
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Sock
Date: 13 Oct, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Sock

Approved By Przemyslaw Swiatowiec | Lead Solidity SC Auditor at Hacken OÜ

Auditors David Camps Novi | SC Auditor at Hacken OÜ

Tags Signatures; Staking; Proxy; Factory; ERC4337; Account Abstraction;

Platform EVM

Language Solidity

Methodology Link

Website https://www.sock.app/

Changelog 27.09.2023 – Initial Review
13.10.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.sock.app/


Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Risks 7
Findings 8

Critical 8
C01. Missing Access Control in UUPS Upgradable Pattern Leads to SockAccount
Takeover 8
C02. SockOwner Role Can Hijack SockAccount 8

High 9
H01. Temporary Freezing of Funds due to Missing Parameter Update 9
H02. Requirements Violation - ERC20SockProxy Cannot be Used as Proxy 10
H03. Signature Replay Attack 10

Medium 11
M01. Best Practice Violation; Usage of SafeERC20 11
M02. Unlimited Parameter Allows Abusive Fees 11
M03. Risk of Incorrect Slippage During Swap 12
M04. Fees Cannot be Cashed Out if Fee Token and Cash Out Token Are the Same 13

Low 13
L01. Missing Zero Address Validation 13
L02. Unused Imports 14
L03. Improper Event Data Emission 14
L04. Inefficient Gas Model due to Missing Require Check 15
L05. SockAccount Entrypoint Contract Address Is Set by Sock Team 15

Informational 16
I01. Solidity Style Guides Violation 16
I02. Missing Events for Critical Value Updates 17
I03. Public Functions That Should Be External 17
I04. NatSpec Contradiction in cashOut Function 18
I05. Floating Pragma 18

Disclaimers 20
Appendix 1. Severity Definitions 21

Risk Levels 21
Impact Levels 22
Likelihood Levels 22
Informational 22

Appendix 2. Scope 23

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Sock (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

SOCK is an ERC4337 compliant contract implementation designed to allow
self-custody storage of cryptocurrencies in a safe and controlled space
with the following contracts:

● SockAccountFactory — creates and manages instances of SockAccount
via proxy pattern.

● SockAccount — ERC4337 compliant implementation, customized for the
Sock ecosystem.

● SockOwnable — provides access control mechanisms to differentiate two
types of owners: owner and sockOwner.

● SockRegistryAccessManager — extends the functionality of SockOwnable,
providing access control mechanisms for a specific registry named
sock function registry. The sock owner has the exclusive right to
change the referenced sock function registry within the system.

● SockRegistryImplementer — builds upon the functionality provided by
SockRegistryAccessManager. Ensures that functions are allowed to be
executed based on the rules defined in the sock function registry.

● SockFunctionRegistry — management tool for keeping track of specific
allowed functions.

● UniswapV3SockProxy — gateway for interacting with UniswapV3,
facilitating seamless ETH and ERC20 swaps.

● ERC20SockProxy — proxy that offers direct interactions with ERC20
token methods.

● SockFeeManager — converts fee tokens into a designated cashout token
through Uniswap V3 and sends them to a specific cashout address.

● SockFeeWhitelist — manages a whitelist of users who are exempt from
“sock fees”.

Privileged roles
● SockAccount Owner: Has the ability to whitelist functions that can be

executed from SockAccount by the account owner and SockOwner. Add,
unlock, and withdraw stakes in ERC4337 flow.

● SockOwner: Can execute whitelisted functions (defined by SockAccount
owner in the SockFunctionRegistry).

● RecoverOwner: Can change the owner of the contract if recovery is
enabled.

www.hacken.io
4



● Protocol Owner: Set fees generated by using the UniswapV3SockProxy
contract. Change fees cashOut tokens, withdraw fees, and Whitelist
addresses that fees do not apply to.

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● NatSpec is sufficient.
● Description of the development environment is present.

Code quality
The total Code Quality score is 9 out of 10.

● Solidity Style Guides are violated.
● Floating Pragmas are present.
● There are missing validations.
● Inefficient Gas model is present.
● The development environment is configured.

Test coverage
Code coverage of the project is 93.44% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Summary
According to the assessment, the Customer's smart contract has the
following score: 9.5. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

27 September 2023 5 4 3 2

13 October 2023 2 0 0 0

Risks

● Incorrect registry management: The SockAccount owner (protocol user)
is responsible for whitelisting operations that can be performed by
SockOwner. It is up to the user to manage the risk of whitelisting
proper operations and smart contracts using the least privilege
principle and choose a trusted SockOwner operator.

