
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Paydece
Date: 02 Nov, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Paydece

Approved By
Przemyslaw Swiatowiec | Lead Solidity SC Auditor at Hacken OÜ
Kornel Światłowski | SC Auditor at Hacken OÜ
Roman Tiutiun | SC Auditor at Hacken OÜ

Tags Escrow

Platform EVM

Language Solidity

Methodology Link

Website https://www.paydece.io/

Changelog 05.10.2023 – Initial Review
02.11.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.paydece.io/

Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Findings 7

Critical 7
C01. The maker fee is locked inside the contract when escrow is canceled or
refunded 7

High 8
H01. Missing functionality for cancellation of escrow holding native tokens

8
H02. Users funds could be locked due to incorrect escrow status check 9
H03. Owner can drain users’ funds from contract with refund mechanism 10

Medium 11
M01. Lack of strict validation of msg.value can lead to funds lock 11

Low 12
L01. Zero-valued escrows 12
L02. Missing zero address check 12
L03. Optimizing variable assignment in the constructor 13
L04. Missing event for critical value updation 13
L05. Fee on transfer tokens can break contract logic 14
L06. Makers can omit fee payment 15
L07. Usage of built-in transfer 16

Informational 16
I01. Outdated Solidity version 16
I02. Style guide violation 17
I03. Functions that can be declared external 17
I04. Unused escrowStatus enum values 18
I05. Solidity style guide violation - naming conventions 18
I06. State variables default visibility 19
I07. Variables can be downcasted to smaller size 19
I08. NatSpec and error messages are written in 2 languages 19
I09. Unfinalized code 20
I10. Code duplication 20
I11. Blacklisted addresses in USDC 21
I12. Redundant calculation 21
I13. Redundant check 22
I14. Use custom errors instead of error strings to save Gas 22

Disclaimers 24
Appendix 1. Severity Definitions 25

Risk Levels 25
Impact Levels 26
Likelihood Levels 26
Informational 26

Appendix 2. Scope 27
www.hacken.io

3

Introduction

Hacken OÜ (Consultant) was contracted by Paydece (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

PAYDECE - is an escrow protocol with the following contracts:
● PaydeceEscrow.sol — A smart contract decentralized escrow, that

allows users to exchange goods or services using the ERC20 and native
tokens they hold in a self-custodial wallet. Users connect to the
Dapp with their wallet where they own their private keys (they have
total control over their funds) and will block their funds in a smart
contract that will hold the value until the transaction of the goods
or service is completely done and validated by them.

Privileged roles
PaydeceEscrow is using the Ownable library from OpenZeppelin to restrict
access for administrative functions. Contract owner have access for
following functions:

● setFeeTaker() - configures the fee charged to the buyer (taker).
● setFeeMaker() - configure the fee charged to the seller (maker).
● setTimeProcess() - configure the time after which the cryptocurrency

seller (maker) could cancel the transaction and be refunded the
funds.

● releaseEscrowOwner() - release ERC20 tokens to the cryptocurrency
buyer (taker) when a dispute arises.

● releaseEscrowOwnerNativeCoin() - release native tokens to the
cryptocurrency buyer (taker) when a dispute arises.

● refundMaker() - refunding ERC20 tokens to the cryptocurrency seller
(maker) when a dispute arises.

● refundMakerNativeCoin() - refunding native tokens to the
cryptocurrency seller (maker) when a dispute arises.

● withdrawFees() - withdraw collected fees from different ERC20 tokens.
● withdrawFeesNativeCoin() - withdraw collected native token fees.
● addStablesAddresses() - add new tokens that are accepted by the

contract.
● delStablesAddresses() - remove tokens accepted by the contract.
● CancelMakerOwner() - cancel the fund custody and refund it to the

seller after available time passes.
● CancelTakerOwner() - cancel the fund custody and refund it to the

seller before available time passes.

www.hacken.io
4

● setMarkAsPaidOwner() - confirm the fiat money transfer when issues
arise and the buyer cannot perform it.

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● Technical descriptions have some gaps.
○ No run instructions.

Code quality
The total Code Quality score is 7 out of 10.

● Best practice violations. (I10, I14)
● Unused statuses. (I04)

Test coverage
Code coverage of the project is 90.71% (branch coverage):

● Contracts are not tested thoroughly.
● Negative cases coverage missing.

