
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Velocore
Date: October 25, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Velocore

Approved By Oleksii Zaiats | SC Audits Head at Hacken OÜ

Tags DEX

Platform EVM (zkSyncEra)

Language Solidity

Methodology Link

Website https://velocore.xyz

Changelog
08.08.2023 – Initial Review
29.08.2023 – Second Review
13.10.2023 - Third Review
25.10.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://velocore.xyz


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10

H01. Unbounded Parameter Values 10
Medium 11

M01. Missing Events on Critical State Updates 11
Low 11

L01. Missing Validation 11
L02. Missing Require Error Messages 12
L03. Missing Zero Address Validation 12
L04. Contradiction 13

Informational 13
I01. Floating Pragma 13
I02. Missing Variable Explicit Visibility 13
I03. Solidity Style Guide Violation: Order Of Layout 14
I04. Solidity Style Guide Violation: Naming Convention 14
I05. Unused Function Parameter 15
I06. Test Compilation Error 15

Disclaimers 16
Appendix 1. Severity Definitions 17

Risk Levels 17
Impact Levels 18
Likelihood Levels 18
Informational 18

Appendix 2. Scope 19

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Velocore (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Velocore is a DEX, the pool might handle up to 4 tokens, the vault system
inspired by the Balancer protocol with a composable pool. Constant-product
pool is meant to accept multi-in-multi-out and accepting generic
tokens(ERC20,721,1155) in the pool.

● ConstantProductPool — pool for constant-product automated market
maker.

● ConstantProductPoolFactory — factory contract ConstantProductPool
smart contract pool.

● ConstantProductLibrary — a singleton contract for precise but
expensive calculation of swap operations. Used as a fallback method
for extreme cases. Deployed separately to make the contract size
smaller than 24kb.

● SingleTokenGauge — inherits from Pool. It is a straightforward gauge
with a single staking token.

● Satellite — an abstract contract with common methods for Vault
interaction.

● RPow — a library for squaring exponentiation from MakerDAO DSS.
● PoolBalanceLib — a library manipulating PoolBalance, a wrapped

bytes32 holding two uint128 values. This is used for pool balances.
● Token — a library abstracting tokens, defining Token as a wrapped

bytes32 with token specs, id, and address. It defines functions like
transfer, balance over them.

● UncheckedMemory — functions to bypass boundedness checks. Defines
array.u(index) and array.u(index, value) as getter and setter. Used
extensively.

Privileged roles
● Admin - the role which might set fees and decayRate.
● Vault - the users might interact with the vault and notify new

emissions, gauge user stakes, bribe, and set fees to zero.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 5 out of 10.

● Functional requirements have some gaps:
○ Project overview is detailed.
○ All roles in the system are described.
○ Use cases are described and detailed.
○ Not all interactions are described.

● Technical description is limited:
○ Technical specification is provided.
○ No run instructions.
○ No NatSpec with technical information like:

■ param description.
■ return values description.
■ validation rules.

Code quality
The total Code Quality score is 8 out of 10.

● Solidity Style Guide violations:
○ unclear variable naming.

● Development environment is not properly configured to be able to run
the tests.

Test coverage
Code coverage of the project is 80% (approximate branch coverage).

● Impossible to run tests due to compilation errors within the test
contract "out of the box".

● Lacking coverage within functions that might change key system
parameters:

○ ConstantProductPoolFactory: setDecay
○ ConstantProductPool: setParam

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Summary
According to the assessment, the Customer's smart contract has the
following score: 8.29. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

8 August 2023 4 1 1 0

29 August 2023 4 1 1 0

12 October 2023 0 0 1 0

25 October 2023 0 0 0 0

Risks

● Significant part of the system is out of the audit scope.
● The Admin of the system may update fees.
● Token transfer logic after exchange swap is out of scope.
● The project uses the library for fixed-point math computations, which

is out of scope.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed I01

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I03

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Failed I06

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed I06

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

H01. Unbounded Parameter Values

Impact High

Likelihood Medium

The system lacks limits on key parameters such as fees in its initial
configuration and setter function, allowing for unbounded values.

