
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Openeden
Date: 17 October, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Openeden

Approved By
Przemyslaw Swiatowiec | Lead Solidity SC Auditor at Hacken OÜ
Eren Gonen | SC Auditor at Hacken OÜ
Seher Saylik | SC Auditor at Hacken OÜ

Tags ERC20 stable token

Platform EVM

Language Solidity

Methodology Link

Website https://openeden.com/

Changelog 09.10.2023 – Initial Review
17.10.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://openeden.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Risks 7
Findings 8

Critical 8
C01. Denial of Service; Assets Locked in Withdrawal Queue Due to Absent
Verifications 8
C02. Missing KYC Verification in ‘Deposit()’ Function 10

High 11
Medium 11

M01. Unrestricted Fee Configuration 11
Low 12

L01. Missing Zero Address Validation 12
L02. Possibility of Dangerous Assumption on USDC Peg When Calculating
TBillUsdcRate 13
L03. Usage of Deprecated Oracle Functions 14
L04. Overpermisive offRamp Function 14
L05. Missing Protection Against USDC Depeg 15
L06. Missing Failover Mechanism to Unlock Withdrawal Queue Blocked by
Non-Banned Users 16

Informational 17
I01. Redundant Declaration 17
I02. Solidity Style Guides Violation 17
I03. Commented Code Parts 18
I04. State Variables Default Visibility 19
I05. Typo in the Function Name 19
I06. Usage of Toggle Switch Mechanism 20
I07. Missing Event Indexes 20
I08. Mismatch Between Contract Name and Filename 20
I09. Use Custom Errors Instead Of Error Strings To Save Gas 21
I10. Floating Pragma 21
I11. Missing Overflow Check in Queue Implementation 22
I12. Checks-Effect-Interaction Pattern Violation 22
I13. Setting Insufficient Max Deviation of TBill Price Parameter Can Lead
to Value Loss Due to Frontrunning 23
I14. Missing Validation for Setting Deposit and Withdrawal Limits 23

Disclaimers 25
Appendix 1. Severity Definitions 26

Risk Levels 26
Impact Levels 27
Likelihood Levels 27
Informational 27

Appendix 2. Scope 28

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Openeden (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Openeden, is an project that manages the TBILL stable ERC20 tokens. Users
can deposit USDC to mint TBILL tokens, entitling them to redeem assets in
proportion to their TBILL holdings. TBILL tokens are stored in whitelisted
wallets, and the project's code governs deposit, withdrawal, and management
functions, ensuring proper asset handling. It is built with the following
contracts:

● OpenEden T-Bills — Simple ERC-20 token used for shares.
It has the following attributes:

○ Name: OpenEden T-Bills
○ Symbol: TBILL
○ Decimals: 6
○ Total supply: No Max Supply Limit.

● Controller — The Controller contract provides mechanisms for pausing
and unpausing specific operations (deposit and withdraw) in a system.

● FeeManager - The FeeManager contract provides mechanisms to manage
various fee-related parameters in a system. This includes settings
for transaction fees, deposit and withdrawal limits, management fee
rates, and special considerations for weekends.

● OpenEdenVaultV2 - OpenEdenVaultV2 is an upgradeable vault contract
designed for managing deposits and withdrawals, charging fees,
integrating with KYC systems, and operating under specific time-based
rules.

● TBillPriceOracle - Oracle contract provides a way to manage and
update TBill prices with constraints on how much the price can
deviate from previous values.

● Timelock - Imports TimelockController from Openzeppelin.
● OEPausable - The contract is designed to introduce "pausing"

functionality into a contract by inheritance. This pausing mechanism
can be utilized for emergency scenarios or other use cases to
temporarily halt certain operations of a contract.

Privileged roles
● The DEFAULT_ADMIN_ROLE of the Controller contract can:

○ Pause and unpause deposits and withdrawals.
● The OPERATOR_ROLE of the Controller contract can:

○ Pause and unpause deposits and withdrawals.
● The Owner of the FeeManager contract can:

www.hacken.io
4



○ The owner can set various fee-related parameters like
transaction fees, deposit and withdrawal limits, etc.

○ The owner inherits the capabilities provided by the
OpenZeppelin's Ownable contract, such as the ability to
transfer ownership or renounce ownership.

