
Customer: Hypercycle
Date: 30 May, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Hypercycle

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC721; Marketplace; Staking;

Platform EVM

Language Solidity

Methodology Link

Website https://www.hypercycle.ai/

Changelog
11.05.2023 – Initial Review
29.05.2023 - Second Review
30.05.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.hypercycle.ai/

Table of contents
Introduction 5
System Overview 5
Executive Summary 6
Checked Items 8
Findings 11

Critical 11
C01. Invalid Validation; Funds Lock; Data Consistency 11

High 11
H01. Requirements Violation 11
H02. Undocumented Behaviour 12
H03. Race Condition; Undocumented Behaviour 12

Medium 13
M01. Unfinalized Code 13
M02. Inefficient Gas Model 13
M03. Inconsistent Data 14
M04. Race Condition; Undocumented Behaviour 14

Low 15
L01. Redundant State Variable 15
L02. Use Of Hard-Coded Values 15
L03. Modification Of A Well-Known Contract 16
L04. Missing Zero Address Validation 16
L05. Variable Shadowing 16
L06. Missing Validation 17
L07. Interfaces Mismatch 17
L08. Missing Validation 18

Informational 18
I01. Boolean Equality 18
I02. Style Guide Violation - Naming Mismatch 18
I03. Immutable Variables 18
I04. Contradiction - Revert Message 19
I05. Best Practice Violation 19
I06. Missed Modifier 19
I07. Unused Identifier 20
I08. Constant Variables 20
I09. Redundant Check 21
I10. Floating Pragma 21
I11. Contradiction 21
I12. Unused Import 22
I13. Functions That Can Be Declared External 22
I14. Unused Identifier 22
I15. Typos 23

Disclaimers 24
Appendix 1. Severity Definitions 25

Risk Levels 25

www.hacken.io
3

Impact Levels 26
Likelihood Levels 26
Informational 26

Appendix 2. Scope 27

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by Hypercycle (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Hypercycle is a staking protocol with the following contracts:
● CHYPC — an ERC721 NFT collection that includes the functionality to

mint, burn, and assign custom data to NFT tokens. The contract
interacts with two other contracts, HYPCSwap and HYPC, and supports
the management of token ownership and data assignment, while ensuring
proper initialization and contract interactions.

● CrowdFundPoolHYPC — a crowdfunding pool for Hypercycle (HYPC) tokens,
allowing users to create proposals, deposit funds, and earn interest
over time. It manages the lifecycle of proposals and the interactions
between users, such as depositing, withdrawing, and updating interest
earnings, as well as handling token swaps and NFT assignments.

● HYPCSwap – a smart contract used to swap HYPC tokens for a CHYPC NFT
and vice versa. It manages the token and NFT balances while
maintaining an up-to-date record of NFTs available for swapping.

● ICHYPC – an interface for the CHYPC smart contract.
● IHYPC – an interface for the HYPC ERC20 token smart contract.
● IHYPCSwap – an interface for the HYPCSwap smart contract.

Privileged roles
● CHYPCNFT.sol :

○ Contract Owner :
■ Can init the contract.
■ Can mint tokens.

○ Token Owner :
■ Can burn the token.
■ Can set an assignment to the token.

● HyperCycleSwap.sol :
○ Token Contract (CHYPCAddress) :

■ Can add an NFT.
● CrowdFundHYPCPool.sol :

○ Proposal owner :
■ Can cancel a proposal.
■ Can finish the proposal.
■ Can change the assignment.

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are present, but only at a high-level.
○ Functional requirements for how the system should work are

provided.
○ The documentation has a detailed description of the math

calculations.
● Technical description is provided.

○ Run instructions are provided.
○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment was configured.
● The code is well-designed and follows best practices.