In the system, no constraints are defined for parameters such as
fee1e9, decayRate in the relevant functions.

The absence of constraints can lead to parameter values being set
excessively high or low, which can destabilize the system, leading to
losses, discouraging user interaction and potentially undermining
trust in the system or even denial of service.

Paths:

./src/pools/constant-product/ConstantProductPool.sol : constructor(),
setParam();

./src/pools/constant-product/ConstantProductPoolFactory.sol :
setFee().

Recommendation: Incorporate lower and upper boundaries for these
parameters to maintain their values within reasonable ranges.

Found in: 94fc760

Status: Fixed (Revised commit: 7b62de5d)

www.hacken.io
10



Medium

M01. Missing Events on Critical State Updates

Impact Low

Likelihood High

Critical state changes should emit events for tracking things
off-chain.

This can lead to inability for users to subscribe events and check
what is going on with the project.

Paths:

./src/pools/constant-product/ConstantProductPool.sol : setParam(),
setFeeToZero();

./src/pools/constant-product/ConstantProductPoolFactory.sol :
setFee(), deploy().

Recommendation: Emit events on critical state changes.

Found in: 94fc760

Status: Fixed (Revised commit: 2176c96)

Low

L01. Missing Validation

Impact Low

Likelihood Medium

The system has a contract which is responsible for handling
computations within the pool, the pool might handle from 2 to 4
tokens, but there is no validation to verify that the data for at
least two tokens is specified.

This might lead to the Gas expense due to the pool deployment.

Path: ./src/pools/constant-product/ConstantProductPool.sol :
​​constructor().

Recommendation: Add an assert or conditional statement to verify the
constructor input data.

Found in: 94fc760

Status: Fixed (Revised commit: 2176c96)

www.hacken.io
11



L02. Missing Require Error Messages

Impact Low

Likelihood Medium

Require statements should have their error message described
consciously in order to advise the user about the transaction
failure.

Not having error messages implies a bad user/developer experience.

Paths:

./src/pools/constant-product/ConstantProductPool.sol :
notifyWithdraw(), velocore__execute(), velocore__bribe(),
underlyingTokens(), setParam(), constructor();

./src/pools/constant-product/ConstantProductPoolFactory.sol :
deploy(), setFee();

./src/lib/Token.sol : balanceOf(), totalSupply(), symbol(),
decimals(), transferFrom(), safeTransferFrom().

Recommendation: Add reasonable error messages to require statements.

Found in: 94fc760

Status: Fixed (Revised commit: 2176c96)

L03. Missing Zero Address Validation

Impact Medium

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths: ./src/pools/constant-product/ConstantProductPool.sol :
constructor()->lib, vault_;

./src/pools/constant-product/ConstantProductPoolFactory.sol :
constructor()->lib, deploy()->quoteToken, baseToken;

./src/pools/SingleTokenGauge.sol : constructor()->vault, bribe;

./src/pools/Satellite.sol : constructor()->factory.

Recommendation: Add zero address validation.

Found in: 94fc760

Status: Fixed (Revised commit: 2176c96)
www.hacken.io

12



L04. Contradiction

Impact Low

Likelihood Medium

The contract has a constant string which states that the native token
of the blockchain is “ETH”, but it depends on the chain on which the
contract is deployed.

This might lead to confusions on the frontend.

Path: ./src/lib/Token.sol : symbol().

Recommendation: Set the value within the constructor.

Found in: 94fc760

Status: Fixed (Revised commit: 2176c96)

Informational

I01. Floating Pragma

The project uses floating pragmas ^0.8.0 or ^0.8.19.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: ./: *

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: 94fc760

Status: Reported

I02. Missing Variable Explicit Visibility

Some variables do not have their visibility written explicitly in the
code.

That leads to readability issues.

Paths:

./src/pools/SingleTokenGauge.sol : emissionPerStake1e9,
stakerInformation;

./src/pools/constant-product/ConstantProductPool.sol : lib;

www.hacken.io
13

https://github.com/ethereum/solidity/releases


./src/pools/constant-product/ConstantProductPoolFactory.sol : lib,
fee1e9, decay.

