridgeEvents::<T>::kill();

 Weight::default() // TODO: This is not zero

 }

}

pallets/thea-executor/src/lib.rs:138:

#[pallet::hooks]

impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {

 fn on_initialize(block_no: T::BlockNumber) -> Weight {

 /* ... */

 //TODO: Clean Storage

 Weight::default()

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 19 of 30

 }

}

Recommendation

To ensure that the project has a performant and stable runtime environment, it is recommended to include benchmark calculations for all

hooks and extrinsics that do not currently have them. This can be done by following these steps:

Identify all extrinsics within the project's pallets and group them accordingly.

Set up a benchmarking framework, such as frame-benchmarking , to automate the process of calculating extrinsic weights.

Create benchmarking tests for each extrinsic, focusing on various input parameters and potential edge cases.

Run the benchmark tests on a range of hardware configurations to account for varying performance capabilities of potential nodes.

Analyze the results to determine accurate weight values for each extrinsic, considering the expected usage patterns and resource
consumption.

Integrate the calculated extrinsic weights into the project's pallets and runtime configuration.

Regularly review and update the benchmark calculations as the project evolves to maintain performance and efficiency.

By implementing benchmark calculations for extrinsic weights, you will ensure a more efficient and stable runtime environment, leading to

optimized resource usage, accurate transaction fees, and overall improved performance in your project.

Non-Idiomatic Error Handling in collect_fees Function of pallet-ocex-lmp
Pallet

ID PDX-118

Scope Code Quality

Status Fixed

Details

The error handling approach in the collect_fees function of the pallet-ocex-lmp pallet is not idiomatic in Rust. The current

implementation uses unwrap_or_default after a try_push operation, which is not the best practice. This approach may ignore potential

errors in the event of a failure and could complicate debugging.

The code in question is found 2 times within the collect_fees function:
pallets/ocex/src/lib.rs:786-791:

internal_vector.try_push(fees).unwrap_or_default();

Recommendation

A more idiomatic approach in Rust is to use if let to match the Result returned by the try_push operation, allowing for immediate

and clear error handling. The suggested refactor is as follows:

/// Withdraws Fees Collected

///

/// params: snapshot_number: u32

#[pallet::call_index(11)]

#[pallet::weight(<T as Config>::WeightInfo::collect_fees(1))]

pub fn collect_fees(

 origin: OriginFor<T>,

 snapshot_id: u64,

 beneficiary: T::AccountId,

) -> DispatchResult {

 // TODO: The caller should be of operational council

 T::GovernanceOrigin::ensure_origin(origin)?;

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 20 of 30

 ensure!(

 <FeesCollected<T>>::mutate(snapshot_id, |internal_vector| {

 while internal_vector.len() > 0 {

 if let Some(fees) = internal_vector.pop() {

 if let Some(converted_fee) =

 fees.amount.saturating_mul(Decimal::from(UNIT_BALANCE)).to_u128()

 {

 if let Err(_) = Self::transfer_asset(

 &Self::get_pallet_account(),

 &beneficiary,

 converted_fee.saturated_into(),

 fees.asset,

) {

 // Push it back inside the internal vector

 // The above function call will only fail if the beneficiary has

 // balance below existential deposit requirements

 if let Err(_) = internal_vector.try_push(fees) {

 return Err(Error::<T>::UnableToTransferFee)

 }

 }

 } else {

 // Push it back inside the internal vector

 if let Err(_) = internal_vector.try_push(fees) {

 return Err(Error::<T>::FailedToConvertDecimaltoBalance)

 }

 }

 }

 }

 Ok(())

 })

 .is_ok(),

 Error::<T>::FeesNotCollectedFully

);

 Self::deposit_event(Event::FeesClaims { beneficiary, snapshot_id });

 Ok(())

}

In this refactor, the unwrap_or_default is replaced with if let Err(_) = ... pattern. This change improves the robustness of the

code by ensuring all error cases are handled and any issues are immediately reported rather than being silenced or ignored.

In addition to the try_push operation, the error handling for the Self::transfer_asset(...) call was also refined.

Redundant declaration of AllowlistedTokenLimit struct

Duplication of the AllowlistedTokenLimit structure in two separate pallets creates potential maintenance issues and future bugs.