● Insecure ERC4337 infrastructure: The SockAccount relies on ERC4337
infrastructure provided by an external company (Stackup). Protocol
users should verify if the Entrypoint contract assigned to
SockAccount is secure. Malicious Entrypoint contracts may lead to
unexpected results, for example, incorrect signature replay attacks
in the case of incorrect nonce implementation.

● Roles management: The SockAccount is a self-custody account. Users
are responsible for securing owner and recoverOwner private keys.

● UUPS proxy: The SockAccount contract is implemented using UUPS proxy,
which allows contract code to change. It is necessary to secure the
upgrade process and verify each contract change.

www.hacken.io
7

https://www.stackup.sh/


Findings

Critical

C01. Missing Access Control in UUPS Upgradable Pattern Leads to
SockAccount Takeover

Impact High

Likelihood High

Due to the lack of access control in _authorizeUpgrade, an external
account can upgrade the implementation of the SockAccount contract to
a malicious one and steal all funds.

What is more, to comply with OpenZeppelin’s UUPSUpgradeable contract,
it is necessary to initialize UUPSUpgradeable, by calling
__UUPSUpgradeable_init() within the _initialize() function of the
SockAccount contract.

Path: ./contracts/sock-account/SockAccount.sol: _initialize(),
_authorizeUpgrade().

Recommendation: Initialize the UUPSUpgradeable contract and add
access control to _authorizeUpgrade().

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: Proper access control was introduced to
_authorizeUpgrade - only owner can upgrade the SockAccount contract.

C02. SockOwner Role Can Hijack SockAccount

Impact High

Likelihood High

The main goal of the system is to allow users to delegate the
predefined actions to sockOwner role. Users can do that by
whitelisting function signature and smart contract that can be
invoked using SockFunctionRegistry contract.

It was observed that sockOwner can swap the SockFunctionRegistry
address used in user SockAccount. Consider following scenario:

1. A user deploys his own SockAccount and allows SockOwner to only
transfer and set allowance for USDC tokens.

2. SockOwner can create malicious SockFunctionRegistry that allows
him to transfer other tokens stored in SockAccount.

www.hacken.io
8

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol


3. Then using setSockFunctionRegistry in
SockRegistryAccessManager, SockOwner can change an existing
registry to a malicious one.

4. As a result, SockOwner can whitelist any actions in a user's
SockAccount and steal all funds.

Path: ./contracts/sock-account/SockFunctionRegistry.sol:
setSockFunctionRegistry(),

Recommendation: Only users (SockAccount owner) should be allowed to
modify SockFunctionRegistry instance address.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: Proper access control was introduced to
setSockFunctionRegistry() only the SockAccount owner can change
address to the SockFunctionRegistry.

High

H01. Temporary Freezing of Funds due to Missing Parameter Update

Impact High

Likelihood Medium

The function addAllowedFunction() does not update _allowedFunctions’
payable status.

As a result, the account owner is not able to call payable functions,
which seriously reduces the number of operations that can be
performed by SockAccount. For example, the account owner is not able
to withdraw any native ETH stored in SockAccount. To withdraw native
ETH user has to:

1. Go to the registry and set sockOwner to themself.
2. Allow sockOwner to withdraw (call payable function)
3. Withdraw as sockOwner
4. Change sockOwner to the old one.

Path: ./contracts/registry/SockFunctionRegistry.sol:
addAllowedFunction().

Recommendation: Update the payable parameter in addAllowedFunction().

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The SockAccount owner should execute transactions using
newly added executeOwner() function. All functions regarding owner

www.hacken.io
9



permissions including addAllowedFunction() were removed from the
SockFunctionRegistry.

H02. Requirements Violation - ERC20SockProxy Cannot be Used as Proxy

Impact Medium

Likelihood High

According to the requirements, everybody can interact with the
standalone ERC20SockProxy contract to transfer/approve their tokens
according to the token address given. However, the implementation
will not execute that since the transfer function transfers tokens
from inside the ERC20SockProxy contract and not from the users
themselves.

The function implementation requires the token holders to first
transfer their tokens to the ERC20SockProxy contract. If a malicious
user calls transfer at this point before the original token holder,
they can effectively withdraw the funds, so it is not recommended for
any user to interact with the contract in this way.