● The Owner of the OpenEdenVaultV2 can:
○ Set the treasury for the vault.
○ Set the treasury specific to 'q' (qTreasury).
○ Toggle whether the USDC/USD price is fixed.
○ Set various addresses, such as FeeManager, KycManager,

Operator, USDC Price Feed, TBill Price Feed, and Controller.
○ Authorize contract upgrades.
○ Upgrade the contract.

● The Operator of the OpenEdenVaultV2 can:
○ Initiate off-ramp operations to transfer underlying assets to

designated treasuries.
○ Process the withdrawal queue.
○ Update the epoch and set whether it is a weekend.
○ Claim the service fee.

● The DEFAULT_ADMIN_ROLE of the TBillPriceOracle can:
○ Grant and revoke the OPERATOR_ROLE.
○ Can update the maximum price deviation.
○ Can manually update the close NAV price.

● The OPERATOR_ROLE of the TBillPriceOracle can:
○ Can update the price.
○ Can update the close NAV price.

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● NatSpec is provided.

Code quality
The total Code Quality score is 10 out of 10.

Test coverage
Code coverage of the project is 93.88% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● The scenarios involving multiple user are tested thoroughly.
● Negative case coverage is partially missing for the OEPausable.sol,

DoubleQueueModified.sol, and OpenEdenVaultV2.sol contracts.

Security score
As a result of the audit, the code contains 1 medium and 1 low severity
issues. The security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.1. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

09 October 2023 5 1 0 2

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


17 October 2023 1 1 0 0

Risks

● At any given time, the owner or operator holds the capability to
pause both withdrawals and deposits.

● The transaction fees within the system can be configured to any
value, including 100%, which implies that users may receive nothing
in return when attempting to deposit or redeem tokens. The fee is
calculated and collected when the operator executes the withdrawal
queue, based on the latest fee rate, not the rate at the time of user
redemption.

● The TBILL price used in calculations is provided by an oracle through
an off-chain mechanism and the implementation to sustain stable coin
mechanism is also handled off-chain.

● The owner has the authority to withdraw any token including USDC from
the contract.

● Only the operator has the authority to execute redemption requests,
and the timing of execution is determined by the operator's
discretion.

● The Treasury, oplTreasury and KycManager contracts are beyond the
scope of this audit. The reliability of these contracts cannot be
confirmed.

● The system employs a KYC process. There is a potential risk where a
user, after receiving KYC approval and depositing tokens, could be
subsequently banned. This would result in their tokens being
permanently locked in their account.

● The redemption process relies on a centralized operator's discretion,
and any issues or risks related to this operator's actions, such as
insufficient USDC balance or centralization concerns, can result in
users being unable to access their deposited TBILL tokens or the
promised USDC tokens, potentially compromising the trustworthiness of
the redemption process.

● There exists a risk where the backend system could fail to accurately
set the isWeekend flag, which is crucial for enforcing the intended
fee structure and deposit limits. In this case, users might be able
to deposit funds under incorrect fee structures.

● The Open Eden operators can ban users, which may result in declining
withdrawal requests if a user has already deposited funds. This
mechanism was introduced to protect against withdrawal queue block
due to USDC blacklisting mechanism.

www.hacken.io
7



Findings

Critical

C01. Denial of Service; Assets Locked in Withdrawal Queue Due to Absent
Verifications

Impact High

Likelihood High

The withdraw operations in the system are solely processed by the
operator, starting from the front of the queue, and executing only
first the frontmost operation. Users initiate withdrawal requests via
the redeem() function, which allows them to specify transfer amounts
and receiver addresses. This setup introduces a critical
vulnerability that could lead to a collapse of the entire withdrawal
queue mechanism through three distinct scenarios:

Scenario 1:

A malicious user sets the receiver address to the zero address when
executing the redeem function. The redeem function lacks a
restriction to prevent this action, allowing the user's request to be
added to the withdrawal queue. Subsequently, when the operator
decides to execute withdrawal operations from the queue, the
malicious user's request, along with the upcoming ones, will be
permanently stuck. This is because transfers to the zero address are
prohibited in the provided ERC20 contract, effectively locking up
these assets.

Scenario 2:

The fee for users’ redeem requests is not charged during the users
call of redeem function. It’s charged when the operator process the
withdrawals. When the calculated transaction fee for a user is
smaller than the minTxsFee specified in the contract, and the user
has no available assets in the withdrawal queue data, both the
transaction and so the withdrawal queue will always fail.