ID PDX-104

Scope Code Quality

Status Fixed

Description

The AllowlistedTokenLimit structure and its corresponding get methods are duplicated in both the asset-handler and pallet-

ocex-lmp pallets, even though they serve the same purpose.

pallets/asset-handler/src/lib.rs:106:

pub struct AllowlistedTokenLimit;

impl Get<u32> for AllowlistedTokenLimit {

 fn get() -> u32 {

 50 // TODO: Arbitrary value

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 21 of 30

 }

}

pallets/ocex/src/lib.rs:126:

pub struct AllowlistedTokenLimit;

impl Get<u32> for AllowlistedTokenLimit {

 fn get() -> u32 {

 50 // TODO: Arbitrary value

 }

}

Duplicating the get methods for the AllowlistedTokenLimit structure in multiple pallets is considered a bad practice, as it can lead to

readability and maintainability issues. Moreover, it increases the risk of bugs and vulnerabilities if one get method is updated and the

other is inadvertently overlooked.

Refer to the related issue PDX-105 for more details on the broader concern of using hardcoded values (magic numbers) throughout the

codebase. The redundancy in declaring the AllowlistedTokenLimit structure across multiple pallets further exacerbates this issue,

increasing the risk of inconsistencies and making it more difficult to maintain the code in the long term.

Recommendation

To enhance maintainability and avoid duplication, it is advised to create a single structure for each logical purpose and use it as a
dependency in other pallets.

By consolidating the AllowlistedTokenLimit structure into a single location, the codebase will be more readable, maintainable, and less

prone to future bugs.

Superfluous Else Clause

In close_trading_pair and open_trading_pair extrinsics of the pallet-ocex-lmp pallet, the redundant empty else clause should be

eliminated.

ID PDX-119

Scope Code Quality

Status Acknowledged

Description

Within the close_trading_pair and open_trading_pair extrinsics of the pallet-ocex-lmp pallet, there exist redundant else branches

that could be expunged:

pallets/ocex/src/lib.rs:370:

 else {

 //scope never executed, already ensured if trading pair exits above

}

pallets/ocex/src/lib.rs:402:

 else {

 //scope never executed, already ensured if trading pair exits above

}

Recommendation

http://localhost:40835/%5BPDX-105%5D%5BInformation%5Dmagic_numbers_as_constants.md

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 22 of 30

It is recommended to eliminate these superfluous empty else clauses, as they serve no functional purpose.

Superfluous Implementation of Hooks Trait

The default implementation of the Hooks trait for the liquidity pallet is unnecessary.

ID PDX-117

Scope Code Quality

Status Acknowledged

Description

The code provided below prompts the program to execute default implementations for the methods of the Hooks trait:

pallets/liquidity/src/lib.rs:151:

#[pallet::hooks]

impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {}

The utilization of the Hooks trait without implementing any of its methods does not lead to any immediate detrimental effects. However, it

is superfluous and can potentially reduce code readability while increasing complexity.

Recommendation

To improve code clarity and readability, we suggest eliminating the use of the Hooks trait in the liquidity pallet.

This action will make the code more concise and easier to understand.

Test coverage

The project's test coverage currently stands at 49.82%, which indicates a noticeable gap in testing. Upon further review, we have
discovered that some pallets have been either minimally tested or not tested at all.

The coverage check was carried out on the commit 7d921bfa8e67072bbfd64a393d89ab0468822523.

Test coverage was partially improved after the commit 2d88c867b134ed01606c1b4034b4078b01271239.

ID PDX-112

Scope Code Quality / Testing

Status Fixed

Description

Although certain crates such as chainbridge and support have been thoroughly tested, others have exhibited a lack of test coverage.

Specifically, router , thea , and thea-message-handler pallets have not been subjected to unit testing. It appears that clients and

primitives have also exhibited a lack of test coverage.

We suggest utilizing the cargo tarpaulin command to assess code coverage:

cargo tarpaulin --exclude polkadex-client --exclude polkadex-node --exclude node-polkadex-runtime --exclude load-testin

https://github.com/Polkadex-Substrate/Polkadex/tree/7d921bfa8e67072bbfd64a393d89ab0468822523
https://github.com/Polkadex-Substrate/Polkadex/commit/2d88c867b134ed01606c1b4034b4078b01271239

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 23 of 30

The newly generated HTML file contains coverage information for packages:

Covered: 2447 of 4912 (49.82%)

Path Coverage

orderbook client 526 / 1036 (50.77%)

thea client 76 / 513 (14.81%)

pallets 1442/2717 (53.07%)

primitives 345/714 (48.32%)

When examining the coverage for pallets , the following results can be observed:

Covered: 1442 of 2717 (53.07%)

Path Coverage

asset-handler 240/387 (62.02%)

chainbridge 182/209 (87.08%)

liquidity 58/75 (77.33%)

ocex 407/691 (58.90%)

rewards 122/185 (65.95%)

router 0/123 (0.00%)

support 12/12 (100.00%)

swap 289/523 (55.26%)

thea 0/153 (0.00%)

thea-executor 132/169 (78.11%)

thea-message-handler 0/74 (0.00%)

Recommendation

We recommend addressing the low test coverage in the project's pallets. Implementing a comprehensive test suite, which includes unit
testing, is essential for ensuring the security, stability, and maintainability of the project.