Path: ./contracts/proxies/ERC20SockProxy.sol

Recommendation: Review the requirements for the functionality of this
contract. Either update the documentation or redesign the contract
functionality.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The ERC20SockProxy was removed.

H03. Signature Replay Attack

Impact High

Likelihood Medium

The Sock project allows calls to execute() from EntryPoint, the owner
or the sockOwner. If the function is called from the owner or the
sockOwner, the nonce value is not updated and the function becomes
vulnerable to signature replay attacks.

The execute() function should only be called by the EntryPoint
contract, following EIP-4337.

However, a new flow form should be created to be called from the
owner and sockOwner. This new flow should implement the EIP-712
standard for signature validation.

Path: ./contracts/sock-account/SockAccount.sol: execute().

www.hacken.io
10

https://eips.ethereum.org/EIPS/eip-712


Recommendation: Follow the EIP-4337 specification and create
additional flow to allow execution for owner and sockOwner that
follow EIP-712.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The SockAccount owner should execute transactions using
newly added executeOwner() function without extra signature
validation (owner check). The sockOwner can execute transactions only
using EntryPoint with nonce update implemented.

Medium

M01. Best Practice Violation; Usage of SafeERC20

Impact High

Likelihood Low

The transfer() function of the ERC20SockProxy.sol contract checks the
return value of the token transfers manually and does not use
SafeERC20 library for checking the result of ERC20 token transfers.

Some tokens may not follow ERC20 standard and may not return false in
case of transfer failure or they might not return any value at all.
An example for such a type of token would be the BNB token.

This may lead to unexpected behavior if the interacted token is not
ERC20 compliant.

Path: ./contracts/proxies/ERC20SockProxy.sol : transfer()

Recommendation: Use SafeERC20 library to interact with tokens safely.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The Uniswap TransferHelper library is used, which
implements safe transfer features.

M02. Unlimited Parameter Allows Abusive Fees

Impact High

Likelihood Low

In setSockFee(), the _sockFee can be set without limits.

www.hacken.io
11

https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-712
https://etherscan.io/address/0xb8c77482e45f1f44de1745f52c74426c631bdd52#code
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol


Thus, such a percentage fee can reach 100% and become abusive. The
percentage value could exceed 100%, which would cause underflow and
cause the _deductSockFee() function to revert.

If the _deductSockFee function reverts, all swap operations in the
UniswapV3SockProxy contract will fail.

Path: ./contracts/proxies/UniswapV3SockProxy.sol: setSockFee().

Recommendation: Add limits to the settable fee.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: Limit of maximum 3% fee is implemented.

M03. Risk of Incorrect Slippage During Swap

Impact High

Likelihood Low

In _atteptCashOut(), the fees can be withdrawn via swapRouter.

To calculate the amount of tokens to withdraw, the method uses the
balance of the contract:
uint256 balance = cashOutParams.tokenIn.balanceOf(address(this));

ISwapRouter.ExactInputSingleParams({

...

amountIn: balance,

...});

For such amountIn, a minimum amount of tokens is set as
amountOutMinimum: cashoutParams.amountOutMinimum in order to define a
reasonable slippage.

However, if the token balance increases after amountOutMin is
calculated off-chain and inputted in _attemptCashOut(), the slippage
would dramatically increase above desired.

Path: ./contracts/sock-infra/SockFeeManager.sol: _attemptCashOut().

Recommendation: Set amountIn manually instead of relying on the
contract balance.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

www.hacken.io
12



Remediation: The sqrtPriceLimitX96 parameter was introduced to the
UniswapV3SockProxy swap functions and amountOutMinimum parameter in
the _attemptCashOut() to protect against slippage during swap.

M04. Fees Cannot be Cashed Out if Fee Token and Cash Out Token Are the
Same

Impact Medium

Likelihood Medium

In the SockFeeManager contract, all fees are cashed out using
Uniswap. There is no functionality to directly withdraw tokens.

As a result, it is not possible to withdraw fees collected in cash
out token as Uniswap swap operation reverts if the tokenIn parameter
and tokenOut parameter are the same (Uniswap does not allow the
creation of pools with the same token):

1. Protocol fee cash out token is USDC.
2. User performs an operation that swaps USDC for WETH using

UniswapV3SockProxy. Contract deducts X USDC fees for the
protocol.