Scenario 3:

Another scenario involves the use of a blacklisted USDC user as the
recipient. If the recipient address is blacklisted by the USDC
contract, any attempt to transfer USDC tokens to that address will
also cause a reversion, leading to a similar denial of service
condition.

All of these scenarios result in users' assets / orders being locked
within the contract, rendering the system non-functional and severely
damaging its reputation.

Path: ./contracts/OpenEdenVaultV2.sol: redeem(),
processWithdrawalQueue()

www.hacken.io
8



Proof of Concept:

1. A malicious user calls the redeem() function and intentionally
sets the receiver address to the Ethereum 0x00 address (also
known as the zero address).

2. The contract does not have any checks to prevent this action,
so the malicious user's request is added to the withdrawal
queue.

3. The operator, responsible for processing withdrawals, attempts
to process the queue. When the operator reaches the malicious
user's request, the withdrawal operation fails. This is because
transfers to the zero address are prohibited in standard ERC20
contracts.

4. As a result, the entire withdrawal queue becomes jammed. The
operator cannot process this request nor any subsequent
requests in the queue.

Recommendation: In the redeem function, add a check to ensure that
the receiver address is not set to the zero address. Reject the
transaction if the receiver address is invalid.

Charge the fee during the redeeming process and do not allow
processing if the amount to be received is zero after the charging.

Enhance the withdrawal queue mechanism to handle and skip invalid or
malicious requests gracefully, ensuring that the entire system does
not become paralyzed due to such requests. To cancel an order,
original assets must be refunded to the corresponding user.

All given recommendations should be implemented.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: Following fixes were introduced:

1. The cancel() function was added. Using this function contract
operators can cancel withdraw request for banned user. Open
Eden will ban users that are blacklisted by USDC or other users
that may block withdrawal queue.

2. KYC verification was added to the redeem() function, so it is
not possible to add non-KYC user or zero address as withdrawal
receiver.

It is important to acknowledge that these fixes offer a robust
solution to prevent Denial of Service (DoS) in the event of a single
withdrawal failure within the queue. However, it is crucial to
emphasize that this solution exclusively applies to banned users. A
new concern has arisen concerning the potential for queue lock caused
by non-banned users (L06 issue in this report).

www.hacken.io
9



C02. Missing KYC Verification in ‘Deposit()’ Function

Impact High

Likelihood High

The contract allows users to deposit tokens without verifying their
KYC status, contrary to the specifications mentioned in the public
documentation. The current implementation lacks this verification,
which can lead to unintended consequences and potential loss of funds
for non-KYC users.

The deposit function in the contract is designed to accept tokens
from users. However, there is a missing check to verify if both user
depositing tokens (msg_sender) and address receiving share (receiver)
have been approved through the KYC process. This oversight means that
even users without KYC approval can deposit tokens, which is a
deviation from the intended behavior as described in the public
documentation. The contract has other restrictions in place that
prevent non-KYC approved users from transferring or withdrawing their
tokens. If a non-KYC approved user deposits tokens, they will be
unable to transfer or withdraw these tokens, effectively locking
their funds permanently in the contract.

Impact:

1. Regulatory Impact: Allowing deposits without KYC can lead to
regulatory issues, as KYC is a crucial step in preventing money
laundering and ensuring compliance with financial regulations.

2. Trust Issues: Users and stakeholders might lose trust in the
platform if it does not adhere to its own documented
procedures.

3. Potential for Exploitation: Malicious actors might exploit this
oversight to deposit illicit funds or engage in other
fraudulent activities.

Proof of Concept:

1. The non-kyc user calls the deposit function of the
OpenEdenVaultV2 contract to deposit a certain amount of USDC
tokens.

2. The contract accepts the deposit and emits a ProcessDeposit
event, even though the non-kyc user has not been approved
through the KYC process.

3. The non-kyc user attempts to redeem a portion of their
deposited tokens. The redemption attempt fails because the user
has not passed the KYC verification, but their funds are
already locked in the contract due to the successful deposit.

