
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Vaultka
Date: 10 November, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Vaultka

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OÜ

Tags ERC20 token; Staking;

Platform EVM

Language Solidity

Methodology Link

Website https://www.vaultka.com/

Changelog
17.08.2023 – Initial Review
03.10.2023 - Second Review
10.11.2023 - Update on the Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.vaultka.com/

Table of contents
Introduction 5
System Overview 5
Executive Summary 6
Risks 7
Findings 9

Critical 9
C01. Denial Of Service 9
C02. Race Condition 9
C03. Requirements Violation 9
C04. Highly Permissive Role Access 10
C05. Unverifiable Logic 10
C06. Data Consistency 11

High 11
H01. Highly Permissive Owner Access 11
H02. Undocumented Functionality; Highly Permissive Role Access 11
H03. Missing Validation 12
H04. Requirements Violation 12
H05. Undocumented Functionality 13
H06. Lost Claimable Funds 13
H07. Highly Permissive Role Access 13
H08. Unfinalized Code 14
H10. Undocumented Functionality 14
H11. Loss of Funds 15
H12. Locked Funds 15
H13. Requirements Violation 16

Medium 16
M01. Contradiction 16
M02. Highly Permissive Role Access 16
M03. Contradiction 17
M04. Undocumented Functionality 17
M05. Undocumented Functionality 18
M06. Undocumented Functionality 18
M07. Undocumented Functionality 18
M08. Highly Permissive Role Access 19
M09. Best Practice Violation - Checks-Effects-Interactions Pattern 19
M10. Highly Permissive Owner Access 19
M11. Undocumented Functionality 20
M12. Division Before Multiplication 20
M13. Data Consistency 21
M14. Uncontrolled Loop of Storage Interactions; DOS 21
M15. Requirements Violation 22
M16. Data Consistency; Denial Of Service 22
M17. Data Consistency; MissingCheck 23
M18. Inefficient Gas Model 23

www.hacken.io
3

H09. Highly Permissive Role Access 23
Low 24

L01. Missing Zero Address Validation 24
L02. Style Guide Violation 25
L03. Redundant SafeMath 25
L04. Inefficient Gas Model 25
L05. Best Practice Violation 26
L06. Redundant View Functions 26
L07. Inefficient Gas Model; Redundant State Variable Access 27
L08. Unused Variable 27
L09. Redundant SafeERC20 27
L10. Inefficient Gas Model 28
L11. Inefficient Gas Model 28

Informational 28
I01. Unindexed Events 28
I02. Functions Should Be Declared External 29
I03. State Variables Can Be Declared Immutable 29
I04. Long Uint Literals 30
I05. Missing Events for Critical Value Updates 30
I06. Best Practice Violation; Non-Explicit Variable Unit Sizes 31
I07. Reference To Other Contracts 31
I09. Variables That Can Be Set Constant 31
I10. Typo 31

Disclaimers 32
Appendix 1. Severity Definitions 33

Risk Levels 33
Impact Levels 34
Likelihood Levels 34
Informational 34

Appendix 2. Scope 35

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by Vaultka (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Vaultka is a staking protocol with the following contracts:
● VKA Token: ERC20 token with 100,000,000 max supply
● esVKA Token: token used to represent escrowed VKA token that can be

exchanged 1:1 for VKA tokens or 0.5:1 depending on the staking time
decided by the user

● DualStaking: contract to stake VKA and esVKA tokens for rewards
● SingleStaking: contract to stake POD tokens and earn esVKA rewards

primarily
● RewarderPerSec: to calculate the reward rate for the staking
● Claim: Allows users to claim their rewards
● Treasury: To concentrate the rewards accrued by the protocol and

allow revenue split
● Boosting: To boost the staking rewards for VKA stakers

Privileged roles
● The owner of DualStaking, SingleStaking, Treasury, Claim, Boosting,

Vester3Months, Vester12Months and esVKAToken will be able to access
the onlyOwner() functions and modify state variables inside those
contracts

● The handler of the Vester3Months and Vester12Months will be able to
access the functions deposit and withdraw for accounts

● The handler of the esVKAToken will be able to transferFrom and burn
esVKATokens

● The handler of Claim will be able to pause the contract, call the
functions notifyClaimable(), notifyAdditionalClaimable() and
transferExpired()

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 1 out of 10.