Test coverage
Code coverage of the project is 100.0% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Tests are not configured to run in a local environment.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Table. The distribution of issues during the audit

Review date Low Medium High Critical

11 May 2023 8 4 3 1

29 May 2023 2 0 0 0

30 May 2023 0 0 0 0

www.hacken.io
7

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Not

Relevant

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

Findings

Critical

C01. Invalid Validation; Funds Lock; Data Consistency

Impact High

Likelihood High

In the withdrawDeposit() function, the removal of the deposit element
from the user deposits array is done incorrectly.

The validation if (userDeposits[msg.sender].length == 1 ||
depositIndex == userDeposits[msg.sender].length - 1) should check if
the element to remove is not the first or the last element of the
array, and then perform the array reordering if this is the case.

But currently it reorders when the element is first or last.

This leads to a situation where, when an array element with an index
from the middle of the array is used, the last element of the array
is removed instead of the desired element.

As a consequence of the incorrect element removal, the funds are
locked and the contract data is corrupted.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : withdrawDeposit()

Recommendation: Fix the validation in the if statement to correctly
check for the element in the middle of the array in order to
correctly reorder the array before the last element is popped.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

High

H01. Requirements Violation

Impact Medium

Likelihood High

According to the documentation provided by the customer, only a
manager should be able to create the proposal: A manager creates a
proposal, providing backingFunds for interest.

The code does not match the documentation; any external address can
call the createProposal() function.

www.hacken.io
11

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : createProposal()

Recommendation: Adjust the documentation to reflect the code, or
adjust the code to reflect the documentation.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

H02. Undocumented Behaviour

Impact Medium

Likelihood High

Many hard-coded numbers and formulas are used without any
explanation:

startNumber = 67108864

uint interestRate = (backingFunds * 26000000000) /
(requiredFunds * periods)

uint interestChange = (periods * deposit.amount *
proposalData.interestRate) / 26000000000

The code should not contain undocumented functionality.

Paths:
./contracts/ethereum/core/CHYPC.sol : initContract()
./contracts/ethereum/core/CrowdFundHYPCPool.sol : createProposal(),
updateDeposit()

Recommendation: Provide documentation about numbers and calculations.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

H03. Race Condition; Undocumented Behaviour

Impact High

Likelihood Medium

In the createDeposit() function, the user who fills the pool is
penalized during the deposit process. This user will need to pay
additional Gas to fulfill the swap and the assignment.

Anyone can frontrun him to avoid paying this extra Gas fee, creating
a race condition.

In addition, his deposit will not be equal to what the user specified
in the function parameter, forcing him to accept a bad trade if the

www.hacken.io
12

reward from depositing a `new` amount is less than the additional
transaction cost.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : createDeposit()

Recommendation: The createDeposit() function should only be used to
accept deposits into a proposal. Consider implementing a new
function, startProposal(), that can be called by anyone once deposits
are full.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

Medium

M01. Unfinalized Code

Impact Medium

Likelihood Medium

The code contains code comments which show that the code has not been
finalized and is not ready for production.

// Create tests for when user wants to withdraw diferent deposits

Even though the comment refers to the test suite, the underlying
untested code contains a critical vulnerability, which would have
been detected if the code had been finalized.

Path:
./contracts/ethereum/core/CrowdFundHYPCPool.sol : withdrawDeposit()

Recommendation: Implement tests based on this comment and remove it
when implemented.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

M02. Inefficient Gas Model

Impact Medium

Likelihood Medium

When the validIndex() modifier is used, the elements from the
proposals array are copied into a memory function parameter,
ContractProposal[] memory proposalsArray.

Elements from proposalsArray are not used within the modifier; only
the length of the array is extracted.

www.hacken.io
13

As the copying operation into the memory consumes Gas, this copy
causes an increase in the Gas cost for each element present in the
array when applied to functions.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : validIndex()

Recommendation: Use storage for the proposalsArray parameter to
simply pass the reference and do not copy it to memory.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

M03. Inconsistent Data

Impact Low

Likelihood High

In the createDeposit() function, the event DepositCreated is emitted
in the else case; however, the amount value is not correct; it should
be newAmount instead of amount.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : createDeposit()

Recommendation: Pass the correct value to the event.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

M04. Race Condition; Undocumented Behaviour

Impact Medium

Likelihood Medium

In the updateDeposit() function, the user who will perform the action
when the timestamp from ContractProposal.term has passed will have to
pay extra Gas for calling the redeem() and assign() functions for the
NFT from the proposal.