3. Fees manager cannot withdraw USDC fees as collected fees token
is the same as cash out token and _attemptCashOut is reverted
because of Uniswap error.

Path: ./contracts/sock-infra/SockFeeManager.sol : _attemptCashOut()

Recommendation: Implement a way to directly withdraw fees without
using a swapping protocol if the collected fees token is the same as
cash out token.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The transferCashOutToken was introduced to directly
withdraw fees denominated in the cashOut token.

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

www.hacken.io
13

https://github.com/Uniswap/v3-core/blob/main/contracts/UniswapV3Factory.sol#L40
https://github.com/Uniswap/v3-core/blob/main/contracts/UniswapV3Factory.sol#L40


Paths:
./contracts/sock-infra/SockFeeManager.sol: constructor(),
changeCashOutToken().
./contracts/sock-account/SockRegistryAccessManager.sol:
setSockFunctionRegistry().
./contracts/sock-account/SockOwnable.sol: transferSockOwnership(),
transferRecoveryOwnership().
./contracts/sock-account/SockAccountFactory.sol: constructor(),
createAccount().
./contracts/proxies/UniswapV3SockProxy.sol: constructor(),
transferSockFeeRecipient().
./contracts/sock-account/SockAccount.sol: constructor(), execute(),
executeBatch(), withdrawDepositTo(), _initialize(),
_authorizeUpgrade().

Recommendation: Implement zero address checks.

Found in: 8009b2e

Status: Reported

Remediation: No changes regarding missing validation against zero
addresses.

L02. Unused Imports

Impact Low

Likelihood Medium

The contract SockFeeWhitelist imports the unused contracts SafeERC20,
IERC20, TransferHelper and ISwapRouter. However, they are not used,
incrementing the deployment cost of SockFeeWhitelist.

Paths:
./contracts/sock-infra/SockFeeWhitelist.sol

Recommendation: Remove the unused imports.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The unused imports were removed.

L03. Improper Event Data Emission

Impact Low

Likelihood Medium

The function _transferRecoveryOwnership() emits the event
RecoveryOwnershipTransferred() with the same data twice instead of
the old and new owner.

www.hacken.io
14



Paths:
./contracts/sock-account/SockOwnable.sol:
_transferRecoveryOwnership().

Recommendation: Use a memory variable to emit the old _recoveryOwner.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The event RecoveryOwnershipTransferred() emits correct
data.

L04. Inefficient Gas Model due to Missing Require Check

Impact Low

Likelihood Low

When calling _requireOnlyAllowedFunctions(), sockFunctionRegistry is
checked against address(0) but it is not reverted in such cases.

As a consequence, there is an unnecessary expense in terms of Gas.

Path: ./contracts/sock-account/SockRegistryImplementer.sol:
_requireOnlyAllowedFunctions().

Recommendation: It is recommended to revert the function if
sockFunctionRegistry == address(0).

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: The _requireOnlyAllowedFunctions() reverts if
sockFunctionRegistry is a zero address.

L05. SockAccount Entrypoint Contract Address Is Set by Sock Team

Impact Low

Likelihood Low

When initializing the SockAccount contract using SockAccountFactory,
the entryPoint address is predefined by the Sock team.

EntryPoint contract plays a crucial role in EIP-4773 flow. Setting an
incorrect or malicious entryPoint could lead to catastrophic results.
Sock team is declaring to use the Stackup infrastructure. However, as
entryPoint is set dynamically during SockAccountFactory deployment,
it’s not possible in the audit process to verify that the correct
address would be used.

Path: ./contracts/sock-account/SockAccount.sol
www.hacken.io

15

https://www.stackup.sh/


Recommendation: To increase decentralization of the system and
increase users trust, it is recommended to allow users to set the
entryPoint address during initialization of SockAccount in
SockAccountFactory. Alternatively, hardcode the correct entryPoint
address in the SockAccountFactory.

Found in: 8009b2e

Status: Reported

Remediation: No changes regarding entryPoint address were observed.

Informational

I01. Solidity Style Guides Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Paths:
./contracts/sock-account/SockAccount.sol
./contracts/sock-account/SockOwnable.sol
./contracts/sock-account/SockRegistryAccessManager.sol
./contracts/sock-infra/SockFeeManager.sol

www.hacken.io
16



Recommendation: Consistent adherence to the official Solidity style
guide is recommended.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: Contracts were refactored to match the official Solidity
style guide.