● Functional requirements are provided, but invalidated by the change
of code in the deployment stage.

● Technical description is not provided.
● The development environment is described.
● NatSpec is provided.

Code quality
The total Code Quality score is 5 out of 10.

● The development environment is configured.
● Best Practices are not followed.

Test coverage
Code coverage of the project is 70.85% (branch coverage)

● Tests are not sufficient.

Security score
As a result of the audit, the code contains 1 medium severity issue. The
security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 6.4. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

17 August 2023 11 18 14 6

03 October 2023 1 3 3 0

10 November 2023 0 1 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Risks

● The client deployed unchecked code to the blockchain and
subsequently initiated a Token Generation Event. The VKAToken.sol
contract was submitted for review and then modified prior to
deployment. (Contract address on Arbitrum:
0xAFccb724e3aec1657fC9514E3e53A0E71e80622D)."

Additionally, the client inaccurately and publicly claimed that
Hacken audited the code when they made changes to the deployed
code.

Given that the client proceeded with the Token Generation Event,
misrepresented the audit status by Hacken, and altered the code
pre-deployment from what was submitted for the audit raises
concerns. These actions compromise the relevance of the audit and
raise questions about the assurance against future modifications
and deployments of other contracts.

● Centralized protocol with upgradeable contracts

● There are out of scope contracts and the client cannot provide the
code needed to verify the correctness of the contract in the scope,
this lowers severely the security of this audit.

● Out of scope contract LeveragedVault has an important role of token
burning, but it is not provided in the codebase.

● withdrawalTimeLock can change after the user has deposited funds

● In the DualStaking contract, some rewards are provided as USDC
tokens. The rewards are calculated using 18 decimals, but USDC has
only 6 decimals on certain chains.

● The Owner of esVKAToken has the potential to whitelist who can
transfer or receive tokens using setRecipientAllowed(). This can
effectively lock tokens in a wallet if isRecipientAllowed[_handler]
is set to false.

● The function safeesVKATransfer() in SingleStaking.sol will send to
the users as many tokens as available in the contract. In case there
are not enough tokens, the user will have to wait until the protocol
managers refill the contract with more tokens.

● In the contract VaultkaTreasury, the function withdrawFees() was
added in order to recover the leftover tokens once the project
becomes obsolete. However, the function can be used at any moment to
withdraw the fees collected for Protocol, Buyback or DualStaking.

www.hacken.io
7

Findings

Critical

C01. Denial Of Service

Impact High

Likelihood High

The claim contract has a pause function, but no function to unpause
the contract.

Path: /contracts/Claim.sol

Recommendation: Remove the possibility to pause or add the
possibility to unpause.

Found in: 67124d3

Status: Fixed (3407a61).

C02. Race Condition

Impact High

Likelihood High

There are 2 calls in allocateRevenueSplit() to the UniswapV2Router
with amountOutMin set to 0, this will cause a race condition and the
swap will be frontrunned.

Path: /contracts/Treasury.sol : allocateRevenueSplit()

Recommendation: Use an oracle to know the amountOutMin desired.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

The solution proposed does not use oracles, it uses the
expectAmountsOut variable that could still be susceptible to attacks,
but it is much less likely, the variable uniswapSlippage should be
kept on a reasonable value for this solution to not create problems
and the amounts of supportedAssets should be kept under a certain
amount to avoid a DoS vulnerability.

C03. Requirements Violation

Impact High

Likelihood High

The documentation states that there is a maximum amount of VKA tokens
and that esVKA tokens can be swapped for VKA tokens 1:1 in the 12

www.hacken.io
8

months vester contract, this contradicts the maximum supply for the
VKA tokens.

Path: /contracts/Tokens/VKAToken.sol

Recommendation: Fix the mismatch between the code and the
documentation.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

The maximum supply cannot be checked since it is a variable passed in
the constructor of both the esVKAToken and the VKAToken, the owner of
the protocol needs to verify that the maximum supply is compliant to
the functional requisites.

C04. Highly Permissive Role Access

Impact High

Likelihood High

The handler can send tokens from any account with the transferFrom()
function.

Protocols should not be able to access users’ funds without their
permission.