We suggest implementing unit tests for all pallets within the project, including the router , thea , and thea-message-handler pallets.

Each pallet should possess a comprehensive set of unit tests that cover its functionality, edge cases, and possible error conditions.

Establishing continuous integration (CI) systems to automate the test suite execution is recommended. This practice aids the team in

identifying gaps in test coverage, regressions, and areas in need of improvement.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 24 of 30

TODO comments in code

This issue involves various TODO comments in the codebase that indicate unfinished implementations, potential security concerns, or

areas needing further scrutiny.

ID PDX-114

Scope Code Quality

Status Acknowledged

Description

TODO comments to be implemented/considered/removed:

Thea client:

Do signature check here

What if the local foreign node is not synced yet

Send it back to network

Get last finalized block hash

Get last finalized block hash

Get last finalized block hash

This is not send

Orderbook client:

handle reputation change

Should we respond if we are also syncing???

Reduce reputation if else block is happens

Fix this in the next release

Pallets:

Need a better error mapping

Benchmark on initialize

Check if we have 2/3rd authorities signed on this - Fixed

Make, <Authorities> indexed by network as key1 and validator setid as key2 - Fixed

Make it an offence to not provide network as part of next version

what happens if someone changes their session key

Clean Storage

Check if beneficiary can decode to the correct type based on the given network

Super majority check here - Fixed

Arbitrary value

Arbitrary value

Arbitrary value

We can do it after release, as an upgrade

Check if base and quote assets are enabled for deposits

The caller should be of operational council

Better documentation

Discuss if this is expected behaviour, if not then could this be a potential DDOS?

Issue no #2(Reward-Calculation) should modify the map with correct values

https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/clients/thea/src/worker.rs#L155
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/clients/thea/src/worker.rs#L193
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/clients/thea/src/worker.rs#L290
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/clients/thea/src/connector/parachain.rs#L33
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/clients/thea/src/connector/parachain.rs#L67
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/clients/thea/src/connector/parachain.rs#L83
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/clients/thea/src/connector/traits.rs#L21
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/clients/orderbook/src/worker.rs#L714
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/clients/orderbook/src/worker.rs#L724
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/clients/orderbook/src/worker.rs#L749
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/clients/orderbook/src/tests/sync.rs#L148
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/asset-handler/src/lib.rs#L758
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/asset-handler/src/lib.rs#L303
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/thea/src/lib.rs#L235
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/thea/src/lib.rs#L236
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/thea/src/lib.rs#L301
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/thea/src/session.rs#L27
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/thea-executor/src/lib.rs#L150
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/thea-executor/src/lib.rs#L170
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/thea-message-handler/src/lib.rs#L219
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/ocex/src/lib.rs#L129
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/asset-handler/src/lib.rs#L100
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/asset-handler/src/lib.rs#L108
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/pallets/ocex/src/lib.rs#L295
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/ocex/src/lib.rs#L486
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/ocex/src/lib.rs#L772
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/ocex/src/lib.rs#L971
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/pallets/ocex/src/tests.rs#L1272
https://github.com/Polkadex-Substrate/Polkadex/blob/Develop/pallets/rewards/src/crowdloan_rewardees.rs#L8

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 25 of 30

This is not zero

benchmark this function too and add to proposal weight above

Benchmark this function too

assumes we round down to int

Primitives

how to gate this only for testing

Runtime

Check if this is correct?

Chnage Polkddex Asset ID

Chnage Holder Account

Recommendation

We strongly advise addressing all TODO comments within your codebase. These annotations are more than simple reminders; they often

contain crucial functionality or improvements that have been deferred for later implementation. In particular, pay close attention to those
related to system security such as Do signature check and Supermajority check here . Neglecting these areas could potentially

make your system vulnerable.

Typographical Errors in the Project

This report highlights various typographical errors found throughout the project.

ID PDX-106

Scope Code Quality

Status Fixed

Description

Correct PendingWithdrawals getter name from get_pending_withdrawls to get_pending_withdrawals :
 pallets/asset-
handler/src/lib.rs:178:

/// Pending Withdrawals

#[pallet::storage]

#[pallet::getter(fn get_pending_withdrawls)]

pub(super) type PendingWithdrawals<T: Config> = /* ... */

Also, fix the usage of this getter in pallets/asset-handler/src/tests.rs (3 occurrences).