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.9. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

5 October 2023 5 1 4 1

02 November 2023 2 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Risks

● The contract owner possesses significant control over the contract,
which includes the ability to establish fees, disburse funds, issue
refunds to buyers, and cancel escrow arrangements. This level of
centralization could pose a risk in the event of the owner's account
being compromised.

● The contract solely relies on the owner to define time locks for the
escrow process. This arrangement could potentially result in funds
becoming indefinitely locked within the contract if the owner
neglects to define a time limit or if the owner's account is
compromised. In the documentation, it is stated that the
"timeProcess" variable should have a preset value of 45 minutes.
However, it is important to note that, in reality, the owner has the
flexibility to set any processing time they choose.

● The contract owner has the ability to whitelist any currency that may
be employed in the escrow process. Users, particularly takers, must
exercise caution and diligently confirm whether the correct currency
has been specified in the escrow, including verifying the address
associated with the escrow currency. This is crucial because if a
malicious ERC20 token is whitelisted, takers could potentially suffer
a loss of value.

● Escrowed funds can be released either by the maker or by the contract
owner. Takers must place their trust in these entities, as in the
current contract version, a process for raising disputes has not been
implemented.

www.hacken.io
6

Findings

Critical

C01. The maker fee is locked inside the contract when escrow is canceled
or refunded

Impact High

Likelihood High

The Paydence charges fees from both the taker and the owner. Maker
fees are collected at escrow creation, and taker fees are collected
after funds are released.

It was identified that upon the creation of an escrow, fees are
collected from the maker, However, these fees are not assigned to the
feesAvailable mapping. Additionally, during the cancellation or
refund processes (specifically, in the functions CancelMaker(),
CancelMakerOwner(), CancelTaker(), and CancelTakerOwner()), only the
escrow value is returned to the maker, without including the maker's
fees. Consequently, this results in the fee maker amount becoming
locked within the contract, inaccessible to the rightful owner.

function CancelMaker(uint256 _orderId) public nonReentrant

onlyMaker(_orderId){

require(escrows[_orderId].status == EscrowStatus.CRYPTOS_IN_CUSTODY

, "El estado tiene que ser CRYPTOS_IN_CUSTODY");

uint256 _timeDiff = block.timestamp - escrows[_orderId].created;

require(_timeDiff > timeProcess, "El tiempo todavia llego a su

termino");

escrows[_orderId].status = EscrowStatus.CANCEL_MAKER;

//@audit fee is not returned or assign to be able to withdraw it

escrows[_orderId].currency.safeTransfer(

escrows[_orderId].maker,

escrows[_orderId].value

);

emit EscrowCancelMaker(_orderId, escrows[_orderId]);

}

Proof of Concept:

1. Owner sets feeTaker and feeMaker to non zero values.
2. New escrow is created for non-premium users. During an escrow

creation feeMaker is collected from the maker - both escrow

www.hacken.io
7

value and feeMaker are transferred to the contract (funds
escrow).

3. Maker, taker, or owner uses a dedicated function to cancel
escrow.

4. Amount without maker fee is transferred to the maker address.
5. Fee amount (feeMaker) is permanently locked in the contract.

Path: ./contracts/PaydeceEscrow.sol: CancelMaker(),
CancelMakerOwner(), CancelTaker(), CancelTakerOwner();

Recommendation: To prevent fee tokens lock, it's recommended either
to update the fee balance during escrow creation or return the
escrowed amount and corresponding fees to the maker during the
cancellation process.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 93d6bf4)

Remediation: Process was introduced to return maker fee to the maker
on refund and cancellation transactions.

High

H01. Missing functionality for cancellation of escrow holding native
tokens

Impact High

Likelihood Medium

As documented, executing the CancelMaker() and CancelMakerOwner()
methods is expected to result in a refund of cryptocurrencies to the
seller. However, a critical issue has been identified. Attempting to
cancel an escrow that holds native tokens (wei) does not work as
intended - it leads to a transaction revert.

This issue arises because escrows denominated in wei store a zero
address as the currency's address. When the cancel functions attempt
to use this zero address as an ERC20 address and call transfer
instructions on it, the transaction reverts.

In cases where the taker fails to use the setMarkAsPaid() function
within the stipulated time, the native tokens held by the maker may
become temporarily locked within the contract. Funds can be unlocked
only by the owner using refundMakerNativeCoin() or
setMarkAsPaidOwner().