This leads to a situation where the user is penalized for his action.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : updateDeposit()

www.hacken.io
14

Recommendation: Implement a dedicated function, completeProposal(),
to update the proposal state from STARTED to COMPLETED in the event
that ContractProposal.term is reached.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

Low

L01. Redundant State Variable

Impact Low

Likelihood Low

In CrowdFundPoolHYPC.sol, the swap contract address is stored twice
in two different variables : SwapContract and swapAddress.

In HYPCSwap.sol, the NFT token contract address is stored twice in
two different variables : CHYPCAddress and HYPCNFT.

In CHYPC.sol, the swap contract address is stored twice in two
different variables : HYPCSwapAddress and HYPCSwapContract.

Paths:
./contracts/ethereum/core/HYPCSwap.sol : CHYPCAddress
./contracts/ethereum/core/CHYPC.sol : HYPCSwapAddress
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : swapAddress

Recommendation: Store the value only once with the appropriate data
type, and cast it to an address if needed.

Found in: e60234e

Status: Fixed (22ecf5413d10e2d5ef3b6153b65ca80d92027671)

L02. Use Of Hard-Coded Values

Impact Medium

Likelihood Low

Using hard-coded values in the computations and comparisons is not
the best practice.

Paths:
./contracts/ethereum/core/HYPCSwap.sol : swap(), redeem()
./contracts/ethereum/core/CHYPC.sol : initContract()
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : createProposal()

Recommendation: Convert these variables into constants.

www.hacken.io
15

Found in: e60234e

Status: Mitigated (Hard-coded values are extensively described in the
NatSpec comments.)

L03. Modification Of A Well-Known Contract

Impact Low

Likelihood Low

The HYPCSwap contract uses a well known reentrancy pattern, instead
of importing existing code.

It makes the code less clear and readable.

Path:
./contracts/ethereum/core/HYPCSwap.sol

Recommendation: Delete the modifications and use the OpenZeppelin
ReentrancyGuard library.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

L04. Missing Zero Address Validation

Impact Medium

Likelihood Low

Address parameters are used without checking against the possibility
of 0x0.

This can lead to unwanted external calls to 0x0.

Path:
./contracts/ethereum/core/CHYPC.sol : initContract()

Recommendation: Implement zero address checks.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

L05. Variable Shadowing

Impact Medium

Likelihood Low

In the assign() function, the variable owner is shadowing the owner()
function from the Ownable contract.

www.hacken.io
16

The use of the owner local variable is redundant as the value from
ownerOf(tokenId) can be used directly in the `require` comparison,
and msg.sender in the emitted event.

Path:
./contracts/ethereum/core/CHYPC.sol : assign()

Recommendation: Rename or delete the related variable.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

L06. Missing Validation

Impact Low

Likelihood Medium

The getAssignment() function gets as a parameter the id of an ERC721
token, but does not check if these tokens are already minted.

Path:
./contracts/ethereum/core/CHYPC.sol : getAssignment()

Recommendation: Add a check require(tokenId >= startNumber && tokenId
< totalMinted, "Token not yet minted.");.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

L07. Interfaces Mismatch

Impact Medium

Likelihood Low

IHYPCSwap.sol is supposed to represent HyperCycleSwap.sol but is not
inherited by it.

ICHYPC.sol is supposed to represent CHYPCNFT.sol but is not inherited
by it.

