
Customer: Swissborg
Date: 22 Aug, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Swissborg

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://swissborg.com

Changelog
27.06.2023 – Initial Review
05.07.2023 - Second Review
22.08.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://swissborg.com

Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10

M01. Copy Of Well Known Contract 10
Low 10

L01. Missing Zero Address Validation 10
L02. Unused Variable 11

Informational 11
I01. Public Functions That Should Be External 11
I02. Style Guide Violation 11
I03. Invalid Unit 12
I04. Use of Hard-Coded Values 12

Disclaimers 14
Appendix 1. Severity Definitions 15

Risk Levels 15
Impact Levels 16
Likelihood Levels 16
Informational 16

Appendix 2. Scope 17

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Swissborg (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

SwissBorgToken is a Solidity smart contract that implements the new BORG
token. It is based on the ERC20 standard and incorporates additional
functionality from the ERC20Burnable, ERC20Permit, and ERC20Votes
extensions provided by the OpenZeppelin library. Initial supply of new BORG
is 1 billion tokens minus CHSB (old BORG) tokens sent to address(0) (to not
mint tokens that cannot be migrated).

ChsbToBorgMigrator is a Solidity smart contract that facilitates the
migration process from the CHSB token to the BORG token. ChsbToBorgMigrator
utilizes various libraries from the OpenZeppelin framework, including
OwnableUpgradeable for managing ownership, PausableUpgradeable for pausing
and unpausing contract operations, and UUPSUpgradeable for transparent
contract upgrades.

Privileged roles
ChsbToBorgMigrator contract has 2 defined role:

● owner - role assigned using OpenZeppelin OwnableUpgradeable library.
Address with this role can change the address of a manager role.

● manager - role assigned with Smart Contract variable. Address with
this role can pause and unpause contract.

www.hacken.io
4

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Technical description is robust.
● Functional requirements are detailed.

Code quality
The total Code Quality score is 10 out of 10.

● Code does not contain any code quality violation.

Test coverage
Code coverage of the project is 100% (branch coverage), with a mutation
score of 63.44%.

● Deployment and basic user interactions are covered with tests.
● ﻿Negative cases coverage is present.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

27 June 2023 2 1 0 0

05 July 2023 0 0 0 0

22 August 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Risks

● The system currently lacks the implementation of the
AccessControlUpgradeable library provided by OpenZeppelin for the
purpose of managing two distinct roles within the system. Presently,
the system relies on the usage of the OwnableUpgradeable library to
handle the owner role, while a custom mechanism has been devised to
manage the manager role.

www.hacken.io
6

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not
Relevant

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Copy Of Well Known Contract

Impact Low

Likelihood High

The contract utilizes the OwnableUpgradeable library to grant
privileges to the contract owner. Furthermore, the contract includes
a manager role, which is stored as a contract variable. When multiple
roles are defined within a system, it is considered a best practice
to utilize specialized libraries such as AccessControlUpgradeable
from OpenZeppelin. These libraries provide enhanced functionality and
security for managing role-based access control.

Path: /contracts/ChsbToBorgMigrator.sol;

Recommendation: use AccessControlUpgradeable from OpenZeppelin
library instead of OwnableUpgradeable.

Found in: 856cce0

Status: Mitigated (Customer: current implementation is more simple
and straight-forward. It guarantees that there will be one address
per role without any additional code.)

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: /contracts/SwissBorgToken.sol : constructor();

Recommendation: implement zero address checks.

www.hacken.io
10

Found in: 856cce0

Status: Fixed (Revised commit: fbf8342)

L02. Unused Variable

Impact Low

Likelihood Low

The variable totalChsbMigrated is only incremented by migrated tokens
in migrate(). This variable isn't used in other places of code.

Path: /contracts/ChsbToBorgMigrator.sol : totalChsbMigrated;

Recommendation: remove unused variable.

Found in: 856cce0

Status: Mitigated (totalChsbMigrated variable is needed for Client’s
frontend)

Informational

I01. Public Functions That Should Be External

Functions that are only called from outside the contract should be
defined as external. External functions are much more gas efficient
compared to public functions.