Proof of Concept:

1. Create an escrow involving native token.
2. Attempt to initiate the CancelMaker() function using the

maker's account.

www.hacken.io
8

3. Observe the transaction revert.

Path: ./contracts/PaydeceEscrow.sol: CancelMaker(),
CancelMakerOwner();

Recommendation: It is recommended to implement an alternative flow
for cancelation escrows denominated in native tokens (wei).

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Flow for cancelation escrows denominated in native
tokens was introduced in cancelMakerNative() function.

H02. Users funds could be locked due to incorrect escrow status check

Impact High

Likelihood Medium

The PaydenceEscrow smart contract employs different statuses for
escrows to manage their lifecycle. Initially, when created by the
maker, an escrow is in the CRYPTOS_IN_CUSTODY status. Subsequently,
the taker is required to mark the escrow as paid, which transitions
its status to FIATCOIN_TRANSFERED. Importantly, only escrows with the
FIATCOIN_TRANSFERED status are eligible for release.

There is a significant issue identified where user funds can become
locked within the contract. This occurs because the
_releaseEscrowNativeCoin() function checks for the CRYPTOS_IN_CUSTODY
status rather than the FIATCOIN_TRANSFERED status. Consequently, if
the taker marks the escrow as paid using setMarkAsPaid(), the funds
become locked within the contract, and they cannot be released as
_releaseEscrowNativeCoin() reverts due to the incorrect order status
check.

require(

escrows[_orderId].status == EscrowStatus.CRYPTOS_IN_CUSTODY,

"USDT has not been deposited"

);

Proof of Concept:

1. Create an escrow as the maker, which initially sets the status
to CRYPTOS_IN_CUSTODY.

2. As the taker, initiate the setMarkAsPaid() function to mark the
escrow as paid.

3. Attempt to release the escrow's funds by having the owner
initiate the _releaseEscrowNativeCoin() function.

www.hacken.io
9

Path: ./contracts/PaydeceEscrow.sol: _releaseEscrowNativeCoin();

Recommendation: To mitigate the issue, it is recommended to verify
order status during native tokens escrow release.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Check for correct order status was introduced in
_releaseEscrowNativeCoin() function.

H03. Owner can drain users’ funds from contract with refund mechanism

Impact High

Likelihood Medium

The contract owner has the authority to initiate refunds to escrow
creators when disputes arise. However, there are significant issues
with the current implementation:

1. Lack of Dispute Resolution Mechanism: The contract lacks a
formal mechanism to raise and resolve disputes, including
assigning a REFUND status to escrows in dispute.

2. Missing Status Checks: The refundMaker() and
refundMakerNativeCoin() functions do not verify if an escrow is
in dispute or the correct status for a refund, making it
vulnerable to misuse.

3. Escrow Status Not Updated: After a refund, the escrow status
remains unchanged, potentially leading to confusion regarding
its state.

Proof of Concept:

1. As users create several escrows.
2. Create a new escrow as contract owner.
3. As the owner refunds the newly created escrow from point 2.
4. Escrow tokens are transferred to the owner, and statuses are

not updated. Another refund of the same escrow is possible.
5. Point 3. and 4. can be done multiple times to drain all tokens

from the contract.

function refundMaker(uint _orderId) external nonReentrant onlyOwner {

//require(escrows[_orderId].status == EscrowStatus.Refund,"Refund not

approved");

uint256 _value = escrows[_orderId].value;

address _maker = escrows[_orderId].maker;

IERC20 _currency = escrows[_orderId].currency;

_currency.safeTransfer(_maker, _value);

emit EscrowDisputeResolved(_orderId);

}

www.hacken.io
10

Path: ./contracts/contract.sol: refundMaker(),
refundMakerNativeCoin();

Recommendation: It is recommended to:

● verify order status in refundMaker() and
refundMakerNativeCoin() function before proceeding with the
refund process,

● update escrow (order) status after the refund,
● implement a procedure for raising disputes.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 93d6bf4)

Remediation: Correct order status check was introduced in refund
functions. Only orders with statuses FIATCOIN_TRANSFERED and
CRYPTOS_IN_CUSTODY could be refunded. Order status is correctly
updated after refund operation.