4. The non-kyc user's USDC funds are effectively locked in the
OpenEdenVaultV2 contract, and the TBILL token locked in their
wallet, as they can neither transfer TBILL tokens nor redeem
their USDC tokens.

www.hacken.io
10



Path: ./contracts/OpenEdenVaultV2.sol: deposit()

Recommendation: Modify the deposit function to include a check that
verifies the KYC status of the msg.sender and reciever. If the user
has not passed the KYC verification, the function should revert with
an appropriate error message.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: KYC validation was added to the deposit() function.

High

No high severity issues found.

Medium

M01. Unrestricted Fee Configuration

Impact High

Likelihood Low

The system owner possesses the authority to set transaction fees for
both weekends and weekdays to any value, including 100%. A fee rate
of 100% implies that users will receive nothing when attempting to
deposit or redeem tokens.

Moreover, charging fees for reedem operation does not happen in the
redeem function immediately. The fee is taken when the operator
process the withdrawal. If the fee is changed during this period of
time, users will pay different amount of fees than promised.

This unrestricted control over fee configuration by the owner may
lead to the imposition of excessive fees, resulting in users
receiving no tokens for their transactions and potential
dissatisfaction with the system. It introduces the risk of unfair and
unjust fee charging and a potential loss of trust in the platform.

Path: ./contracts/feeManager.sol: setTransactionFeeWeekday(),
setTransactionFeeWeekend()

www.hacken.io
11



Recommendation: Set reasonable boundaries for the transaction fees
and mention these max and min (if there is) limits in the
documentation. Additionally, calculate and apply the fee within the
redeem function based on the current fee rate, rather than collecting
the fee after a user places a redemption order.

Found in: 4aed24d

Status: Acknowledged

Comment: The Open Eden team decided to not fix this issue due to
commercial reasons.

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

The zero address validation check is not implemented for the
following functions:

1. setOplTreasury()
2. setFeeManager()
3. setKycManager()
4. setOperator()
5. setUsdcPriceFeed()
6. setTBillPriceFeed()
7. setController()
8. setTreasury()
9. setQTreasury()

Setting one of aforementioned parameters to zero address (0x0)
results in breaking Open Eden main business flow.

Paths: ./contracts/OpenEdenVaultV2.sol : deposit(), redeem(),
setOplTreasury(), setFeeManager(), setKycManager(), setOperator(),
setUsdcPriceFeed(), setTBillPriceFeed(), setController(),
setTreasury(), setQTreasury()

Recommendation: Implement zero address validation for the given
parameters.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: Zero address checks were implemented for aforementioned
functions.

www.hacken.io
12



L02. Possibility of Dangerous Assumption on USDC Peg When Calculating
TBillUsdcRate

Impact Medium

Likelihood Low

The contract's design assumes that the USDC stablecoin will always
maintain a 1:1 peg with the US dollar when the fixedPriceOn flag is
true. This assumption can lead to potential vulnerabilities and
financial risks.

The tbillUsdcRate() function, which plays a crucial role in
calculating shares and total assets during deposit and withdrawal
operations, makes a potentially dangerous assumption when the
fixedPriceOn boolean flag is set to true. It assumes that the USDC
stablecoin will always be pegged to 1 USD. This assumption can
introduce several risks and vulnerabilities.USDC, although designed
to be pegged to the US dollar, might not always maintain this peg.
Factors like market dynamics, liquidity issues, or unforeseen events
can cause deviations from the 1:1 peg.

For example, in 10-13th March 2023, because of several bank collapses
USDC was depegged for several days to values up to 0.88. Consider
following scenario:

1. OpenEden vault contract has fixedPriceOn flag set to true.
2. USDC depegs to 0.9.
3. For simplicity let’s assume that TBILL token exchange rate is

1.000000.
4. Users are depositing many USDC into contract.
5. OpenEden cannot easily offRamp USDC and buy expected amount of

treasury bills as USDC is valuated less than USD. As a result,
OpenEden operators cannot fulfill protocol promises and have to
wait for USDC to stabilize.

6. However, if depeg event was unnoticed by protocol operators,
then USD to fullfill protocol promises (exchanging USDC to
TBills) have to be substituted from protocol USD reserves
resulting in protocol profit decrease.