Correct the doc string comment WithdrwalLimitReached to WithdrawalLimitReached
pallets/asset-handler/src/lib.rs:241:

/// WithdrwalLimitReached

WithdrawalLimitReached,

Correct the WithdrawalFees getter name from witdrawal_fees to withdrawal_fees :
pallets/thea-executor/src/lib.rs:97:

/// Withdrawal Fees for each network

#[pallet::storage]

#[pallet::getter(fn witdrawal_fees)]

pub(super) type WithdrawalFees<T: Config> = /* ... */

https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/chainbridge/src/lib.rs#L264
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/chainbridge/src/lib.rs#L364
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/chainbridge/src/lib.rs#L415
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/pallets/swap/src/tests.rs#L652
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/primitives/orderbook/src/types.rs#L576
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/runtime/src/lib.rs#L126
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/runtime/src/lib.rs#L1340
https://github.com/Polkadex-Substrate/Polkadex/blob/1dd8eed88b5a5181d33b4d83f16ed5bcf559528e/runtime/src/lib.rs#L1341

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 26 of 30

Correct the doc string comment by changing parametrise to parametrize :
pallets/thea-executor/src/lib.rs:219:

/// (it's used to parametrise the weight of this extrinsic)

Recommendation

We recommend fixing the typographical errors identified and consider using a spell checker extension or tool to catch any further
mistakes.

Unmaintained ChainBridge pallet

The ChainBridge Substrate pallet is no longer maintained by its creators, ChainSafe, and the official GitHub repository has been archived.

ID PDX-107

Scope Code Quality

Status Fixed

Description

ChainSafe officially stopped maintaining the ChainBridge pallet on July 12, 2022. The last technical update to the code was made on

September 8, 2021, and a final update to the repository was made on July 12, 2022 to notify developers that the library is no longer in use
or being maintained. The chainbridge-substrate repository displays the following notice:

This library is no longer in use and maintenance. All further development related to chainbridge will happen in the new repo. More
detailed information about chainbridge-core you can find in its readme or Discussions.

If you already running an old ChainBridge version please consider checking chainbridge-migration scripts that allow migrating to a
newer version of chainbridge.

As a result, the Polkadex team is now solely responsible for maintaining and improving this pallet.

Recommendation

We recommend that the Polkadex team consider the following steps to ensure the continued functionality and security of the ChainBridge

pallet:

1. Assess the current state of the ChainBridge pallet, identifying any known issues, security vulnerabilities, or areas for improvement.

2. Fork the ChainBridge Substrate repository and assume responsibility for its maintenance and development. This will allow the

Polkadex team to address any issues and implement necessary updates.

3. Regularly review and monitor the ChainBridge pallet for potential vulnerabilities or bugs, applying fixes and improvements as needed.

4. If feasible, explore alternatives to the ChainBridge pallet that may provide better support, maintenance, and updates. This could

involve evaluating other cross-chain solutions or developing a custom solution tailored to the Polkadex project.

Unnecessary 'hashing.rs' File in Polkadex Chainbridge Pallet

Redundant hashing.rs file in the Polkadex chainbridge pallet leads to clutter and reduced code readability.

ID PDX-103

Scope Code Quality

Status Fixed

https://github.com/ChainSafe/chainbridge-substrate/commit/2e86db70aaff981dea4d3f0161192f6ca4739501
https://github.com/ChainSafe/chainbridge-substrate/commit/455eb945b838837989277b4b259491d3932d766e
https://github.com/ChainSafe/chainbridge-substrate

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 27 of 30

Description

The Polkadex chainbridge pallet includes an unnecessary file named hashing.rs, which is not utilized in the pallet's implementation.

This file contains two public functions, blake2_128_into and blake2_128 , which are not employed in the code. Instead, the Substrate

sp-core crate provides similar functions that are being used in Polkadex code, making the hashing.rs file redundant.

Recommendation

To enhance code readability and minimize clutter, we recommend removing the superfluous hashing.rs file from the Polkadex

chainbridge pallet. This action will contribute to a cleaner codebase, preventing confusion or potential issues that could arise from

unused code.

Unsafe arithmetics

Some calculations were performed without considering the possibility of overflows.

ID PDX-113

Scope Code Quality / Testing

Status Acknowledged

Details

In order to ensure proper operation of the nodes, it is necessary to validate all potential errors related to overflows in arithmetic
calculations. An overflow in the pallet would result in a node crash, which should be avoided at all costs. Although the code listed below is

not expected to cause a crash, it is still recommended to exercise caution in this regard.

