
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Soul Society
Date: 15 Nov, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Soul
Society

Approved By
Viktor Lavrenenko | SC Auditor at Hacken OÜ
David Camps Novi | SC Audits Lead at Hacken OÜ
Paul Fomichov | SC Audits Approver at Hacken OÜ

Tags ERC20, ERC721, SoulBound

Platform EVM

Language Solidity

Methodology Link

Website Website

Changelog
06.10.2023 – Initial Review
31.10.2023 - Second Review
10.11.2023 - Third Review
15.11.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.soulsociety.gg/#section-main

Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Risks 7
Checked Items 8
Findings 11

Critical 11
High 11

H01. Requirements Violation: The Supply of HON Tokens Is Not Limited 11
H02. Token Burn Does Not Follow ERC721 Standard And Leads To
Inconsistencies 11
H03. Too Highly Permissive Role Allows Owner To Burn Tokens From Users
Without Their Consent Or Previous Notice 13

Medium 14
M01. Missing Safety Check for Non-EOA Receivers of Tokens Can Lead to
Locked Tokens 14
M02. Missing User Approval For Growth Level Update Results In Highly
Centralized Growth System 15

Low 16
L01. Floating Pragma 16
L02. Missing Events for Critical Value Updates 16
L03. Missing URI Length Check 17
L04. Inefficient Checks in setProtected() Result In Inefficient Code 17

Informational 18
I01. Redundant Initialization Is Not Gas Efficient 18
I02. Function tokenURI Is Not Gas Efficient 19
I03. Disabled Solidity Optimizer 20
I04. State Variables Can Be Constant 20
I05. Redundant onlyOwner Requirements Are Not Gas Efficient 21
I06. Lack Of Clear Code In _growUp() Function 21
I07. Style Guide Violation: Order Of Layout 22

Disclaimers 24
Appendix 1. Severity Definitions 25

Risk Levels 25
Impact Levels 26
Likelihood Levels 26
Informational 26

Appendix 2. Scope 27

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Soul Society (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

System Overview

SOUL_SOCIETY is a Growth-Type Soul-Bound Tokens (SBTs) protocol:

- Users can engage in several activities and acquire SBTs that define
their identities. A user can own several SBTs.

- SBTs minted through Soul Society can be viewed by anyone and be
applied to third-party services.

Growth-Type (level) feature of SBTs:

www.hacken.io
4

- Growth-Type Attribute: indication of the Level of engagement
(1,2,3,...,N).

- Growth-Type Achievement History: URI that links to history
information about when, where and how the Level was achieved.

The project presents the following contracts:

● HONToken- ERC20 token contract.
● SoulSocietySBT - custom SBT contract.

Privileged roles
● SoulSocietySBT contract Owner - can mint, burn and grow SBTs.
● HONToken contract Owner - can mint and burn HON Tokens as well as

transfer Ownership.

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided:
○ The purpose of the contracts is described.
○ The project’s features are provided.
○ Business logic is included.
○ Use Cases are described.

● The technical description is complete:
○ Environment configuration is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Best practices are followed.

Test coverage
Code coverage of the project is 0% (branch coverage).

● For a project with less than 250 LOC (Lines of Code) the test
coverage is not mandatory, and it is not accounted for in the final
score.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Table. The distribution of issues during the audit

Review date Low Medium High Critical

06 October 2023 4 2 3 0

31 October 2023 0 1 0 0

10 November 2023 0 0 0 0

15 November 2023 0 0 0 0

Risks

No risks have been identified during the audit review.

www.hacken.io
7

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not
Relevant

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

Findings

Critical

No critical severity issues were found.

High

H01. Requirements Violation: The Supply of HON Tokens Is Not Limited

Impact High

Likelihood Medium

There is a mismatch between the documentation and the implementation.

The documentation states that the maxTotal supply is expected to be
1,000,000,000. However, the implementation lacks the necessary
functionality to limit the supply to the previously mentioned number.
As a consequence, the owner will be able to mint as many HON tokens
as they want.

Path: ./contracts/HONToken.sol: mint().

Recommendation: Fix the mismatch between the code and the
requirements. It can be achieved by implementing the limit check for
the in the mint() function.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: A check was introduced into mint() to make sure the
maximum supply is not surpassed.