Path: ./contracts/OpenEdenVaultV2.sol: tbillUsdcRate(),
filipFixedPrice()

Recommendation: Instead of relying on a fixed assumption, use trusted
external oracles to fetch the current USDC price. This ensures that
the contract always operates with the most accurate and up-to-date
information.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The fixedPriceOn flag was removed. The USDC price is
taken from the oracle.

www.hacken.io
13



L03. Usage of Deprecated Oracle Functions

Impact Medium

Likelihood Low

The codebase contains the usage of deprecated oracle function for
getting USDC/USD price, the latestAnswer. It is crucial to update the
codebase to use the latest recommended oracle function,
latestRoundData, and ensure that the return data is handled correctly
to avoid issues such as receiving stale or incorrect price data.

The latestRoundData function provides more comprehensive data,
including not only the latest answer (price) but also additional
information such as timestamps, answers from specific rounds, and
more. Transitioning to this function is essential to ensure the
accuracy and reliability of the price data obtained from the oracle.

Path: ./contracts/OpenEdenVaultV2.sol: tbillUsdcRate()

Recommendation: Use latestRoundData function to bring the USDC price
and check all of its return values. Set a reasonable stale price
delay time. A stale delay time of 1 to 5 minutes is commonly used in
many applications. Ensure that the price that is returned is greater
than zero.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The onlyValidPrice modifier was introduced, which checks
price staleness against newly introduced maxTimeDelay, which is set
during contract initialization and later could be modified by
contract owner by setMaxTimeDelay function.

L04. Overpermisive offRamp Function

Impact Medium

Likelihood Low

The offRamp() function should be used to withdraw underlying asset
(USDC) to treasury wallet.

It was observed that this function could be used to withdraw treasury
share tokens as contract operator can specify an address of token
that should be withdrawn. Withdrawing treasury share tokens can lead
to Denial of Service (DoS) as such tokens act as users escrow (after
redeem and before withdrawal queue processing). Changing escrow
balance can lead to withdrawal queue processing error.

Path: ./contracts/OpenEdenVaultV2.sol: offRamp()
www.hacken.io

14



Recommendation: Restrict the offRamp() function so it can be only
used to transfer underlying token (USDC).

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The offRamp() is restricted to only be used to transfer
underlying token (USDC).

L05. Missing Protection Against USDC Depeg

Impact Medium

Likelihood Low

The USDC depeg refers to a situation where the value of the USDC
stablecoin loses its stability and is no longer effectively
equivalent to one US dollar. In a depegged state, the USDC's value
can fluctuate independently of the USD, and it may be worth more or
less than one US dollar.

A USDC depeg event, often likened to a black swan event, carries the
potential for significant adverse consequences on Open Eden, as
outlined below:

1. Users depositing USDC to acquire share tokens may find
themselves receiving fewer shares than anticipated due to
slippage. This becomes especially precarious when the frontend
application uses a hardcoded USDC price instead of reflecting
real market dynamics.

2. The process for users to withdraw their underlying tokens
involves a two-step procedure comprising redemption and
withdrawal queue processing. Should a USDC depeg event occur
during any stage of the withdrawal process, it could
significantly alter the final amount of USDC received by the
user.

Path: ./contracts/OpenEdenVaultV2.sol: deposit(), redeem(),
processWithdrawalQueue()

Recommendation: It is strongly advisable to implement safeguards to
mitigate the impact of potential USDC depeg events. This can be
achieved through the following measures:

● Consider implementing a slippage mechanism that allows users to
specify the precise quantity of tokens they intend to receive
when making deposits. This empowers users to proactively manage
their expectations and minimize the impact of sudden price
fluctuations.

● An alternative approach is to temporarily suspend deposits and
withdrawals in situations where the USDC/USD price experiences
significant volatility. This precautionary step can help

www.hacken.io
15



safeguard the system's stability during periods of uncertainty
and prevent unexpected losses for users.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The maxDepeg parameter was introduced, which validates
(in onlyValidPrice modifier) if the USDC depeg is in expected range.
The maxDepeg parameter can be set by contract owner using
setMaxDepeg() function after the contract initialization.

L06. Missing Failover Mechanism to Unlock Withdrawal Queue Blocked by
Non-Banned Users

Impact Medium

Likelihood Low

The cancel() function plays a critical role in managing withdrawal
requests for banned users, specifically those who have been
blacklisted by the internal mechanism of USDC. These requests must be
canceled because attempting to transfer funds to a blacklisted
account results in transaction reversal and queue processing
blockage, preventing other users from withdrawing their funds.