Path: /contracts/Tokens/esVKAToken.sol transferFrom();

Recommendation: Document properly the behavior or remove it.

Found in: 67124d3

Status: Fixed (3407a61).

C05. Unverifiable Logic

Impact High

Likelihood High

In the SingleStaking.sol contract, there is an interaction with a
contract implementing ILeverageVault that is out of scope.

In RewarderPerSec.sol, the contract implementing IMasterChefVaultka
interface is used, but it is out of scope.

Paths:
./contracts/Staking/SingleStaking.sol
./contracts/Staking/RewarderPerSec.sol

www.hacken.io
9

Recommendation: Add the unverifiable logic to the scope.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

The client cannot provide the code needed to verify the correctness
of the contract in the scope, this lowers severely the security of
this audit.

C06. Data Consistency

Impact High

Likelihood High

The function notifyAdditionalClaimable() updates the value
hasClaimable[user][currentId] instead of hasClaimable[user][id],
resulting in inconsistent data being stored and unexpected behavior.

Path: ./contracts/Claim.sol: notifyAdditionalClaimable().

Recommendation: Use id instead of currentId when updating
hasClaimable.

Found in: 3407a61

Status: Fixed (3407a61).

High

H01. Highly Permissive Owner Access

Impact High

Likelihood Medium

The handler can use the function claimForAccount() to manipulate the
claim of users of the platform

Paths: /contracts/Vesting/Vester3Months.sol : claimForAccount();

/contracts/Vesting/Vester12Months.sol : claimForAccount();

Recommendation: Document or remove the functionality.

Found in: 67124d3

Status: Fixed (3407a61).

H02. Undocumented Functionality; Highly Permissive Role Access

Impact High

www.hacken.io
10

Likelihood Medium

The owner could set a very small time in the Claim.sol contract and
withdraw all the expired transfers, or a very long time and
effectively lock the rewards forever.

Additionally, users have the same time constraint
(claimable.startTime + claimable.claimablePeriod) to claim their
rewards than the handler to retrieve them. Hence, there is no
guarantee the users will get their rewards.

Path: /contracts/Claim.sol : transferExpired();

Recommendation: Add reasonable limits to claimable period, and add
some extra time for the users to be able to get their tokens before
the function transferExpired() can be called.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

A variable called MIN_CLAIMABLE_PERIOD has been added, the users will
have a minimum of 7 days and a maximum of 730 days to claim.

H03. Missing Validation

Impact High

Likelihood Medium

tokenPerSec should not be higher than 1e30, in the function
setRewardRate() it is possible to set it higher because there is a
missing validation.

setrewardrate allows to break the rule of setting tokenpersec > 1e30

Path: /contracts/Staking/RewarderPerSec : setRewardRate();

Recommendation: Add the validation.

Found in: 67124d3

Status: Fixed (3407a61).

H04. Requirements Violation

Impact High

Likelihood Medium
The documentation states that esVKA is a non transferable token, this
is not true, the token presents transfer functions.

Path: /contracts/Tokens/esVKAToken.sol : _transfer(), transfer(),
fransferFrom();

www.hacken.io
11

Recommendation: Fix the mismatch between the documentation and the
code.

Found in: 67124d3

Status: Fixed (3407a61).

H05. Undocumented Functionality

Impact High

Likelihood Medium

In the Vester3Months contract, a user could deposit esVKA token, get
slashed and withdraw half of the deposited tokens, this functionality
is not documented.

Path: /contracts/Vesting/Vester3Months.sol : deposit(), withdraw();

Recommendation: Do not slash the reward unless it is withdrawn as VKA
tokens.

Found in: 67124d3

Status: Fixed (3407a61).

H06. Lost Claimable Funds

Impact High

Likelihood Medium

In the Claim.sol contract, if the notifyClaimable() function gets
call on someone that has already claimable funds, the old claimable
funds will be overwritten.

Path: /contracts/Claim.sol : notifyClaimable();

Recommendation: Add the rewards instead of overriding it.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

Client Response: “the claimableBalance mapping includes a user and
id, each id representing a different reward campaign. Thus, the
claimable funds are not overwritten but stored in a different id”.

H07. Highly Permissive Role Access

Impact High

Likelihood Medium

In the SingleStaking.sol contract a fee of 100% could be applied.
www.hacken.io

12

In Treasury.sol, fee, dualStakingFee, protocolFee and buyBackFee have
no limits.