H02. Token Burn Does Not Follow ERC721 Standard And Leads To
Inconsistencies

Impact Medium

Likelihood High

SoulBound Tokens are burned by calling burn() and triggering
_setGrowthToZero(). These calls will reset _tokenGrowths[tokenId_]=0:

function burn(address to_, uint256 tokenId_) public onlyOwner {

setGrowthToZero(to, tokenId_);

}

function _setGrowthToZero(address to_, uint tokenId_) private onlyOwner {

requireMintedOf(to, tokenId_);

www.hacken.io
11

https://docs.soulsociety.gg/soul-society/tokenomics/allocation

tokenGrowths[tokenId] = 0;

emit Burn(to_, tokenId_);

}

In ERC721, there is an update of the _balances and _owners since the
burn will remove the token from its current owner. The amount of
tokens from the user will be decreased by one, and the new owner will
be set to address(0):

function _burn(uint256 tokenId) internal {

address previousOwner = _update(address(0), tokenId, address(0));

...

}

function _update(address to, uint256 tokenId, address auth) internal virtual

returns (address) {

...

if (from != address(0)) {

...

unchecked {

_balances[from] -= 1;

}

}

...

_owners[tokenId] = to;

...

}

As a consequence, the function _exists() will not work correctly
because it will not revert for burned tokens:

function _exists(uint256 tokenId) internal view virtual returns (bool) {

return _ownerOf(tokenId) != address(0);

}

Additionally, when a user has all of their tokens burned, it will
still remain as an owner because even though it actually does not own
any token due to: 1) their _ownedTokens was not updated and 2)
_totalUsers is not decreased.

A call to _exists() should be added at the beginning of the function,
to maintain a consistency. Otherwise, _balances and _totalUsers will
be incorrectly updated.

Finally, decreasing _tokenGrowths functionality is not related to
regular token burning since SBTs will still appear as if they are
owned by users and such users will still be able to use them.
Therefore, we recommend keeping the _setGrowthToZero() in a separate
function from burn().

www.hacken.io
12

Path: ./v2/contracts/SoulSocietySBT.sol: burn(), _setGrowthToZero().

Recommendation: Several changes are required in order to fix this
issue:

1. Update the variables _balances, _owners and _ownedTokens when a
token is burned.

2. Add a check that, if the user has no tokens in _ownedTokens,
the _totalUsers decreases by 1.

3. Add a call to _exists() at the beginning of the function.
4. Create a separate function to set the growth of the tokens to

zero, using _setGrowthToZero().

References: ERC721.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The burn functionality was removed. Instead, the function
reset() was introduced, which has the aim to set the growth of the
SBT to 0, but to burn tokens.

H03. Too Highly Permissive Role Allows Owner To Burn Tokens From Users
Without Their Consent Or Previous Notice

Impact Medium

Likelihood High

SoulBound Tokens can be burned by the Owner without notice:

function burn(address to_, uint256 tokenId_) public onlyOwner {

setGrowthToZero(to, tokenId_);

}

The Owner should not be able to access users’ assets without their
notice or consent.

Path: ./v2/contracts/SoulSocietySBT.sol: burn().

Recommendation: Let users trigger the burn() function or add a user
interaction check of some kind.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The burn functionality was removed. Instead, the function
reset() was introduced, which has the aim to set the growth of the
SBT to 0. Said reset() functionality includes a check that ensures
the users requested such change in their SBT level.

www.hacken.io
13

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/ERC721.sol#L329

Medium

M01. Missing Safety Check for Non-EOA Receivers of Tokens Can Lead to
Locked Tokens

Impact Medium

Likelihood Medium

The _safeMint() function lacks a necessary safety check that
validates a recipient contract’s ability to receive and handle
ERC-721 tokens. Without this safeguard, tokens can inadvertently be
sent to an incompatible contract, causing them, and any assets they
hold, to become irretrievable.

function _safeMint(address to_, uint256 tokenType_) internal virtual onlyOwner

returns(uint256) {

uint256 tokenId = _totalCount + 1;

if (to_ == address(0)) {

revert SoulSocietySBTInvalidReceiver(address(0));

}

if (_exists(tokenId)) {

revert SoulSocietySBTExistToken(tokenId);

}

// if to is false , to address is new user

if(!_existsOwner(to_)) {

_totalUser += 1;

}

unchecked {

// Will not overflow unless all 2**256 token ids are minted to the same

owner.