I02. Missing Events for Critical Value Updates

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Paths:
./contracts/sock-infra/SockFeeManager.sol: changeCashOutToken(),
constructor() → _cashOutToken.
./contracts/sock-infra/SockFeeWhitelist.sol: addAllowedAddresses(),
removeAllowedAddresses().
./contracts/proxies/UniswapV3SockProxy.sol: constructor() → _sockFee,
setSockFee().

Recommendation: Consider emitting events in said functions.

Found in: 8009b2e

Status: Reported (Revised commit: 6616162)

Remediation: Events were added to changeCashOutToken() and
setSockFee() function. However, events in addAllowedAddresses() and
removeAllowedAddresses() are still missing.

I03. Public Functions That Should Be External

Functions that are meant to be exclusively invoked from external
sources should be designated as external rather than public. This is
essential to enhance both the Gas efficiency and the overall security
of the contract.

Paths:
./contracts/sock-account/SockRegistryAccessManager.sol:
sockFunctionRegistry(), setSockFunctionRegistry().
./contracts/sock-account/SockOwnable.sol: transferSockOwnership(),
transferOwnership(), transferRecoveryOwnership().
./contracts/sock-account/SockAccountFactory.sol: createAccount().
./contracts/registry/SockFunctionRegistry.sol: addAllowedFunction(),
addAllowedSockFunction(), removeAllowedFunction(),
removeAllowedSockFunction().
./contracts/proxies/ERC20SockProxy.sol: allowance(), approve().
./contracts/sock-account/SockAccount.sol: transferSockOwnership().

www.hacken.io
17



Recommendation: Consider updating functions which are exclusively
utilized by external entities from their current public visibility to
external visibility.

Found in: 8009b2e

Status: Reported (Revised commit: 6616162)

Remediation: Following functions were still not marked as external:

● sockFunctionRegistry()
● transferRecoveryOwnership()
● transferSockOwnership() (in SockAccount.sol)

I04. NatSpec Contradiction in cashOut Function

The NatSpec provided for the cashOut() function does not correspond
to its functionality.

This inconsistency can cause confusion and make it harder for
auditors and developers to understand the code. Additionally, even
small inconsistencies can accumulate over time and make the codebase
harder to maintain.

Paths:
./contracts/sock-infra/SockFeeManager.sol: cashOut().

Recommendation: Update the NatSpec to match the method’s
functionality.

Found in: 8009b2e

Status: Fixed (Revised commit: 6616162)

Remediation: NatSpec for the cashOut() function was fixed.

I05. Floating Pragma

As stated in SWC-103, contracts should be deployed with the same
compiler version and flags that they have been tested with
thoroughly. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler
version that might introduce bugs that affect the contract system
negatively.

Some contracts use Solidity 0.8.18 features, such as mapping
key/values names and will not be compatible with previous versions.

Paths:
./contracts/*.sol

Recommendation: Lock the pragma version in all contracts.

Found in: 8009b2e

www.hacken.io
18

https://swcregistry.io/docs/SWC-103


Status: Reported

Remediation: No changes regarding floating pragma were observed.

www.hacken.io
19



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
20



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
21



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
22



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/SockFinance/sock-account

Commit 8009b2e

Whitepaper -

Requirements Link

Technical
Requirements Link

Contracts File: dependencies/callback/TokenCallbackHandler.sol
SHA3: fea222523a4ea48ed7a7aaa2c6794c741c895580fbbb7d426f98ebfca68f6cce

File: dependencies/core/BaseAccount.sol
SHA3: a60d1021c129e4afc2958d4c323d951e03f7de7bf17a65c19e07a29c9030b23c

File: dependencies/core/BasePaymaster.sol
SHA3: f51b693232ebdb335c8f5ae60cc6de107aa06c5a8402cdb029e22907032b5a6e

File: dependencies/core/EntryPoint.sol
SHA3: 322ba9499c07230834bad57ea8afa21e2990ee2c536b00049c62515add1d089a

File: dependencies/core/Helpers.sol
SHA3: c2b71e1bf5b964260af7a1ff314921a9bd12fba114a5a7e92662ed1197372689

File: dependencies/core/NonceManager.sol
SHA3: ef7045540db39ec973cdc845f658a937a22239f8e620e44bc56831ebffc552c9

File: dependencies/core/SenderCreator.sol
SHA3: 29e94632b90139e9ab53a9377afbd866c23f57f9331aec2138b67e2a5f4e44b6