Medium

M01. Lack of strict validation of msg.value can lead to funds lock

Impact Medium

Likelihood Medium

The createEscrowNativeCoin() function is intended to create an escrow
with native tokens and receive them.

Due to the lack of precise validation of msg.value, there is a risk
of locking funds inside the contract. If a user sends more native
coins than required to cover _value + _amountFeeMaker, the excess
native tokens will become trapped within the contract without any
means of withdrawal.

require((_value + _amountFeeMaker) <= msg.value, "Incorrect amount");

Path: ./contracts/PaydeceEscrow.sol: createEscrowNativeCoin();

Recommendation: It's recommended to verify that the user sent the
exact amount of native tokens to escrow.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

www.hacken.io
11

Remediation: Conditional check for expected amount of wei (msg.value)
was introduced in createEscrowNativeCoin function.

Low

L01. Zero-valued escrows

Impact Low

Likelihood Low

The functions createEscrow() and createEscrowNativeCoin() can execute
a zero-valued transaction if zero is passed as a parameter. It is
possible to create escrow with no amount, which could result in
breaking the business process.

The following parameters are not checked for the zero value:

● PaydeceEscrow
○ createEscrow()

■ uint256 _value
○ createEscrowNativeCoin()

■ uint256 _value

Path: ./contracts/PaydeceEscrow.sol: createEscrow(),
createEscrowNativeCoin()

Recommendation: It is recommended to implement conditional checks for
the zero-valued transaction for createEscrow(),
createEscrowNativeCoin() functions.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Conditional check for the zero-valued was introduced.

L02. Missing zero address check

Impact Low

Likelihood Low

There is possibility to set a zero address for the taker in creating
the escrow process. Such flow could not be completed (only canceled),
as ERC20 transfer function in escrow release checks if the recipient
address is not 0.

The following parameters are not checked for the zero value:

● PaydeceEscrow
○ createEscrow()

■ address payable _taker

www.hacken.io
12

○ createEscrowNativeCoin()
■ address payable _taker

Path: ./contracts/PaydeceEscrow.sol: createEscrow(),
createEscrowNativeCoin()

Recommendation: It is recommended to implement zero address check for
the taker address during escrow creation process.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Conditional check for the zero-address was introduced.

L03. Optimizing variable assignment in the constructor

Impact Medium

Likelihood Low

Within the constructor(), there is a redundant assignment of a value
of 0 to both the feeTaker and feeMaker variables. This redundancy is
unnecessary since, for variables of type uint256, the default value
is inherently set to 0, making the explicit assignment superfluous.

Furthermore, an issue has been identified regarding the
initialization of crucial contract variables. After deployment, these
variables are not automatically initialized, requiring the owner to
remember to set them manually in separate transactions. Failure to do
so can result in a broken solution, with no fees and a lack of
essential parameters such as timeProcess.

Path: ./contracts/PaydeceEscrow.sol: constructor()

Recommendation: To mitigate, it is recommended to set protocol
parameters in the constructor

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: The timeProcess variable is set in the contract
constructor().

L04. Missing event for critical value updation

Impact Low

Likelihood Medium

The functions setFeeTaker(), setFeeMaker(), setTimeProcess(),
www.hacken.io

13

addStablesAddresses(), and delStablesAddresses() do not emit events
when important values change. This omission can lead to a significant
drawback as users and external systems may be unable to subscribe to
events to monitor and track important changes in the project (like
modifying fees or whitelisting allowed currencies).

Path: ./contracts/PaydeceEscrow.sol: setFeeTaker(), setFeeMaker(),
setTimeProcess(), addStablesAddresses() and delStablesAddresses();

Recommendation: It is recommended to emit events on critical state
changes.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Events for setFeeTaker(), setFeeMaker(),
setTimeProcess(), addStablesAddresses(), and delStablesAddresses()
functions were introduced.

L05. Fee on transfer tokens can break contract logic

Impact Low

Likelihood Low

Contract is supposed to work with ERC20 tokens whitelisted by the
contract owner. However, some ERC20s have a feature to collect a fee
on transfer. On Ethereum, the USDT stablecoin has the fee feature
implemented, which is disabled at the time of writing. But it may
happen that they enable it, and this can mess up the contract
accounting.

In the current implementation, fees on transfer tokens could break
escrow flow. Consider the following scenario:

1. USDT authorities decided to activate the fee on the transfer
feature and charge a 1% fee on token transfers.

2. Maker creates escrow for 100 USDT. But only 99 USDT were
transferred to the escrow account (1 USDT fee on transfer was
paid).