// Given that tokens are minted one by one, it is impossible in practice

that

// this ever happens. Might change if we allow batch minting.

// The ERC fails to describe this case.

balances[to] += 1;

_totalCount += 1;

}

owners[tokenId] = to;

tokenTypes[tokenId] = tokenType;

_tokenGrowths[tokenId] = 1;

userProtects[to] = false;

ownedTokens[to][_balances[to_]-1] = tokenId; // index from 0

emit Mint(address(0), to_, tokenId, tokenType_);

www.hacken.io
14

return tokenId;

}

The following _checkOnERC721Received() check should be added to the
function _safeMint().

function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
require(

_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"

);
}

Paths: ./v2/contracts/SoulSocietySBT.sol: _safeMint().

Recommendation: Implement the _safeMint() function with the
previously mentioned functionality to ensure that the recipient is
equipped to handle ERC-721 tokens, thus mitigating the risk that NFTs
could become frozen.

Found in: fe50b45

Status: Fixed (Revised commit: 13f46a1)

Resolution: The call _checkOnERC712Received() implemented into
_safeMint(), following the ERC721 standard.

M02. Missing User Approval For Growth Level Update Results In Highly
Centralized Growth System

Impact High

Likelihood Low

The owner of the SoulBound token contract can increase or decrease
the growth level of the tokens without previous on-chain user
request.

This means the owner has the potential to manipulate the growth level
of the SBTs. Given the protocol intends to use the growth level as a
key feature of the SBTs, a user request system should be introduced.

Path: ./v2/contracts/SoulSocietySBT.sol: growUp(), _setGrowthToZero()

Recommendation: Implement an on-chain user request system (e.g. a
mapping user => tokenId => bool) to be checked in growUp() and
_setGrowthToZero().

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)
www.hacken.io

15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/ERC721.sol

Resolution: The function growUp() and the function reset() include a
check on _getApprovalGrowth(), which makes sure the changes in the
growth are approved by the token holders.

Low

L01. Floating Pragma

Impact Low

Likelihood Low

Contracts should be deployed with the same compiler version and flags
that they have been tested with thoroughly. Locking the pragma helps
to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Paths:
./contracts/*.sol

Recommendation: Lock the pragma version in all contracts as 0.8.19
instead of ^0.8.19.

References: SWC-103.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The pragma version was fixed to 0.8.20.

L02. Missing Events for Critical Value Updates

Impact Low

Likelihood Low

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Paths: ./v2/contracts/SoulSocietySBT.sol: constructor(),
setTokenURI().

Recommendation: Consider emitting events in previously mentioned
functions.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The events were added.

www.hacken.io
16

https://swcregistry.io/docs/SWC-103

L03. Missing URI Length Check

Impact Low

Likelihood Low

The function tokenURI() lacks the necessary check that would ensure
that the empty URI string is not included in the final encoded URI.

function tokenURI(uint256 tokenId_) external view virtual returns (string memory) {

// check minted
requireMinted(tokenId);

// check protected status
isProtectedTokenId(tokenId);

uint256 tokenType = _tokenTypes[tokenId_];

return string(abi.encodePacked(_uri,tokenId_.toString(),"?tokenType=",
tokenType.toString()));

// return string.concat(_uri, tokenId_.toString());
}

The actual behavior might lead to unexpected issues if the incorrect
URI will be used instead.

The following piece of code can be added to mitigate the previously
mentioned issue.

return bytes(_uri).length > 0 ? string(abi.encodePacked(_uri,

tokenId_.toString())) : "";

Paths: ./v2/contracts/SoulSocietySBT.sol: tokenURI().

Recommendation: It is recommended to implement the aforementioned
check to avoid the potential problems.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The empty URI check was implemented.

L04. Inefficient Checks in setProtected() Result In Inefficient Code

Impact Low

Likelihood Medium

The setProtected() function lacks the check to ensure that the to_
address has already minted some SBT tokens.

function setProtected(address to_, bool isProtected_) public returns (bool) {

www.hacken.io
17

if (msg.sender != to_) {

revert SoulSocietySBTInvalidOwner(to_);

}

userProtects[to] = isProtected_;

return getProtected(to_);

}

As a consequence, the protection will be enabled for addresses which
are not participants of the system.