Recommendation: Describe the variables’ visibilities explicitly in
the code.

Found in: 94fc760

Status: Fixed (Revised commit: 7b62de5)

I03. Solidity Style Guide Violation: Order Of Layout

Inside each contract, library or interface, use the following order:
1. Type declarations
2. State variables
3. Events
4. Errors
5. Modifiers
6. Functions

a. constructor
b. initializer (if exists)
c. receive function (if exists)
d. fallback function (if exists)
e. external
f. public
g. internal
h. private

Paths:

./src/pools/constant-product/ConstantProductPool.sol;

./src/pools/constant-product/ConstantProductPoolFactory.sol;

./src/pools/Satellite.sol.

Recommendation: Change order of layout to fit Official Style Guide.

Found in: 94fc760

Status: Reported

I04. Solidity Style Guide Violation: Naming Convention

Functions, local and state variable names should be mixedCase:
capitalize all the letters of the initialisms, except keep the first
one lower case if it is the beginning of the name.

Paths:

./src/pools/constant-product/ConstantProductPool.sol :
_return_logarithmic_swap(), velocore__execute(), pow_reciprocal(),
velocore__bribe();

www.hacken.io
14

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout


./src/pools/SingleTokenGauge.sol : velocore__emission(),
velocore__gauge();

./src/pools/constant-product/ConstantProductLibrary.sol :
velocore__execute().

Recommendation: Follow the official Solidity guidelines.

Found in: 94fc760

Status: Mitigated (These functions are callback functions, and
intentionally violate the naming convention to prevent accidental
behavior).

I05. Unused Function Parameter

The parameter gauge from the function bribeTokens() is not being
used.

This results in higher Gas consumption, bad developer experience and
readability issues.

Path: ./src/pools/constant-product/ConstantProductPool.sol :
bribeTokens()->gauge.

Recommendation: Remove unused variables from the code.

Found in: 94fc760

Status: Fixed (Revised commit: 7b62de5)

I06. Test Compilation Error

It is impossible to build the test contracts “out of the box” or
measure coverage due to the compilation error.

Path: ./: *

Recommendation: Fix compilation error.

Found in: 94fc760

Status: Reported

www.hacken.io
15

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
16



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
17



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
18



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/velocore/audit

Commit 94fc760

Whitepaper N/A

Requirements Link

Technical
Requirements Link

Contracts File: ./src/lib/PoolBalanceLib.sol
SHA3: c5f6083cb2371670ba6b4cfe7af8be7913d09e9f339f2c1fc24a6e391a851d9b

File: ./src/lib/UncheckedMemory.sol
SHA3: 82cdb5d7ce598139160180803a6acbc6377d50b6564568b89e69fc3084bfffa2

File: ./src/lib/RPow.sol
SHA3: 58d7a1a8de10288d7e54a82f7e8d4b35cfbbf16c8ca45c912152cc6cf7c99baf

File: ./src/lib/Token.sol
SHA3: f1f5ba9bf2be173c897ffe1ceed1f630f05a6633e4273f6d363098f02e2aa0f8

File: ./src/interfaces/IGauge.sol
SHA3: 6ecb1ffc69b5fa0ebecf4a786c0764ddacf512ba81bc79749dcde39258fbbdde

File: ./src/interfaces/IVault.sol
SHA3: 05c137fdb2ac4c6d9ae32a8b91b5429af73b08edaa5119c11c34078a2705bb3d

File: ./src/interfaces/IConverter.sol
SHA3: f667395dcc2b53cc3d82acf56bca0353c4907e086e538fbbf2b4e4e4fce80d92

File: ./src/pools/constant-product/ConstantProductLibrary.sol
SHA3: 3670feab9119f868a067b8cc8b7d3f541152876f3eeedd2af39a40f8935f7a48