3. The taker paid for the escrow.
4. Funds should be released to the taker. However, the taker

should receive 100 USDT, but the escrow account (contract) has
only 99 USDT in balance. Release transaction reverts, and funds
become locked in the contract.

Path: ./contracts/PaydeceEscrow.sol: *

Recommendation: It is recommended to identify the exact amount
received by the receiver as a difference between the token balance
before and after the transfer transaction is made.

www.hacken.io
14

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Reported

Remediation: The Paydence team has acknowledged the issue.

L06. Makers can omit fee payment

Impact Medium

Likelihood Low

There are significant concerns regarding the fee handling mechanism
in the createEscrow() and createEscrowNativeCoin() functions.

The _maker_premium parameter, which specifies if a maker has a
premium account, is being used to exempt makers from paying fees.
However, this mechanism allows makers to omit fee payments even if
they are not premium members. This means that makers can potentially
avoid fees, regardless of their premium status.

Additionally, makers have the ability to manipulate the
_taker_premium argument, which determines whether takers pay fees.
This arrangement gives makers control over whether takers are
required to pay fees, which may not align with the intended protocol
design.

The decision of who should pay fees and who should be exempt should
ideally be the prerogative of the protocol owners, rather than
individual users. The current implementation grants excessive control
to users (makers) over the fee structure, potentially leading to
misuse or deviations from the intended protocol design.

Proof of Concept:

1. The owner configures the feeTaker and feeMaker parameters with
non-zero values.

2. A non-premium maker creates a new escrow, set the
_maker_premium parameter to true and the _taker_premium
parameter to false.

3. A taker initiates the setMarkAsPaid() function.
4. The maker then triggers the releaseEscrow() function to

finalize an order and update the associated fee.
5. Finally, the owner initiates the withdrawFees() function and

observe that maker fee is not collected.

Path: ./contracts/PaydeceEscrow.sol: createEscrowNativeCoin();

Recommendation: It is recommended to redesign a smart contract, so
protocol owners decide who is a premium member and who should pay
fees.

www.hacken.io
15

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Reported

Remediation: The protocol owner, which is also a fee receiver accepts
the risk of fee payment omission.

L07. Usage of built-in transfer

Impact Low

Likelihood Low

The built-in transfer() and send() functions process a hard-coded
amount of Gas. In case the receiver is a contract with receive or
fallback function, the transfer may fail due to the “out of Gas”
exception.

This can lead to if a sender is a contract with a fallback function,
the execution will fail.

Path: ./contracts/PaydeceEscrow.sol: cancelTakerNative();

Recommendation: It's recommended to replace transfer() and send()
functions with call().

Found in: 182aff27450ad5fc6d9f11e0bb931fec66143ac8

Status: Fixed (Revised commit: 93d6bf4)

Remediation: The transfer() and send() functions were replaced with
call().

Informational

I01. Outdated Solidity version

Smart contract was compiled using 0.8.7, whereas, at the time of
creating this report, the newest Solidity versions are 0.8.19 /
0.8.20.

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version. Using an old version for deployment prevents access to new
Solidity security checks.

Path:
./contracts/Address.sol
./contracts/IERC20.sol
./contracts/Address.sol
./contracts/Ownable.sol
./contracts/PaydeceEscrow.sol
./contracts/ReentrancyGuard.sol
./contracts/SafeERC20.sol

www.hacken.io
16

Recommendation: It is recommended to deploy with any of the following
Solidity versions: 0.8.19 or 0.8.20.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Pragma was locked to 0.8.19.

I02. Style guide violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be ordered and grouped by their visibility as
follows:

1. Constructor
2. Receive function (if it exists)
3. Fallback function (if it exists)
4. External functions
5. Public functions
6. Internal functions
7. Private functions

Path: ./contracts/PaydeceEscrow.sol: *

Recommendation: Consistent adherence to the official Solidity style
guide (https://docs.soliditylang.org/en/latest/style-guide.html) is
recommended. This enhances readability and maintainability of the
code, facilitating seamless interaction with the contracts.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Functions were ordered according to the official
Solidity style guide recommendations.