While the cancel() function is effective in addressing some aspects
of the queue blocking issue, it does not provide a comprehensive
solution, as it is tailored exclusively to banned users. Several
concerns persist regarding non-blocked users:

1. Denial of Service incidents may not always originate from
banned users. Various scenarios, such as changes in Know Your
Customer (KYC) status for the withdrawal receiver between the
redemption and queue processing stages, can also lead to
disruptions.

2. A separate issue pertains to the fees applied during the
withdrawal processing. Users might still encounter
discrepancies between the promised or agreed-upon fee amounts
and the actual fees deducted. In exceptionally rare cases, if
fees are altered between redemption and withdrawal queue
processing, a user's withdrawal request could fail, causing
queue blockages.

Path: ./contracts/OpenEdenVaultV2.sol: cancel()

www.hacken.io
16



Recommendation: Implementing a failover mechanism is strongly advised
to address situations where a valid (non-banned) user's withdrawal
request experiences a reversal, resulting in the blocking of the
withdrawal queue.

Found in: 8fc01c

Status: Acknowledged

Comment: The Open Eden acknowledged this issue.

Informational

I01. Redundant Declaration

The boolean variables’ default value is always false in Solidity.
Therefore, declaring them as false in the constructor function is
redundantly consuming Gas.

Path: ./contracts/security/OEPausable.sol: constructor()

Recommendation: Remove the boolean variables’ declarations from the
constructor.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: Redundant declaration was removed.

I02. Solidity Style Guides Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions

www.hacken.io
17



● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all crucial functionalities are strongly
recommended. These measures aid in the comprehension of code and
enhance overall code quality.

Path: ./*

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Providing comprehensive NatSpec annotations for functions and
following Solidity's naming conventions further enrich the quality of
the code.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: Code was refactored to align with Solidity Style Guides.

I03. Commented Code Parts

Following commented code parts were observed:

1. TBillPriceOracle lines 6, 188-189, 195-201 (console.log)
2. FeeManager line 3.
3. DoubleQueueModified line 5 (SafeCast import).
4. Controller line 4.

The presence of commented-out code indicates an unfinished
implementation, potentially causing confusion for both developers and
users and decreasing code readability.

Path: ./contracts/feeManager.sol,

./contracts/oracle/TBillPriceOracle.sol,

./contracts/DoubleQueueModified.sol,

./contracts/Controller.sol

Recommendation: Remove commented parts of code.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: Commented code was removed.

www.hacken.io
18



I04. State Variables Default Visibility

Visibility for following variables were not specified:

● _transactionFeeWeekday
● _transactionFeeWeekend
● _firstDeposit
● _minDeposit
● _maxDeposit
● _minWithdraw
● _maxWithdraw
● _managementFeeRate
● _maxWeekendDepositPct
● _maxWeekendAggregatedDepositPct
● _minTxsFee
● firstDepositMap
● depositAmountMap
● withdrawAmountMap
● withdrawalInfo
● withdrawalQueue

Specifying state variables visibility helps to catch incorrect
assumptions about which inheriting contract can access the variable.
Every variable with unspecified visibility is by default treated as
internal.

Path: ./contracts/feeManager.sol,

./contracts/OpenEdenVaultV2.sol

Recommendation: To increase code readability, it is recommended to
explicitly define visibility as public, internal, or private for all
state variables.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: Aforementioned variables are defined as private.

I05. Typo in the Function Name

The function filipFixedPrice has a typo in its name.

Path: ./contracts/OpenEdenVaultV2.sol: filipFixedPrice()

Recommendation: Change the name to flipFixedPrice.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The filipFixedPrice() function was removed.

www.hacken.io
19



I06. Usage of Toggle Switch Mechanism

The flipFixedPrice function incorporates a toggle-switch mechanism,
which can pose a risk if inadvertently invoked several times and is
not configured for the intended action.

Path: ./contracts/OpenEdenVaultV2.sol: filipFixedPrice()

Recommendation: Consider implementing a Boolean-control mechanism
where true signifies the fixed price is enabled, and false indicates
the opposite to enhance clarity and reduce the risk of accidental
double invocation.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The filipFixedPrice() function was removed.

I07. Missing Event Indexes

Use indexed events to keep track of a smart contract's activity after
it is deployed, which is helpful in reducing overall Gas.