File: ./src/pools/constant-product/ConstantProductPool.sol
SHA3: 187b03efbbffd5f2121be67a7fec4178ff45808cacd585d0dcb30a7df780fd26

File: ./src/pools/constant-product/ConstantProductPoolFactory.sol
SHA3: 171c74bb2018d48fa06767d92601889c12201804d813abd5fc021a06ff7dc924

File: ./src/pools/SingleTokenGauge.sol
SHA3: befb14f712720ceef66bf65670aab2e4a53e2c8a42d9d713a83a153d21a54e3b

File: ./src/pools/Satellite.sol
SHA3: abc1c5734627dff3c6c23ee4a226e42ba1ee159a7cc71944a5ac14423129cb27

www.hacken.io
19

https://docs.velocore.xyz/technical-docs
https://docs.velocore.xyz/technical-docs


Second review scope

Repository https://github.com/velocore/audit

Commit bec69c9

Whitepaper N/A

Requirements Link

Technical
Requirements Link

Contracts File: ./src/interfaces/IConverter.sol
SHA3: f667395dcc2b53cc3d82acf56bca0353c4907e086e538fbbf2b4e4e4fce80d92

File: ./src/interfaces/IGauge.sol
SHA3: 6ecb1ffc69b5fa0ebecf4a786c0764ddacf512ba81bc79749dcde39258fbbdde

File: ./src/interfaces/IVault.sol
SHA3: 5652e0a3efbcb9b8cef0fadf8cde9d5df70c2904462d321128763fc3e1bf678f

File: ./src/lib/PoolBalanceLib.sol
SHA3: 41ca7e01c2ccd1177871eb7b7ce2243739d38da43a735712c79e7a45ccaeb6bd

File: ./src/lib/RPow.sol
SHA3: 13e64fc1af5ec9f57f515f32334dcb85be888289539da689f35afcc615dcd32c

File: ./src/lib/Token.sol
SHA3: 9db21aa6c384219db1dc303adea660ed9e5ebf06f433bfdce4d155f8257dc4fe

File: ./src/lib/UncheckedMemory.sol
SHA3: 63ab3ca5b03dcbbe78493e92a7e3dcaff23638aaa98dfb5984262bff1b5a94f3

File: ./src/pools/Satellite.sol
SHA3: bb1b62e487881ad65ab8b7f825eca56863cfb6d4266cbaa775ada5ba191189e9

File: ./src/pools/SingleTokenGauge.sol
SHA3: c54368ff197eb208e984e734667816338793489169350454b96f43f3c81c09d5

File: ./src/pools/constant-product/ConstantProductLibrary.sol
SHA3: 230fed8a8fd1659583ddbaabe1b58877a4735a9f8eabd4f2c700300c1092e56b

File: ./src/pools/constant-product/ConstantProductPool.sol
SHA3: eb6c8da78d9dac31da93bedf016e2814d2c60179cb9e6a891629d82e1e3a0849

File: ./src/pools/constant-product/ConstantProductPoolFactory.sol
SHA3: 91cc2e437f3675ca63db67d432ca4430104a73f5a488bfa699c47e5180d0d777

www.hacken.io
20

https://docs.velocore.xyz/technical-docs
https://docs.velocore.xyz/technical-docs


Third review scope

Repository https://github.com/velocore/audit

Commit 2176c96

Whitepaper N/A

Requirements Link

Technical
Requirements Link

Contracts File: ./src/interfaces/IConverter.sol
SHA3: f667395dcc2b53cc3d82acf56bca0353c4907e086e538fbbf2b4e4e4fce80d92

File: ./src/interfaces/IGauge.sol
SHA3: 6ecb1ffc69b5fa0ebecf4a786c0764ddacf512ba81bc79749dcde39258fbbdde

File: ./src/interfaces/IVault.sol
SHA3: 5652e0a3efbcb9b8cef0fadf8cde9d5df70c2904462d321128763fc3e1bf678f

File: ./src/lib/PoolBalanceLib.sol
SHA3: 41ca7e01c2ccd1177871eb7b7ce2243739d38da43a735712c79e7a45ccaeb6bd