I03. Functions that can be declared external

In order to make code easier to understand, public functions that are
never called in the contract should be declared as external.

www.hacken.io
17

https://docs.soliditylang.org/en/latest/style-guide.html

Path:./contracts/PaydeceEscrow.sol: getState(),
addStablesAddresses(), delStablesAddresses(), CancelMaker(),
CancelMakerOwner(), CancelTaker(), CancelTakerOwner(),
setMarkAsPaid(), setMarkAsPaidOwner();

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Functions were introduced as external.

I04. Unused escrowStatus enum values

The contract implements the Escrow statuses named ACTIVE, DELETED,
APPEALED, and RELEASE but never uses them.

Unused functionality leads to increasing Gas needed for the
deployment and decreases code quality.

Path: ./contracts/PaydeceEscrow.sol: EscrowStatus;

Recommendation: Verify if defined statuses are needed. Remove the
redundant statuses from the contract codebase.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Reported

Remediation: The status ACTIVE is redundantly defined but remains
unused.

I05. Solidity style guide violation - naming conventions

According to the Solidity Style Guide Violation - Naming Conventions
section, function names should follow mixedCase style.

CancelMaker(), CancelMakerOwner(), CancelTaker() and
CancelTakerOwner() function names do not follow mixedCase style.

Path: ./contracts/PaydeceEscrow.sol: CancelMaker(),
CancelMakerOwner(), CancelTaker(), CancelTakerOwner();

Recommendation: Follow Solidity Style Guide - Naming Conventions
section. Change the mentioned function name to mixedCase style.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 158d4d5)

Remediation: Naming conventions were changed according to the
Solidity Style Guide.

www.hacken.io
18

https://docs.soliditylang.org/en/latest/style-guide.html#function-names

I06. State variables default visibility

Variable whitelistedStablesAddresses visibility is not specified.
Specifying the state variable's visibility helps to catch incorrect
assumptions about who can access the variable and increase code
quality.

Path: ./contracts/PaydeceEscrow.sol: whitelistedStablesAddresses;

Recommendation: Specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Visibility was added to the mapping.

I07. Variables can be downcasted to smaller size

Variables feeTaker and feeMaker can be downcasted from uint256 to
uint16 type. Variables will hold only values in the range [0, 1000].
Changing their type from uint256 to uint16 will decrease the storage
that the contract uses, which saves Gas.

What is more, variable timeProcess will hold time-related values and
can be downcasted from uint256 to uint64 type to save memory slots.

Path: ./contracts/PaydeceEscrow.sol: whitelistedStablesAddresses;

Recommendation: Downcast mentioned variables to smaller uint type.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Variables were changed to smaller uint type.

I08. NatSpec and error messages are written in 2 languages

NatSpec comments and error messages are written in English and
Spanish language.

This decreases code quality and contract readability.

Path: ./contracts/PaydeceEscrow.sol: *;

Recommendation: Use either English or Spanish language in NatSpec
comments and error messages for users. Add NatSpec comments to all of
the contract functions.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: The text was edited and unified into a single language.

www.hacken.io
19

I09. Unfinalized code

It is considered that the project should be consistent and contain no
self-contradictions.

The implementation contains commented code:

● onlyTakerOrOwner() modifier;
● uint256 private feesAvailable variable;
● require check in refundMaker() and refundMakerNativeCoin();
● commented line in _releaseEscrow();

Commented code may decrease code readability.

Path: ./contracts/PaydeceEscrow.sol: *;

Recommendation: It is recommended to remove the commented code or
finalize its implementation.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 182aff2)

Remediation: Unfinalized code was removed from the contract.

I10. Code duplication

The contract contains code duplication, which refers to the presence
of redundant or repeated code segments:

1. CancelMaker() and CancelMakerOwner() functions have the same
code in their body. The only difference is the accessible
modifier and event emitted. The body of these functions can be
declared as a separate private function and reused in
CancelMaker() and CancelMakerOwner().

2. Fee calculation formula is defined in createEscrow(),
createEscrowNativeCoin(), _releaseEscrow(), and
_releaseEscrowNativeCoin(). Fee calculation can be a separate
function that will be called every time a fee should be
calculated.

Code duplication within the contract leads to increased deployment
Gas costs and decreased code quality.