Path: ./contracts/interfaces/IOpenEdenVault.sol

./contracts/oracle/TBillPriceOracle.sol

Recommendation: Add missed indexed keywords to easier tracking smart
contract information.

Found in: 4aed24d

Status: Acknowledged

Comment: The Open Eden team is not indexing aforementioned events, so
indexed is not necessary.

I08. Mismatch Between Contract Name and Filename

Consistency between contract names and their filenames is a
recommended best practice in Solidity development. It ensures clarity
and reduces the risk of errors. The FeeManager contract does not
adhere to this guideline, which can lead to violation of official
guides.

Path: ./contracts/feeManager.sol

Recommendation: Change the filename to FeeManager.sol to match the
contract's name.

Found in: 4aed24d

Status: Acknowledged

Comment: The Open Eden acknowledged this issue.

www.hacken.io
20



I09. Use Custom Errors Instead Of Error Strings To Save Gas

Custom errors were introduced in Solidity version 0.8.4, and they
offer several advantages over traditional error handling mechanisms:

1. Gas Efficiency: Custom errors can save approximately 50 Gas
each time they are hit because they avoid the need to allocate
and store revert strings. This efficiency can result in cost
savings, especially when working with complex contracts and
transactions.

2. Deployment Gas Savings: By not defining revert strings,
deploying contracts becomes more gas-efficient. This can be
particularly beneficial when deploying contracts to reduce
deployment costs.

3. Versatility: Custom errors can be used both inside and outside
of contracts, including interfaces and libraries. This
flexibility allows for consistent error handling across
different parts of the codebase, promoting code clarity and
maintainability.

Path: ./contracts/*

Recommendation: To save Gas, it is recommended to use custom errors
instead of strings.

Found in: 4aed24d

Status: Acknowledged

Comment: The Open Eden acknowledged this issue.

I10. Floating Pragma

The project uses floating pragmas ^0.8.0, ^0.8.4 and ^0.8.9.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: ./contracts/security/OEPausable.sol

./contracts/security/Timelock.sol

./contracts/Controller.sol

./contracts/DoubleQueueModified.sol

./contracts/feeManager.sol

./contracts/OpenEdenVaultV2.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

www.hacken.io
21

https://github.com/ethereum/solidity/releases)


Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The pragma version was fixed to 0.8.9.

I11. Missing Overflow Check in Queue Implementation

The code contains a function called pushBack, which inserts an item
at the end of the queue. However, there is a concern that there is no
check for overflow. It's possible for the end index to overflow and
exceed the begin index, although it is quite rare for this to happen
and to reach to the max value of uint256 variable when the queue
increases by only one.

Path: ./contracts/DoubleQueueModified.sol

Recommendation: Consider removing unchecked code blocks, so
transaction reverts on overflow.

Found in: 4aed24d

Status: Acknowledged

Comment: The Open Eden acknowledged this issue.

I12. Checks-Effect-Interaction Pattern Violation

The Checks-Effects-Interactions pattern is violated inside following
functions:

1. The _processDeposit(): During the function, the state variables
are updated after the external token transfer call via
_deposit().

2. The _processWithdraw(): During the function, the state
variables are updated after the token transfer call via
_addToWithdrawalQueue().

3. The processWithdrawalQueue(). During the function, the state
variables are updated after the external token transfer call
via _withdraw().

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during implementation of new functionality.

Path: ./contracts/OpenEdenVaultV2.sol : _processDeposit(),
_processWithdraw(), processWithdrawalQueue()

Recommendation: Follow common best practices, and implement the
functions according to the Checks-Effects-Interactions pattern.
Modify the _processDeposit(), _processWithdraw(),
processWithdrawalQueue() functions to update the state variable
before making the external token transfer call.

www.hacken.io
22



Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: The code was refactored to support
Checks-Effect-Interaction pattern.

I13. Setting Insufficient Max Deviation of TBill Price Parameter Can
Lead to Value Loss Due to Frontrunning

The Treasury Bills exchange rate is governed by the TBillPriceOracle
contract, where the price parameter is subject to modification
through the updatePrice function. While there is a built-in safeguard
to prevent excessive deviations from the previous price
(_maxPriceDeviation), it is important to note that this parameter can
be dynamically adjusted both during contract initialization and
through the updateMaxPriceDeviation function.