Paths:
./contracts/Treasury.sol: setFee(), setProtocolFees().

Recommendation: Limit the fees to a reasonable number.

Found in: 67124d3

Status: Mitigated (Intended behavior) (3407a61).

H08. Unfinalized Code

Impact Medium

Likelihood High

The code has a lot of notes and todos with unfinished code and
proposed functionalities that are not implemented.

Paths: /contracts/Staking/SingleStaking.sol : updatePool(),
esVKAPerSec;
/contracts/Staking/DualStaking.sol : claimProtocolFee();
/contracts/Tokens/VKAToken.sol : constructor();

Recommendation: Finalize the unfinalized code.

Found in: 67124d3

Status: Fixed (3407a61).

H10. Undocumented Functionality

Impact High

Likelihood Medium
The state variable ACC_TOKEN_PRECISION in RewarderPerSec is 1e36 but
there is no reason for the value to be that high, and the original
MasterChef contract uses a different value.

In SingleStaking, ACC_ESVKA_PRECISION has 1e18, which is a newly
different value.

There is no test provided to make sure this value keeps a consistency
when used during the code.

There is no additional documentation or information about the order
of magnitude of input or stored variables’ decimals, so it is very
difficult to determine this issue.

Path: ./contracts/Staking/RewarderPerSec.sol: ACC_TOKEN_PRECISION.

www.hacken.io
13

Recommendation: It is recommended to provide additional information
and tests to make sure the decimals consistency is maintained.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

1e36 was changed to 1e18, but no explanation was given to why the
1e36 was there in the first place, this issue is considered fixed,
but without a proper documentation it is not possible to ensure that
everything in the code follows the functional requirements.

H11. Loss of Funds

Impact High

Likelihood Medium

The function safeesVKATransfer() will send to the users as many
tokens as available in the contract, but in case there are not enough
tokens, it will send them less than they are entitled.

Path: ./contracts/Staking/SingleStaking.sol: safeesVKATransfer().

Recommendation: It is recommended to implement a check to make sure
the users will receive all tokens they are owed or to record the
missing tokens in the protocol so that those tokens can be received
later.

Found in: 67124d3

Status: Fixed (3407a61).

H12. Locked Funds

Impact High

Likelihood Medium

In allocateRevenueSplit(), a portion of the funds is kept in the
contract as feesCollectedForBuyback.

However, when the protocol is no longer used, the funds will get
stuck since there is no method to retrieve the leftover funds.

Path: ./contracts/Treasury.sol: allocateRevenueSplit().

Recommendation: Consider adding a method to retrieve leftover funds.

Found in: 67124d3

Status: Fixed (3407a61).

www.hacken.io
14

H13. Requirements Violation

Impact High

Likelihood Medium

In _getNextClaimableAmount(), there are missing time checks to make
sure that:

- timeDiff cannot be higher than the total vesting time
- the claim time starts after the timestamp set by the protocol,

not before
- the claim time ends no longer than the timestamp set by the

protocol

Due to the lack of said checks, timeDiff can be higher than expected,
resulting in a higher claimableAmount than expected.

Paths:
./contracts/Vesting/Vester3Months.sol: _getNextClaimableAmount().
./contracts/Vesting/Vester12Months.sol: _getNextClaimableAmount().

Recommendation: Implement the necessary checks to make sure the
claimable period follows the recommended checks or equivalent.

Found in: 67124d3

Status: Mitigated (3407a61)

(Intended behavior, Vaultka team takes full responsibility for this
feature.)

Medium

M01. Contradiction

Impact Medium

Likelihood Medium
The vesting duration is a variable instead of a constant of 3 or 12
months.

Path: /contracts/Vesting/Vester3Months.sol : vestingDuration;
/contracts/Vesting/Vester12Months.sol : vestingDuration;

Recommendation: Fix the mismatch.

Found in: 67124d3

Status: Fixed (3407a61).

M02. Highly Permissive Role Access

Impact High

www.hacken.io
15

Likelihood Medium

The owner can withdraw reward tokens from the Claim contract using
the withdrawToken() function.

Protocols should not be able to access users’ funds without their
permission.