Paths:
./contracts/ethereum/core/CHYPCNFT.sol
./contracts/ethereum/core/HyperCycleSwap.sol

Recommendation: Contracts implementations should inherit from their
interface definitions.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

www.hacken.io
17

L08. Missing Validation

Impact Low

Likelihood Medium

The changeAssignment() function should also have modifiers validIndex
and proposalOwner, instead of checking the requirements in its body.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : changeAssignment()

Recommendation: Replace checks from the function body with already
defined modifiers.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

Informational

I01. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Paths:
./contracts/ethereum/core/HYPCSwap.sol : swap(), redeem()
./contracts/ethereum/core/CHYPC.sol : initContract(), burn(), mint(),
assign()

Recommendation: Remove boolean equality.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I02. Style Guide Violation - Naming Mismatch

The names of the contracts should be equal to the file names.

Path:
./contracts/ethereum/core/HYPCSwap.sol
./contracts/ethereum/core/CHYPC.sol
./contracts/ethereum/core/CrowdFundPoolHYPC.sol;

Recommendation: Change filenames according to smart contracts naming.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I03. Immutable Variables

Compared to regular state variables, the Gas costs of constant and
immutable variables are much lower. Immutable variables are evaluated

www.hacken.io
18

once at construction time and their value is copied to all the places
in the code where they are accessed.

Path:
./contracts/ethereum/core/HYPCSwap.sol : HYPCToken, HYPCNFT,
CHYPCAddress

Recommendation: Declare variables mentioned as immutable to save gas
on user operations.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I04. Contradiction - Revert Message

The revert message: “Must be swap address”, does not reflect reality,
since the check is for equality with the address of the ERC721 token.

Path:
./contracts/ethereum/core/HYPCSwap.sol : addNFT()

Recommendation: Change the revert message to reflect the meaning of
the equality check.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I05. Best Practice Violation

In every contract the short form of uint is used instead of using the
explicit form uint256.

Using the explicit format of uint makes the code more readable, gas
efficient and prevents issues with cross-contract compatibility.

Path:
./contracts/ethereum/core/HYPCSwap.sol
./contracts/ethereum/core/CHYPC.sol
./contracts/ethereum/core/CrowdFundPoolHYPC.sol

Recommendation: Declare all uint variables with an explicit type
form.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I06. Missed Modifier

In CHYPCNFT.sol, the same check is done multiple times:

require(inited == true, "Must be initialized");

This code can be moved to a new modifier. This will make the code
more readable and clear.

www.hacken.io
19

The same occurs in HyperCycleSwap.sol :

require(bytes(HYPCNFT.getAssignment(nftID)).length == 0,

require(reentryLock == false, "No reentry.");

In CrowdFundHYPCPool.sol, the function changeAssignment() uses the
following check :

require(msg.sender == proposals[proposalIndex].owner, "Must be owner
of proposal.");

instead of using the existing modifier :

modifier proposalOwner(uint proposalIndex)

Paths:
./contracts/ethereum/core/CHYPC.sol : mint(), burn(), assign()
./contracts/ethereum/core/HyperCycleSwap.sol : addNFt(), swap(),
redeem()
./contracts/ethereum/core/CrowdFundHYPCPool.sol : changeAssignment()

Recommendation: Create a new modifier to remove code repetition.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I07. Unused Identifier

The field chypcAmount was declared in the ContractProposal structure
but is never used.

Unused identifiers lead to increasing deployment Gas costs, decreased
storage optimization, and decreased code quality.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : ContractProposal

Recommendation: Remove unused struct variable.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I08. Constant Variables

The field requestedAmount was declared in the ContractProposal
structure but always stores the same value 524288000000.

This leads to inefficient gas usage.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : ContractProposal

Recommendation: The variable can be declared as constant and
removed from the structure.

www.hacken.io
20

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I09. Redundant Check

The createdDeposit() function contains an allowance check:

require(
HYPCToken.balanceOf(msg.sender) >= amount,
"Not enough HYPC balance."