Additionally, the check if(msg.sender!=to_) is unnecessary. It is
recommended to use msg.sender instead of to_ in order to enforce the
same behavior with a simpler code:

function setProtected(bool isProtected_) public returns (bool) {

if (!_balanceOf(msg.sender) > 0){

revert SoulSocietySBTExistToken(msg.sender);

}

userProtects[msg.sender] = isProtected;

return getProtected(msg.sender);

}

Paths: ./v2/contracts/SoulSocietySBT.sol: setProtected().

Recommendation: Add a call to _balanceOf() and use msg.sender instead
of to_.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The function was updated as recommended.

Informational

I01. Redundant Initialization Is Not Gas Efficient

The state variables _totalUser and _totalCount are set to 0 during
deployment, spending more Gas than necessary:

// The number of users who own SBT.

uint256 private _totalUser = 0;

// Total number of SBT issued

uint256 private _totalCount = 0;

Variables of type uint256 are initialized as 0 by default, making it
unnecessary to set them to 0:

www.hacken.io
18

// The number of users who own SBT.

uint256 private _totalUser;

// Total number of SBT issued

uint256 private _totalCount;

Similarly, the state variable _userProtects[to_] is redundantly set
to false in _safeMint().

Path: ./v2/contracts/SoulSocietySBT.sol: _safeMint().

Recommendation: Do not initialize the state variables _totalUser and
_totalCount and _userProtects.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The redundant initialization was removed.

I02. Function tokenURI Is Not Gas Efficient

The call _requireMinted(tokenId_) is redundant, since it performs a
check included in _isProtectedTokenId():

function _requireMinted(uint256 tokenId) internal view virtual {

if (!_exists(tokenId)) {

revert SoulSocietySBTNonexistentToken(tokenId);

}

}

function _isProtectedTokenId(uint256 tokenId_) internal view {

if (!_exists(tokenId_)) {

revert SoulSocietySBTNonexistentToken(tokenId_);

}

_isProtected(_owners[tokenId_]);

}

Therefore, the tokenURI() can be simplified by removing the call to
_requireMinted() and the function _requireMinted() can be removed
from the contract since it is not used anywhere else.

function tokenURI(uint256 tokenId_) external view virtual returns (string memory)

{

isProtectedTokenId(tokenId);

uint256 tokenType = _tokenTypes[tokenId_];

return string(abi.encodePacked(_uri,tokenId_.toString(),"?tokenType=",

tokenType.toString()));

}

www.hacken.io
19

Additionally, the memory variable tokenType is declared in the
function tokenURI() by reading from storage once. This variable will
be used later once.

Instead, the storage variable _tokenTypes[tokenId] can be returned
directly, without any need to declare the memory variable tokenType:

function tokenURI(uint256 tokenId_) external view virtual returns (string memory)

{

isProtectedTokenId(tokenId);

return string(abi.encodePacked(_uri,tokenId_.toString(),"?tokenType=",

tokenTypes[tokenId].toString()));

}

Path: ./v2/contracts/SoulSocietySBT.sol: tokenURI().

Recommendation: Remove the call to _requireMinted() and the function
requireMinted(). Delete the variable tokenType and use
_tokenTypes[tokenId] instead.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The redundant code was removed.

I03. Disabled Solidity Optimizer

Disabled Solidity optimizer increases the overall Gas cost.

Path: ./contracts/*.config

Recommendation: Enable the Solidity compiler optimizer to minimize
the size of the code and the cost of execution via inline operations,
deployments costs, and function call costs.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The code is deployed via Remix IDE, in which the
optimizer was enabled.

I04. State Variables Can Be Constant

Compared to regular state variables, the Gas costs of constant and
immutable variables are much lower. The following variables are set
only once during deployment time, hence they can be set constant to
save not only storage space, but the Gas Costs as well.

// token Name

string private _name;

// token Symbol

www.hacken.io
20

string private _symbol;

Path: ./v2/contracts/SoulSocietySBT.sol: _name, _symbol.

Recommendation: Use constant keywords on state variables to decrease
Gas costs.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The variables were set as constants.

I05. Redundant onlyOwner Requirements Are Not Gas Efficient

The internal functions _safeMint(), _setGrowthToZero() and _growUp()
are only called by mint(), burn() and growUp() respectively.