Path: ./contracts/Claim.sol : withdrawToken().

Recommendation: Limit the functionality so that user rewards cannot
be affected or add a time interval so that users can have some time
to withdraw their tokens before the transfer is triggered.

Since this is a highly sensitive function, it is recommended to use
multi-signature for the owner account.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

Client Response: “The claim contract is designed to distribute
rewards to users on a nominative basis. We don't “steal” users’ funds
as it is our plain right to distribute rewards or not, and users do
not have any funds staked”.

M03. Contradiction

Impact Medium

Likelihood Medium

There is a comment in notifyRewardAmount() in the DualStaking.sol
contract that explains the math that is not followed later.

Path: /contracts/Staking/DualStaking.sol : notifyRewardAmount();

Recommendation: Fix the mismatch.

Found in: 67124d3

Status: Fixed (3407a61).

M04. Undocumented Functionality

Impact Medium

Likelihood Medium

The case where there is no staked amount in the DualStaking.sol
contract is never documented, in that case, the rewards sent with the
receiveProtocolFees() function are not accounted for and therefore
the transfer makes no sense.

www.hacken.io
16

Path: /contracts/Staking/DualStaking.sol : receiveProtocolFees();

Recommendation: Consider providing additional documentation to
explain this case. Additionally, the transfer should not be performed
if accUSDCperTokens is not updated.

Found in: 67124d3

Status: Fixed (3407a61).

M05. Undocumented Functionality

Impact Medium

Likelihood Medium

Document what should happen in the function unstakeAndLiquidate() in
case the rewarder address is 0 and the pool does not allow double
rewards.

Path: /contracts/Staking/SingleStaking.sol : unstakeAndLiquidate();

Recommendation: Remove the functionality or mention it in
documentation.

Found in: 67124d3

Status: Fixed (3407a61).

M06. Undocumented Functionality

Impact Medium

Likelihood Medium

The RewarderPerSec contract implements an interface of itself, it is
not clear if IRewarder is the same contract as RewarderPerSec.

Path: /contracts/Staking/RewarderPerSec

Recommendation: Remove the functionality or mention it in
documentation.

Found in: 67124d3

Status: Fixed (3407a61).

M07. Undocumented Functionality

Impact Medium

Likelihood Medium
esVKA tokens should not be transferable, they are, but to be
transferred in the vester the user needs to be allowed.

Path: /contracts/Tokens/esVKATokens.sol : _transfer();
www.hacken.io

17

Recommendation: Remove the functionality or mention it in
documentation.

Found in: 67124d3

Status: Mitigated (Intended Behavior) (3407a61).

M08. Highly Permissive Role Access

Impact High

Likelihood Low

The owner can withdraw esTokens from the 12 month vester contract.

Path: /contracts/Vesting/Vester12Months.sol withdrawToken();

Recommendation: Limit the functionality.

Found in: 67124d3

Status: Fixed (3407a61).

M09. Best Practice Violation - Checks-Effects-Interactions Pattern

Impact High

Likelihood Low

State variables are updated after the external calls to the token
contract.
As explained in Solidity Security Considerations, it is best practice
to follow the checks-effects-interactions pattern when interacting
with external contracts to avoid reentrancy-related issues.

Paths:
./contracts/Staking/RewarderPerSec : oneVKAReward();
./contracts/Staking/DualStaking : getReward(), notifyRewardAmount(),
receiveProtocolFees();
./contracts/SingleStaking: updatePool(), deposit(),
updateBoostMultiplier().
./contracts/Claim.sol: notifyClaimable().
./contracts/Treasury.sol: allocateRevenueSplit().
./contracts/Vesting/Vester3Months.sol: withdraw(), _deposit().

Recommendation: Follow the checks-effects-interactions pattern when
interacting with external contracts.

Found in: 67124d3

Status: Fixed (3407a61).

M10. Highly Permissive Owner Access

Impact Medium

www.hacken.io
18

https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern

Likelihood Medium

In the DualStaking.sol contract, there is a withdrawal timelock for
the funds that is not documented nor limited by code; funds might be
locked forever with the current implementation.

Path: /contracts/Staking/DualStaking.sol

Recommendation: Limit the timelock and document it.

Found in: 67124d3

Status: Fixed (3407a61).