Path: /contracts/ChsbToBorgMigrator.sol : initialize();

Recommendation: make initialize() function external.

Found in: 856cce0

Status: Fixed (Revised commit: fbf8342)

I02. Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

www.hacken.io
11

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Path: /contracts/ChsbToBorgMigrator.sol;

Recommendation: consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.

Found in: 856cce0

Status: Fixed (Revised commit: fbf8342)

I03. Invalid Unit

ether keyword should be used only when dealing with native tokens.
ERC20 tokens aren't native tokens.

This can lead to wrong assumptions.

Path: /contracts/SwissBorgToken.sol : INITIAL_SUPPLY;

Recommendation: replace ether keyword with *10**18.

Found in: 856cce0

Status: Fixed (Revised commit: fbf8342)

I04. Use of Hard-Coded Values

Hard-coded values are used in computations.

Paths:

/contracts/ChsbToBorgMigrator.sol : decimalsScale;

/contracts/ChsbToBorgMigrator.sol : migrate() - 1_000_000_000 *

10 ** 8 in first require;

www.hacken.io
12

Recommendation: convert these variables into constants.

Found in: 856cce0

Status: Fixed (Revised commit: fbf8342)

www.hacken.io
13

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
14

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and in most cases cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
15

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
16

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/SwissBorg/borg-token

Commit 856cce0b4c37514314e73fe6447b10caa8497f36

Whitepaper not provided

Requirements https://app.gitbook.com/invite/-M5RNylfUf-bGBi7u-Pi/ts71FlXZ4hPMds04v5
fN (only the Developer section)

Technical
Requirements README.md

Contracts File: contracts/ChsbToBorgMigrator.sol
SHA3: 1c3827dc96c9e30084541f8257e13e8706b6f13e7b6739076a4c74b19c591dce

File: contracts/SwissBorgToken.sol
SHA3: 105a68b54eecbeec5be5b4a0614f31780694bcb1e0932e5a05049df74e5cb994

Second review scope

Repository https://github.com/SwissBorg/borg-token

Commit fbf834220649a7c2f9cd820f98638b40c82471a0

Whitepaper not provided

Requirements https://docs.swissborg.com/

Technical
Requirements https://docs.swissborg.com/developers/technical-documentation

Contracts File: contracts/ChsbToBorgMigrator.sol
SHA3: 6ee6bc86472489bd8ddf396fee42082d6f2086244dd359d18af7be58c3585210

File: contracts/SwissBorgToken.sol
SHA3: 588c4033c7c3d585f096dc4ebd091cf5b15f03419541c7d23068552f4f31801d

Third review scope

Repository https://github.com/SwissBorg/borg-token

Commit 77e8cb635040d3b8d9c3cf9217f3648ca037baee

Whitepaper not provided

Requirements https://docs.swissborg.com/

www.hacken.io
17

https://github.com/SwissBorg/borg-token
https://app.gitbook.com/invite/-M5RNylfUf-bGBi7u-Pi/ts71FlXZ4hPMds04v5fN
https://app.gitbook.com/invite/-M5RNylfUf-bGBi7u-Pi/ts71FlXZ4hPMds04v5fN
https://github.com/SwissBorg/borg-token
https://docs.swissborg.com/
https://docs.swissborg.com/developers/technical-documentation
https://github.com/SwissBorg/borg-token
https://docs.swissborg.com/

Technical
Requirements https://docs.swissborg.com/developers/technical-documentation

Contracts File: contracts/ChsbToBorgMigrator.sol
SHA3: 6ee6bc86472489bd8ddf396fee42082d6f2086244dd359d18af7be58c3585210

File: contracts/SwissBorgToken.sol
SHA3: 61b7e0542adb813fce4ff6b83be95a972cf5e32ec2dd87e9215b675cb5874a52

www.hacken.io
18

https://docs.swissborg.com/developers/technical-documentation