However, all these six functions use an onlyOwner modifier:

function mint(address to_, uint256 tokenType_) public virtual onlyOwner

returns(uint256) {

function _safeMint(address to_, uint256 tokenType_) internal virtual onlyOwner

returns(uint256) {

function burn(address to_, uint256 tokenId_) public onlyOwner {

function _setGrowthToZero(address to_, uint tokenId_) private onlyOwner {

function growUp(address to_, uint256 tokenId_) public onlyOwner

returns(uint256) {

function _growUp(address to_, uint256 tokenId_) internal onlyOwner

returns(uint256) {

It is not necessary to call onlyOwner in the internal functions,
since that check will be executed in the public functions that call
them. Thus, there is an unnecessary expense of Gas.

Path: ./v2/contracts/SoulSocietySBT.sol: _safeMint(),
_setGrowthToZero(), _growUp().

Recommendation: Remove the onlyOwner modifier from the internal
functions _safeMint(), _setGrowthToZero() and _growUp().

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The onlyOwner modifier was removed from the reported
functions.

I06. Lack Of Clear Code In _growUp() Function

In _growUp, the increase of _tokenGrowths is mixed with the
declaration of tokenGrowth

www.hacken.io
21

uint256 tokenGrowth = _tokenGrowths[tokenId_] += 1;

It is recommended to separate the increase of _tokenGrowths from the
declaration of tokenGrowth in order to make the code cleaner and
avoid any confusion:

function _growUp(address to_, uint256 tokenId_) internal onlyOwner

returns(uint256) {

requireMintedOf(to, tokenId_);

tokenGrowths[tokenId] += 1

uint256 tokenGrowth = _tokenGrowths[tokenId_];

emit GrowUp(to_, tokenId_, tokenGrowth);

return tokenGrowth;

}

Path: ./v2/contracts/SoulSocietySBT.sol: _growUp().

Recommendation: Separate the increase of _tokenGrowths from the
declaration of tokenGrowth.

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The code was updated as recommended.

I07. Style Guide Violation: Order Of Layout

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

www.hacken.io
22

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Path: ./v2/contracts/SoulSocietySBT.sol

Recommendation: It is recommended to change the order of layout to
fit the Official Style Guide.

References: Solidity Style Guide

Found in: fe50b45

Status: Fixed (Revised commit: 30a1f36)

Resolution: The layout was updated to comply with the Solidity Style
Guide.

www.hacken.io
23

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout
https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
24

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
25

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
26

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master
/

Commit fe50b45

Whitepaper Link

Requirements Link

Technical
Requirements README

Contracts File: hon/contracts/HonContract.sol
SHA3: 10e0e1a68f2781de55c5b424d0cfb52fc08748713b1f25d022ac957b16bea0a8

File: v2/contracts/SoulSocietySBT.sol
SHA3: 4ac9a642185524e665283109d6d4e3405051eb3be066a649b361cd506ff0e6e4

File: v2/contracts/interfaces/ISoulSocietyEnumerableSBT.sol
SHA3: 999c2e3e59f9c6556485aee4ba4d189c26881b97a561b558ea97e2b270d1cbeb

File: v2/contracts/interfaces/ISoulSocietySBT.sol
SHA3: ebd22b75ec2dd5af51818289b05049291049108099904e5a4423512e6d68d63a

File: v2/contracts/interfaces/ISoulSocietySBTErrors.sol
SHA3: 52a55b050926c734e740408f557f429c082c544cfa7cd20faf1c61c1280cd233

File: v2/contracts/interfaces/ISoulSocietySBTMetadata.sol
SHA3: c51ad1618a40477207fbc4ea76802d3465f05c4ab9a096a4f041c90420bdd940

Second review scope

Repository https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master
/

Commit 30a1f36

Whitepaper Link

Requirements Link

Technical
Requirements README

Contracts File: hon/contracts/HonContract.sol
SHA3: 06b8459db582b9b8a2ef02fa170b5e78a7ce08cb827e62be4cebfef3fd8074cc

File: v2/contracts/SoulSocietySBT.sol
SHA3: 52daaaf09ec4d28b2f7ba5c0d05610872417010a8351bf8e5155d06fef2e5101