M11. Undocumented Functionality

Impact High

Likelihood Low

The withdrawalTimeLock can be updated by the Owner at any moment.
This means a user can stake tokens expecting a certain lock period,
but it can change at any point without users’ notice.

For example, a user can stake some tokens expecting a month duration,
but it can change to one year.

Path: ./contracts/Staking/DualStaking.sol: setWithdrawalTimeLock().

Recommendation: Document this behavior to notify users about the
possibility or implement a system in which this situation is not
possible.

Found in: 67124d3

Status: Fixed (Limited to 48 hours) (3407a61).

M12. Division Before Multiplication

Impact Low

Likelihood High

Since Solidity language does not have floating point numbers,
performing divisions before multiplications results in a loss of
precision.

Paths:
./contracts/Staking/SingleStaking.sol: pendingTokens(), updatePool(),
withdraw(), unstakeAndLiquidate(), updateBoostMultiplier(),
_settlePendingESVKA().

Recommendation: It is recommended to perform divisions after
multiplications to avoid loss of precision.

www.hacken.io
19

https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply

Found in: 67124d3

Status: Fixed (3407a61).

M13. Data Consistency

Impact High

Likelihood Low

When users stake or withdraw tokens into DualStaking contract the
variable accUSDCperTokens is not updated.

As a consequence, new deposits will not decrease the reward per token
in USDC, resulting in unfair rewards and front-running situations
since latest withdrawals will have none.

Additionally, withdrawals will not increase the reward per token in
USDC, and thus the latest users to withdraw will not benefit from it.

Path: /contracts/Staking/DualStaking.sol: stake(), withdraw().

Recommendation: accUSDCperTokens should be updated every time
totalStakedAmount changes or the behavior should be documented.

Found in: 67124d3

Status: Mitigated (3407a61)

Resolution:

Client Response: “Unlike the master-chef style emissions that occur
over a specified timeframe, the USDC fee rewards involve taking a
snapshot at the moment of receiveProtocolFees being called . This
allows users to claim the whole share of rewards at the moment of
receiveProtocolFees being called. As a result, behaviors such as 'new
deposits not diluting the reward per token' and 'withdrawals not
increasing the reward per token' are indeed expected.”

M14. Uncontrolled Loop of Storage Interactions; DOS

Impact High

Likelihood Low

The function massUpdatePools() can become unusable if the stored
variable poolInfo increases enough.

The number of operations that must be performed in order to get all
the transactions a user performs depends on stored data, and it can
reach the block Gas limit. Eventually, it can block all functions
interacting with massUpdatePools(), resulting in a Denial of Service.

www.hacken.io
20

A solution for this issue is to add indexes as function parameters to
interact with a given amount of pools instead of all at the same
time.

Path: ./contracts/Staking/SingleStaking.sol: massUpdatePools().

Recommendation: It is recommended to implement a function to update
all pools with fixed array indexes in case the original
massUpdatePools() will fail for excess Gas. Alternatively, add the
bounds in massUpdatePools() directly.

Found in: 67124d3

Status: Mitigated (3407a61).

Resolution:

Client Response: “In implementation we will have a small number of
pools.”

M15. Requirements Violation

Impact High

Likelihood Low

The function decreaseRewardRate() is called weekly according to the
provided information in its NatSpec, but there is no enforcement in
the code (e.g. time check).

Path: ./contracts/Staking/RewarderPerSec.sol: decreaseRewardRate();

Recommendation: Update the code or documentation so that they match.

Found in: 67124d3

Status: Fixed (3407a61).

M16. Data Consistency; Denial Of Service

Impact High

Likelihood Low

assetPath in the addAsset() function in the Treasury.sol contract
will be overwritten with the wrong path if the variable _pathToUSDC
has more than 1 element and the variable _path is true.

Path: ./contracts/Treasury.sol : addAsset();

Recommendation: Do not overwrite the variable, add the paths one
after the other.

Found in: 67124d3

Status: Mitigated (3407a61).

www.hacken.io
21

Resolution:

Client Response: “Overwriting the path is an intended behavior.”

M17. Data Consistency; MissingCheck

Impact High

Likelihood Low

In notifyAdditionalClaimable(), there is no check to make sure the id
exists.