File: ./src/lib/RPow.sol
SHA3: 13e64fc1af5ec9f57f515f32334dcb85be888289539da689f35afcc615dcd32c

File: ./src/lib/Token.sol
SHA3: 551e277e2ffa356303e780745a9932b0f98c6dca2e8b6c9b74351b3456e64848

File: ./src/lib/UncheckedMemory.sol
SHA3: 63ab3ca5b03dcbbe78493e92a7e3dcaff23638aaa98dfb5984262bff1b5a94f3

File: ./src/pools/Satellite.sol
SHA3: 388a2f5f09eb49a3d2fc16d5606f2940e659742e49977bb0612fd24f9c46cceb

File: ./src/pools/SingleTokenGauge.sol
SHA3: bc47b8b792d935ad43ddd04a137b0b6eec3f0e1815c053a0a20fd9629445cd01

File: ./src/pools/constant-product/ConstantProductLibrary.sol
SHA3: 230fed8a8fd1659583ddbaabe1b58877a4735a9f8eabd4f2c700300c1092e56b

File: ./src/pools/constant-product/ConstantProductPool.sol
SHA3: d7dc175d1820377a7d9b5fe66e94f80036fecc8e7e59cb8c75061dee9eacdb72

File: ./src/pools/constant-product/ConstantProductPoolFactory.sol
SHA3: 514fee3c0242155f71c57ac3cc3df33be2d426081c6607a67e95a9f275200f08

www.hacken.io
21

https://docs.velocore.xyz/technical-docs
https://docs.velocore.xyz/technical-docs


Fourth review scope

Repository https://github.com/velocore/audit

Commit 7b62de5d

Whitepaper N/A

Requirements Link

Technical
Requirements Link

Contracts File: ./src/interfaces/IConverter.sol
SHA3: f667395dcc2b53cc3d82acf56bca0353c4907e086e538fbbf2b4e4e4fce80d92

File: ./src/interfaces/IGauge.sol
SHA3: 6ecb1ffc69b5fa0ebecf4a786c0764ddacf512ba81bc79749dcde39258fbbdde

File: ./src/interfaces/IVault.sol
SHA3: 5652e0a3efbcb9b8cef0fadf8cde9d5df70c2904462d321128763fc3e1bf678f

File: ./src/lib/PoolBalanceLib.sol
SHA3: 229587216ba63edb0bfe31cce1aa4b7780035c75b0b2cf89f24467b7935d1dc7

File: ./src/lib/RPow.sol
SHA3: 07be639438868d7d6e1fe7f43bcf5ff1088ea3896216fa61a1c1b8965385b109

File: ./src/lib/Token.sol
SHA3: 3fae0ac7bd139f630bd95fd0506556fc13863a4dba4f4b0b4fc1527f7034fee8

File: ./src/lib/UncheckedMemory.sol
SHA3: 3a6665a67711f1d744480e92d84480b9905d656a929b2891083f57cd563ca632

File: ./src/pools/Satellite.sol
SHA3: bb1b62e487881ad65ab8b7f825eca56863cfb6d4266cbaa775ada5ba191189e9

File: ./src/pools/SingleTokenGauge.sol
SHA3: d86d4ef2be84d9bf36e1f7dc6f855a3040e5f92cee7c4e92554ed8615a8cd3d2

File: ./src/pools/constant-product/ConstantProductLibrary.sol
SHA3: 230fed8a8fd1659583ddbaabe1b58877a4735a9f8eabd4f2c700300c1092e56b

File: ./src/pools/constant-product/ConstantProductPool.sol
SHA3: 92bd697fe0b562d0d792497c09c8ea9131b3c90bdd4efdd486d96745baf196cb

File: ./src/pools/constant-product/ConstantProductPoolFactory.sol
SHA3: 34bb264aa24efac693f271c1bdd30fbd4778ba4291aaa21854535c474a00b10b

www.hacken.io
22

https://docs.velocore.xyz/technical-docs
https://docs.velocore.xyz/technical-docs