)

This is unnecessary because the same checks are already implemented
in the transferFrom() function of the ERC20 token.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : createDeposit()

Recommendation: Remove redundant code.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I10. Floating Pragma

The project uses floating pragmas ^0.8.2.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Paths:
./contracts/ethereum/interfaces/ICHYPC.sol
./contracts/ethereum/interfaces/IHYPC.sol
./contracts/ethereum/interfaces/IHYPCSwap.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I11. Contradiction

The comment in the IHYPC interface specifies : “Accesses the mint and
burn functions of the HYPC contract”, but only the burn function is
defined.

Path:
./contracts/ethereum/interfaces/IHYPC.sol

www.hacken.io
21

https://github.com/ethereum/solidity/releases

Recommendation: Align the documentation and the code implementation.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I12. Unused Import

OpenZeppelin’s Ownable is inherited but never used.

Path:
./contracts/ethereum/core/HYPCSwap.sol

Recommendation: Remove redundant inheritance to save GAS on
deployment and increase the code quality.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I13. Functions That Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./contracts/ethereum/core/HYPCSwap.sol : addNFT(), swap(), redeem()
./contracts/ethereum/core/CHYPC.sol : initContract(), mint(), burn(),
assign(), getAssignment(), getBurnData()
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : createProposal(),
createDeposit(), cancelProposal(), withdrawDeposit(),
updateDeposit(), finishProposal(), changeAssignment(),
getUserDeposits(), getDeposit(), getDepositLength(), getProposal(),
getProposalsLenth()

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: e60234e

Status: Fixed (6e1b7e88638393a2a3877f8e8fa48aef76816f57)

I14. Unused Identifier

The variable endTime is declared in the code but is never used.

Unused identifiers lead to increasing deployment Gas costs, decreased
storage optimization, and decreased code quality.

Path:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol : completeProposal()

Recommendation: Remove unused variable.

Found in: 6e1b7e8

Status: Fixed (22ecf5413d10e2d5ef3b6153b65ca80d92027671)

www.hacken.io
22

I15. Typos

There are various typos in the comments.

CrowdFundHYPCPool:
whena -> when a
speified -> specified
liqudity -> liquidity
transfered -> transferred
acculumated -> accumulated
mutliplies -> multiplies
compeleted -> completed
tokend -> token

HyperCycleSwap:
recieved -> received
itterate -> iterate

Paths:
./contracts/ethereum/core/CrowdFundPoolHYPC.sol
./contracts/ethereum/core/HyperCycleSwap.sol

Recommendation: Fix typos.

Found in: 6e1b7e8

Status: Fixed (22ecf5413d10e2d5ef3b6153b65ca80d92027671)

www.hacken.io
23

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
24

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and in most cases cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
25

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
26

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://gitlab.com/dliendo05/hypc-polygon/-/tree/develop

Commit e60234e9e8558e05f4614ed25a9ba883cec565d9

Whitepaper https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a19031569937
1bb042.pdf

Requirements https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_f
or_audit.txt

Technical
Requirements https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/README.md

Contracts File: ./contracts/ethereum/core/CHYPC.sol
SHA3: e65a80bf44a5c5d08b4e640da9a1b6d183e613b5691b14031151cda9d77aaaa9

File: ./contracts/ethereum/core/CrowdFundPoolHYPC.sol
SHA3: 2e29758c34914bbc0f4d4af16278c5fbee4ce537d9985868e60e06fd19773042

File: ./contracts/ethereum/core/HYPCSwap.sol
SHA3: f642c9a47d46722171116e37400fcb69a7418c561dda17afa95981145b43d158

File: ./contracts/ethereum/interfaces/ICHYPC.sol
SHA3: b4796afe4a2ee5bfdc1bd0974264abad32ca8df236c3577cec296febe80ef5cb

File: ./contracts/ethereum/interfaces/IHYPC.sol
SHA3: 582fe0244acbe2a23a3065e1b54353b9a9c4d5c4dd21db7a4629775fce0deddd