However, a potential security concern arises in scenarios where the
Oracle authority permits substantial deviations from the previous
price. In such cases, malicious actors can exploit this vulnerability
by closely monitoring updatePrice transactions. When a significant
price movement occurs, these malicious actors can swiftly execute
front-running transactions, depositing USDC before the TBill price is
updated. Subsequently, once the TBill price is modified, these actors
can proceed to withdraw USDC, thereby gaining an unfair advantage and
potentially compromising the integrity of the system.

Path: ./contracts/oracle/TBillPriceOracle.sol: constructor(),
updateMaxPriceDeviation()

Recommendation: It is recommended to set _maxPriceDeviation with
extra cautious or define deviation parameter upper limit.

Found in: 4aed24d

Status: Acknowledged

Comment: The Open Eden team is using internal procedure to verify
_maxPriceDeviation parameter.

I14. Missing Validation for Setting Deposit and Withdrawal Limits

Ensuring that minimum values are less than or equal to their
corresponding maximum values is crucial for the logical consistency
of a contract. The current implementation does not enforce this rule,
which can lead to unexpected results and hinder the contract's
usability.

The contract allows the owner to set the _minDeposit value greater
than _maxDeposit and _minWithdraw value greater than _maxWithdraw.
There is no input validation to ensure that the minimum values are
less than or equal to the corresponding maximum values. This

www.hacken.io
23



oversight can lead to unexpected behavior and potential transaction
reverts when users interact with the contract.

Path: ./contracts/feeManager.sol: setMinDeposit(), setMaxDeposit(),
setMinWithdraw(), setMaxWithdraw()

Recommendation: Add checks in the functions that set deposit and
withdrawal limits to ensure that minimum values are always less than
or equal to the corresponding maximum values.

Found in: 4aed24d

Status: Fixed (Revised commit: 8fc01c)

Remediation: Maximum and minimum deposit values are validated minimum
cannot be greater than maximum.

www.hacken.io
24



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
25



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
26



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
27



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/OpenEdenHQ/openeden.vault.v2.audit

Commit 4aed24dac07c442ad0fca131b4749d950465d5be

Whitepaper

Requirements https://docs.openeden.com/category/introduction

Technical
Requirements https://docs.openeden.com/category/introduction

Contracts File: contracts/Controller.sol
SHA3: 77d87bd87d71c4d12233ff6dcd917118b73f186b6982a512ae94af122cbf58f7

File: contracts/DoubleQueueModified.sol
SHA3: eccafcca981a8b15948b6a70b987591798bcb64ad508bc2be9543c63cf6bf972

File: contracts/feeManager.sol
SHA3: 9290ee062ead4d835dbf43daee76f39d7e96ba910d2d1a87a39f4216d15c7ac9

File: contracts/KycManager.sol
SHA3: ca9af66472cd9ff5892c690a46c33da2784217f447c4781958cc32483958b43c

File: contracts/OpenEdenVaultV2.sol
SHA3: ef3e10fedc12e840210abb4e12942aaad80cfa1e91aee80604fd157e362ea6a8

File: contracts/interfaces/IFeeManager.sol
SHA3: 4904db7caecad5f9277e127554d83ff57ce0e141cc204573ee128007c12c108a

File: contracts/interfaces/IKycManager.sol
SHA3: a906c0e50bf5429d255e85ef6719bd2c9482a99473a2425eb9af009950d7a93f

File: contracts/interfaces/IOpenEdenVault.sol
SHA3: e133ea0f9a41ea185a084648170e08cdabfc4373bd58416890c9cf8bdb8ce6f7

File: contracts/interfaces/IPriceFeed.sol
SHA3: 03d9593c94c35b0f0a6806ab0988abb9775215e94f9fed072fb42daa931c0ef2

File: contracts/oracle/TBillPriceOracle.sol
SHA3: 4062c6868e92cd2d52220f9ce8211aaa77087bf1bb811c6407d0de6734389879

File: contracts/security/OEPausable.sol
SHA3: ff72063dc549a1eb9e8941de037efea2d183da27efece0ddb77bccc16a800fa1

File: contracts/security/Timelock.sol
SHA3: e27795e7af78e18e4646c0db800f03297e181196599f66d2acd3b8f878bd9c37

www.hacken.io
28

https://docs.openeden.com/category/introduction
https://docs.openeden.com/category/introduction