Path: ./contracts/PaydeceEscrow.sol: CancelMaker(),
CancelMakerOwner(), CancelTaker(), CancelTakerOwner(),
createEscrow(), createEscrowNativeCoin(), _releaseEscrow(),
_releaseEscrowNativeCoin();

Recommendation: Refactor the duplicated code segments into reusable
functions or employ appropriate design patterns to eliminate code
duplication.

www.hacken.io
20

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Reported (Revised commit: 182aff2)

Remediation: One change was introduced to prevent code duplications -
the second calculation formula has been incorporated into a dedicated
function. However, other instances of code duplication were not
refactored.

I11. Blacklisted addresses in USDC

The Paydence Escrow contract is going to use the USDC stablecoin,
which includes a blacklist feature for both transfer sender and
receiver, designed to prevent blacklisted users from utilizing the
stablecoin.

If a blacklisted taker is defined in the escrow process, it becomes
impossible to complete the escrow flow and collect maker and taker
fees. The presence of a blacklisted user in the escrow process
effectively blocks the completion of the transaction, including the
gathering of fees.

Path: ./contracts/PaydeceEscrow.sol: *

Recommendation: It is recommended to implement a failover mechanism,
which will transfer the taker’s fund into the escrow account, in case
of any issues with fund transfers, such as blacklisting of the user.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Reported

Remediation: The Paydence team has acknowledged the issue.

I12. Redundant calculation

In createEscrow() and createEscrowNativeCoin() functions, fees for
creating and escrow for the maker is calculated even when fees are
not needed. Firstly, the fee is calculated, and later, the contract
checks if the maker is premium (fee does not apply in this case) and
assigns 0 value to fee variable (_amountFeeMaker).

In _releaseEscrow() and _releaseEscrowNativeCoin() functions, the fee
for the maker and taker is calculated even when the fee is not
needed. Firstly, the fee is calculated, and later, the contract
checks if the maker or taker is premium (fee does not apply in this
case) and assigns 0 value to the fee variable (_amountFeeMaker or
_amountFeeTaker).

Path: ./contracts/PaydeceEscrow.sol: createEscrow(),
createEscrowNativeCoin(), _releaseEscrow(),
_releaseEscrowNativeCoin();

Recommendation: To save Gas, it is recommended to calculate fees only
if this is needed (maker or taker is not premium).

www.hacken.io
21

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 158d4d5)

Remediation: Redundant calculations were removed.

I13. Redundant check

Redundant conditional checks within Solidity smart contracts refer to
situations where multiple conditional statements exist to validate
the same condition, resulting in unnecessary complexity and potential
confusion. These redundant checks often arise when two or more
distinct sections of code attempt to verify a specific condition,
although one of the checks already encompasses the other(s).

Inside the createEscrow() function there is a defined check if the
PaydeceEscrow contract address is approved to transfer funds on
behalf of msg.sender to PaydeceEscrow contract.

uint256 _allowance = _currency.allowance(msg.sender,

address(this));

require(

_allowance >= (_value + _amountFeeMaker),

"Taker approve to Escrow first"

);

The same check is also done in _spendAllowance() function in ERC20
contract (transferFrom() executes _spendAllowance()).

Path: ./contracts/PaydeceEscrow.sol: createEscrow();

Recommendation: To save Gas, it is recommended to remove redundant
checks that duplicate the validation efforts.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Fixed (Revised commit: 158d4d5)

Remediation: Redundant checks were removed.

I14. Use custom errors instead of error strings to save Gas

Custom errors were introduced in Solidity version 0.8.4, and they
offer several advantages over traditional error handling mechanisms:

1. Gas Efficiency: Custom errors can save approximately 50 Gas
each time they are hit because they avoid the need to allocate
and store revert strings. This efficiency can result in cost
savings, especially when working with complex contracts and
transactions.

2. Deployment Gas Savings: By not defining revert strings,
deploying contracts becomes more Gas-efficient. This can be
particularly beneficial when deploying contracts to reduce
deployment costs.

www.hacken.io
22

3. Versatility: Custom errors can be used both inside and outside
of contracts, including interfaces and libraries. This
flexibility allows for consistent error handling across
different parts of the codebase, promoting code clarity and
maintainability.

Path: ./contracts/PaydeceEscrow.sol.

Recommendation: To save Gas, it is recommended to use custom errors
instead of strings.