File: ./contracts/ethereum/interfaces/IHYPCSwap.sol
SHA3: 37048967b9f8fe5b738645460189ff98bbaf5fc1909b6b38fddf006555061217

Second review scope

Repository https://gitlab.com/dliendo05/hypc-polygon/-/tree/develop

Commit 6e1b7e88638393a2a3877f8e8fa48aef76816f57

Whitepaper https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a19031569937
1bb042.pdf

Requirements https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_f
or_audit.txt

Technical
Requirements https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/README.md

Contracts File: ethereum/core/CHYPC.sol
SHA3: 23bf148025ddbfe7961dd0e3f7ba0eea2106a9491cc55078d0e842cd5e92782f

File: ethereum/core/CrowdFundHYPCPool.sol
SHA3: d149c38d935436a05e0e81527ca988a361523eac64894c4e1b8660381944bda5

www.hacken.io
27

https://gitlab.com/dliendo05/hypc-polygon/-/tree/develop
https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a190315699371bb042.pdf
https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a190315699371bb042.pdf
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_for_audit.txt
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_for_audit.txt
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/README.md
https://gitlab.com/dliendo05/hypc-polygon/-/tree/develop
https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a190315699371bb042.pdf
https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a190315699371bb042.pdf
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_for_audit.txt
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_for_audit.txt
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/README.md

File: ethereum/core/HyperCycleSwap.sol
SHA3: 5e5220aee79b98671b4700a57c9824de8872f7d9528eaee00b925104f33614cd

File: ethereum/interfaces/ICHYPC.sol
SHA3: 5d99d9039c7a167e42c1893f47b8419e1cb4a37e81c4dc0fc1d0a8c05112a171

File: ethereum/interfaces/IHYPC.sol
SHA3: 62669545a79fb56604eebc6c18aefec58b76af32bf21affe1b2077ddfb1f4d9f

File: ethereum/interfaces/IHYPCSwap.sol
SHA3: 1157deaf935903ef86a40200f52e94743952b5c189128a997102ab8d68a616c2

Third review scope

Repository https://gitlab.com/dliendo05/hypc-polygon/-/tree/develop

Commit 22ecf5413d10e2d5ef3b6153b65ca80d92027671

Whitepaper https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a19031569937
1bb042.pdf

Requirements https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_f
or_audit.txt

Technical
Requirements https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/README.md

Contracts File: contracts/ethereum/core/CHYPC.sol
SHA3: 85508b2f6cd70ac506338f8a1d68fcebc103532f00ba2c0ba8f5c5c0776ad00b

File: contracts/ethereum/core/CrowdFundHYPCPool.sol
SHA3: 4e2b886395f805bd9f14ebe54f6451fd8fea9de268505e037540d9a49ab9aa8f

File: contracts/ethereum/core/HyperCycleSwap.sol
SHA3: b9d09462abd66720a9fae159b654c3396edc0b51cfaf5081f0e10ea6a9b49f8c

File: contracts/ethereum/interfaces/ICHYPC.sol
SHA3: 5d99d9039c7a167e42c1893f47b8419e1cb4a37e81c4dc0fc1d0a8c05112a171

File: contracts/ethereum/interfaces/IHYPC.sol
SHA3: 62669545a79fb56604eebc6c18aefec58b76af32bf21affe1b2077ddfb1f4d9f

File: contracts/ethereum/interfaces/IHYPCSwap.sol
SHA3: 1157deaf935903ef86a40200f52e94743952b5c189128a997102ab8d68a616c2

www.hacken.io
28

https://gitlab.com/dliendo05/hypc-polygon/-/tree/develop
https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a190315699371bb042.pdf
https://www.hypercycle.ai/_files/ugd/54374c_4641b8d27f8343a190315699371bb042.pdf
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_for_audit.txt
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/description_for_audit.txt
https://gitlab.com/dliendo05/hypc-polygon/-/blob/develop/README.md