Run the following command to view the complete list of unsafe arithmetic operations:

cargo clippy -- -W clippy::arithmetic_side_effects

Liquidity pallet

pallets/liquidity/src/lib.rs:286, 311, 317:

.for_each(|v| result[v.0 + last_index] = v.1);

pallets/liquidity/src/lib.rs:287, 319:

last_index += 4;

Ocex pallet

pallets/ocex/src/lib.rs:981:

summary.snapshot_id.eq(&(last_snapshot_serial_number + 1)),

Router pallet

pallets/router/src/lib.rs:135:

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 28 of 30

let contains_duplicate = (1..route.len()).any(|i| route[i..].contains(&route[i - 1]));

pallets/router/src/lib.rs:261:

output_routes.push((route, amounts[amounts.len() - 1]));

pallets/router/src/lib.rs:313:

amounts[amounts.len() - 1] >= min_amount_out,

pallets/router/src/lib.rs:317-318:

for i in 0..(route.len() - 1) {

 let next_index = i + 1;

 T::AMM::swap(&trader, (route[i], route[next_index]), amounts[i])?;

}

pallets/router/src/lib.rs:326, 385:

amounts[amounts.len() - 1],

pallets/router/src/lib.rs:376-377:

for i in 0..(route.len() - 1) {

 let next_index = i + 1;

 T::AMM::swap(&trader, (route[i], route[next_index]), amounts[i])?;

}

Swap pallet

pallets/swap/src/lib.rs:580-583:

for i in 0..(path.len() - 1) {

 let (reserve_in, reserve_out) = Self::get_reserves(path[i], path[i + 1])?;

 let amount_out = Self::get_amount_out(amounts_out[i], reserve_in, reserve_out)?;

 amounts_out[i + 1] = amount_out;

}

pallets/swap/src/lib.rs:599-603:

amounts_in[amount_len - 1] = amount_out;

for i in (1..(path.len())).rev() {

 let (reserve_in, reserve_out) = Self::get_reserves(path[i - 1], path[i])?;

 let amount_in = Self::get_amount_in(amounts_in[i], reserve_in, reserve_out)?;

 amounts_in[i - 1] = amount_in;

}

Thea pallet

pallets/thea/src/lib.rs:311:

let new_id = Self::validator_set_id() + 1u64;

Chainbridge pallet

pallets/chainbridge/src/lib.rs:47:

r_id[30 - i] = id[range - 1 - i]; // Ensure left padding for eth compatibility

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 29 of 30

pallets/chainbridge/src/lib.rs:81:

else if total >= threshold && self.votes_against.len() as u32 + threshold > total

pallets/chainbridge/src/lib.rs:454:

let nonce = Self::chains(id).unwrap_or_default() + 1

pallets/chainbridge/src/lib.rs:496:

RelayerCount::<T>::mutate(|i| *i += 1);

pallets/chainbridge/src/lib.rs:506:

RelayerCount::<T>::mutate(|i| *i -= 1);

pallets/chainbridge/src/lib.rs:525:

ProposalVotes { expiry: now + T::ProposalLifetime::get(), ..Default::default() },

Clients

clients/orderbook/src/worker.rs:991:

if (Utc::now().timestamp() - *when) > 60

Recommendation

Our recommendation is to utilize the methods offered by the Rust Standard Library, which provide functionality for safer arithmetic

operations, including
 checked_add (checked_sub , checked_mul , checked_div), saturating_add , overflowing_add and others.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 30 of 30

Disclaimers

Hacken disclaimer

The code base provided for audit has been analyzed according to the latest industry code quality, software processes and cybersecurity
practices at the date of this report, with discovered security vulnerabilities and issues the details of which are disclosed in this report

(Source Code); the Source Code compilation, deployment, and functionality (performing the intended functional specifications).
The report
contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code

(branch/tag/commit hash) submitted to and reviewed, so it may not be relevant to any other branch. Do not consider this report as a final
and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements. While we have

done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we
recommend proceeding with several independent audits, public bug bounty program and CI/CD process to ensure security and code

quality. English is the original language of the report. The Сonsultant is not responsible for the correctness of the translated versions.

Technical disclaimer

Protocol Level Systems are deployed and executed on hardware and software underlying platforms and platform dependencies
(Operating System, System Libraries, Runtime Virtual Machines, linked libraries, etc.). The platform, programming languages, and other

software related to the Protocol Level System may have vulnerabilities that can lead to security issues and exploits. Thus, Consultant
cannot guarantee the explicit security of the Protocol system in full execution environment stack (hardware, OS, libraries, etc.)