File: dependencies/core/StakeManager.sol
SHA3: 6d190fe5b33840968e8768b8d296de0abf636b547fa28768360edf532042620c

File: dependencies/interfaces/IAccount.sol
SHA3: ab8890365269704fe4a40d7390f17963d3cb9a54595f7b1b46b8ae16a505aef3

File: dependencies/interfaces/IAggregator.sol
SHA3: 5b1a4877c8c368eb611818d615c5334f119a9634e0516448108c524c8a712638

File: dependencies/interfaces/IEntryPoint.sol
SHA3: e1873d9ddd84235b20f20adb2fa92047fd884bed8cb52efbb8618be139207bcc

File: dependencies/interfaces/INonceManager.sol
SHA3: 83400003c207d7a80d88cd4860361d441de8098c61a4529892500444548183be

File: dependencies/interfaces/IPaymaster.sol
SHA3: 597b3f407f83747d367661723f4de979d74cb102826893146a62216d9d9b7b89

File: dependencies/interfaces/IStakeManager.sol
SHA3: 8c3bed35eea885979a5a07dd391332c036c1b435cfe4d3dc5f200cd5cb9c89d2

File: dependencies/libraries/UserOperation.sol

www.hacken.io
23

https://github.com/SockFinance/sock-account/tree/main/docs
https://github.com/SockFinance/sock-account/tree/main/docs


SHA3: c32ce4a6506a9a49a4efeaf021bb88477eebb9d24550e33787169361e955bbb2

File: dependencies/utils/Exec.sol
SHA3: be1350248e4c3a3c927ed43312f081daeec462a5613f22310a9d5b24159bc6f7

File: interfaces/IERC20SockProxy.sol
SHA3: 46ea84cf906f9f978a856aca5a95f69ff7799f2f98abc9f5439496fff2141c2f

File: interfaces/ISockFeeManager.sol
SHA3: 21bd4d806fa7e2e9e27bc80dfe00c7e05d2843a39ec97b11a7d8843209dca18b

File: interfaces/ISockFeeWhitelist.sol
SHA3: 9606570d37144faeaa3d874ab0209494419590301d6cdbcbba10a2fe0c8b2d91

File: interfaces/ISockFunctionRegistry.sol
SHA3: 7c50f6e02988a9413552fc2ce515412c4a685d2f5d878553802fe3d8870657f6

File: interfaces/IUniswapV3SockProxy.sol
SHA3: ddafd7c3c7a2e4c890f0a703b17df81037657662781fba2fdaaf2e7dc834544b

File: interfaces/IWeth9.sol
SHA3: 2ede2091fd570df556758974a2e3f019d1889b2a15eddf80480199c727ee4cd9

File: proxies/ERC20SockProxy.sol
SHA3: 317ac08d512a086a55929636961d45e33283159a693ef53c337340635cd17a5c

File: proxies/UniswapV3SockProxy.sol
SHA3: 50250d4d27e2a4f4fe45ec8c0ca4f9f7c6b199fd61e6cd867236282cfe5f9866

File: registry/SockFunctionRegistry.sol
SHA3: a087876d8a39e910261d658588f1e4f96f0f593d23fbb2d516b674239aa63612

File: sock-account/SockAccount.sol
SHA3: fd50947e02af963e64130e87554b97099e9d36a74b716c93a4ac379271d42f4d

File: sock-account/SockAccountFactory.sol
SHA3: 142929144aae17f79cb4b217ed955f99780a414c5a7a41a3ed93676f711f34dc

File: sock-account/SockOwnable.sol
SHA3: ab62483821b0162f1d0704d768a6925df5677176e77abbac042c6a2eb08a79e0

File: sock-account/SockRegistryAccessManager.sol
SHA3: 56253078e72e33e9eb8eb62d5587834942aaf3b05b3c143879246b195ab2f219

File: sock-account/SockRegistryImplementer.sol
SHA3: 95011a8affdd4518eb2383e211bbad37fbe467aee069ee1db19b27f123417bcd

File: sock-infra/SockFeeManager.sol
SHA3: 850c98ae8985cdfcb8f38556de721e81841d54ab59ca515d683d0cf2f5b5d595

File: sock-infra/SockFeeWhitelist.sol
SHA3: 0da3f67e9df2df8fcec03ea6e75623456b36f3a029f3a9eb7b3e25e3b04036a4

www.hacken.io
24