Found in: be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Status: Reported

Remediation: The Paydence team has acknowledged the issue.

www.hacken.io
23

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
24

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
25

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
26

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/PayDece/paydece-contracts/tree/v4

Commit be0b8ce8b7a381dd89add981ba1dc32c6587ba0b

Whitepaper Whitepaper

Requirements Requirements

Technical
Requirements Technical Requirements

Contracts File: contracts/Address.sol
SHA3: f01ba4387f59155ade5ada4e88f4c5d58df6bf5f41a124f4baecca15b82e6850

File: contracts/Context.sol
SHA3: 57c1449d21d6fa219cd2e1292b670e933e6ecebc9f3f678aaf3b2a903dd3fde6

File: contracts/IERC20.sol
SHA3: 3bebc954a1035342cc9c62a9852b0f44f9af744573831ad5e710fa36b0a682fa

File: contracts/Ownable.sol
SHA3: 4fbd9f12e04a233e893823cf6385b203e39094b459b645b2f687449e6992781d

File: contracts/PaydeceEscrow.sol
SHA3: b64841ebdebbd8b0d070c746cfaf3d507654061c891180c74d172f0feaceea8b

File: contracts/ReentrancyGuard.sol
SHA3: 911b917bf808d585aacddcadf65ac33b10a1344599cd5fe316af70d07fed5d35

File: contracts/SafeERC20.sol
SHA3: b374986cd70dda653f1d161373e7b968918062ebbc56129fc868c55ce99f7c21

Second review scope

Repository https://github.com/PayDece/paydece-contracts/commits/v4.2

Commit 182aff27450ad5fc6d9f11e0bb931fec66143ac8

Whitepaper Whitepaper

Requirements Requirements

Technical
Requirements Technical Requirements

Contracts File: contracts/Address.sol
SHA3: c049c947fa9577a0bc107c6fb23e626015beda3791d4767278e0a8580f23ab97

File: contracts/Context.sol
SHA3: 07895fbd70e6468d8c5b6366952fe06131f47fbc4c7dd21cca5507d441e5103c

www.hacken.io
27

https://github.com/PayDece/paydece-contracts/tree/v4
https://2369034815-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FcFCJ5BUkJV87bqkMSJ0f%2Fuploads%2F6IEjl6ZUZarxaYNmCjde%2Fwhitepaper%20beta.pdf?alt=media&token=43a13c11-f24f-475c-bf2c-73ed61e08db6
https://2369034815-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2Fovq10oINbELdygzJfZQx%2Fuploads%2FUKkxhbCmfyrLAQWMUBG5%2FWhitepaper%20Beta%20Paydece.pdf?alt=media&token=078855d4-c90c-456b-9c64-bdac9bed5523
https://docs.google.com/document/d/1r8WLAelRqYyq6I8FaMTUZ6VVH04NyEzoZ4_DfGZX0aE/edit
https://github.com/PayDece/paydece-contracts/commits/v4.2
https://2369034815-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FcFCJ5BUkJV87bqkMSJ0f%2Fuploads%2F6IEjl6ZUZarxaYNmCjde%2Fwhitepaper%20beta.pdf?alt=media&token=43a13c11-f24f-475c-bf2c-73ed61e08db6
https://2369034815-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2Fovq10oINbELdygzJfZQx%2Fuploads%2FUKkxhbCmfyrLAQWMUBG5%2FWhitepaper%20Beta%20Paydece.pdf?alt=media&token=078855d4-c90c-456b-9c64-bdac9bed5523
https://docs.google.com/document/d/1r8WLAelRqYyq6I8FaMTUZ6VVH04NyEzoZ4_DfGZX0aE/edit

File: contracts/IERC20.sol
SHA3: 3529aeeeed1740573201a3f4aa9b72a2b259526aa3dfca3625f28b0ebda84cf6

File: contracts/Ownable.sol
SHA3: 9279860cab1aba92b38d6d28612c3efd146222e5a1a601c59d2c76ac39b90d2d

File: contracts/PaydeceEscrow.sol
SHA3: 8065e56002ad6a31e73f49f967913e071e857db3e48934ed4b38f801b45ba164

File: contracts/ReentrancyGuard.sol
SHA3: 3807698e6fc8e90891bcd92e3130bd3fc2c98dcbfca93248190fa84e3d358bca

File: contracts/SafeERC20.sol
SHA3: 007da6383eb2180113349376f883f5666bf82e25a8d96ba1b558c4c2edf3425b

www.hacken.io
28