File: v2/contracts/interfaces/ISoulSocietyEnumerableSBT.sol

www.hacken.io
27

https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master/
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master/
https://www.soulsociety.gg/#section-main
https://docs.soulsociety.gg/soul-society/soul-society/overview
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/blob/master/README.md
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master/
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master/
https://www.soulsociety.gg/#section-main
https://docs.soulsociety.gg/soul-society/soul-society/overview
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/blob/master/README.md

SHA3: 94dfd1fd605d393abb431935ba66109faf06d563428e98ad5ef9afd095c20a95

File: v2/contracts/interfaces/ISoulSocietySBT.sol
SHA3: e06668309b6b53cf3b0b10f821be3ef4c7b2b11dc7fc11df2e645fd23d339df9

File: v2/contracts/interfaces/ISoulSocietySBTErrors.sol
SHA3: 9d963e089c4ef0c70bf24581d9f5b4e6804028d07a6bdb1e99df09380796b3ac

File: v2/contracts/interfaces/ISoulSocietySBTMetadata.sol
SHA3: 6c643affd372db919f5e924d991ca456bff6b2cbcd593923ab546d40f03320fe

Third review scope

Repository https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master
/

Commit 13f46a1

Whitepaper Link

Requirements Link

Technical
Requirements README

Contracts File: hon/contracts/HonContract.sol
SHA3: 06b8459db582b9b8a2ef02fa170b5e78a7ce08cb827e62be4cebfef3fd8074cc

File: v2/contracts/SoulSocietySBT.sol
SHA3: 27a63f26d0a750ecf1ee06e6adde8fe3517db0ee40deaa019c772d3f0b6786fe

File: v2/contracts/interfaces/ISoulSocietyEnumerableSBT.sol
SHA3: 94dfd1fd605d393abb431935ba66109faf06d563428e98ad5ef9afd095c20a95

File: v2/contracts/interfaces/ISoulSocietySBT.sol
SHA3: e06668309b6b53cf3b0b10f821be3ef4c7b2b11dc7fc11df2e645fd23d339df9

File: v2/contracts/interfaces/ISoulSocietySBTErrors.sol
SHA3: 9d963e089c4ef0c70bf24581d9f5b4e6804028d07a6bdb1e99df09380796b3ac

File: v2/contracts/interfaces/ISoulSocietySBTMetadata.sol
SHA3: 6c643affd372db919f5e924d991ca456bff6b2cbcd593923ab546d40f03320fe

Fourth review scope

Repository https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/768497
9dab221d52ad4020313269b8cb93136cca

Commit 76d55f5

Whitepaper Link

Requirements Link

Technical
Requirements README

www.hacken.io
28

https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master/
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/master/
https://www.soulsociety.gg/#section-main
https://docs.soulsociety.gg/soul-society/soul-society/overview
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/blob/master/README.md
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/7684979dab221d52ad4020313269b8cb93136cca
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/7684979dab221d52ad4020313269b8cb93136cca
https://www.soulsociety.gg/#section-main
https://docs.soulsociety.gg/soul-society/soul-society/overview
https://github.com/SoulSocietyDev/soulsociety-sbt-contract/tree/7684979dab221d52ad4020313269b8cb93136cca#readme

Contracts File: ./hon-contract/src/HonContract.sol
SHA3: 5516d042addbe4aa3be1cedc28a40a5014c68e710b09e56a2725bf376dfc47f2

File: ./sbt-contract/src/SoulSocietySBT.sol
SHA3: 27e4ca2fff68c209d60a9ce556981aaac96b4eede3eff0375a8ad34143f3cefe

File: ./sbt-contract/src/interfaces/ISoulSocietyEnumerableSBT.sol
SHA3: ad281fab5bcc9a73ad5139424ab50939673a815f6c6e0e1c5580d8255a90775e

File: ./sbt-contract/src/interfaces/ISoulSocietySBT.sol
SHA3: e06668309b6b53cf3b0b10f821be3ef4c7b2b11dc7fc11df2e645fd23d339df9

File: ./sbt-contract/src/interfaces/ISoulSocietySBTErrors.sol
SHA3: 9d963e089c4ef0c70bf24581d9f5b4e6804028d07a6bdb1e99df09380796b3ac

File: ./sbt-contract/src/interfaces/ISoulSocietySBTMetadata.sol
SHA3: 0f5b28f4c92f57baf6c2e1adc89458ac18012a290a9347870a1a5b02569ad935

www.hacken.io
29