As a consequence, given the case this function is called for an id
before using notifyClaimable(), there will be inconsistencies with
the recorded data and result in unexpected behavior.

Path: ./contracts/Claim.sol : notifyAdditionalClaimable();

Recommendation: Consider implementing a check to make sure the id
exists.

Found in: 67124d3

Status: Fixed (3407a61).

M18. Inefficient Gas Model

Impact Medium

Likelihood Medium

In removeAsset(), the array supportedAssets is not reduced when an
asset is removed. Instead, the element of the array corresponding to
the removed asset is substituted by address(0).

As a consequence, the array keeps getting bigger and more expensive
to read without benefit, since the asset position does not affect
other places of the code.

Path: ./contracts/VaultkaTreasury.sol : removeAsset();

Recommendation: Consider removing assets instead of writing
address(0), by substituting it for the last element of the array and
then using pop().

Found in: 67124d3

Status: Fixed (3407a61).

H09. Highly Permissive Role Access

Impact Medium

Likelihood Medium

www.hacken.io
22

The owner can withdraw reward tokens and USDC tokens from the
DualStaking.sol contract using the recoverERC20() function.

Protocols should not be able to access users’ funds without their
permission.

Path: /contracts/Staking/DualStaking : recoverERC20();

Recommendation: Limit the functionality so that user rewards cannot
be affected or add a time interval so that users can have some time
to withdraw their tokens before the transfer is triggered.

Since this is a highly sensitive function, it is recommended to use
multi-signature for the owner account.

Found in: 67124d3

Status: Acknowledged

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Paths:
./contracts/Staking/SingleStaking.sol : constructor(), dev(),
setTreasuryAddr(), setInvestorAddr(), udateBoostMultiplier().
./contracts/Treasury.sol : initialize(), setUniRouters(), addAsset(),
setBuyBackpath().
./contracts/Staking/DualStaking.sol: constructor().
./contracts/Staking/RewarderPerSec.sol: onesVKAReward(),
pendingTokens().
./contracts/Boosting.sol: getBoostMultiplier(),
getBoostMultiplierWithDeposit().
./contracts/Claim.sol: setHandler(), notifyClaimable(),
notifyAdditionalClaimable(), transferExpired().
./contracts/Vesting/Vesting3Months.sol: constructor, setHandler(),
depositForAccount(), claimForAccount(), claimable().
./contracts/Vesting/Vesting3Months.sol: constructor, setHandler(),
depositForAccount(), claimable().

Recommendation: Implement zero address checks.

Found in: 67124d3

Status: Fixed (3407a61).

www.hacken.io
23

L02. Style Guide Violation

Impact Low

Likelihood Low

The provided projects should follow the official guidelines.
Especially pay attention to ‘Order of Layout’. Following the Solidity
Style guidelines facilitates conde comprehension, increases
readability and makes supporting code easier. The following rules
have been violated:

- variables names must be in mixed case
- the order of functions should be followed

Path: /contracts/*

Recommendation: Follow the official Solidity guidelines.

Found in: 67124d3

Status: Fixed (3407a61).

L03. Redundant SafeMath

Impact Low

Likelihood Low

Using the SafeMath library on a contract that uses solidity 0.8.0 and
higher is an inefficient Gas model because the compiler already
handles underflows and overflows.

Path: /contracts/*

Recommendation: Remove the library and use the standard math
operators “+-*/” instead of safemath’s functions “sub,mul,div…”.

Found in: 67124d3

Status: Fixed (3407a61).

L04. Inefficient Gas Model

Impact Low

Likelihood Low

The updatePool() function gets called twice in the deposit()
function.

Path: /contracts/Staking/SingleStaking.sol : deposit();

www.hacken.io
24

https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Recommendation: Limit the calls of the updatedPool().

Found in: 67124d3

Status: Fixed (3407a61).

L05. Best Practice Violation

Impact Low

Likelihood Low

It is a best practice to check the return values for token transfers.

Paths:
./contracts/Staking/SingleStaking.sol : updatePool(),
safeesVKATransfer();
./contracts/Treasury.sol: allocateRevenueSplit().

Recommendation: Use SafeTransfer to transfer tokens.

Found in: 67124d3

Status: Fixed (3407a61).

L06. Redundant View Functions

Impact Low

Likelihood Low

The following functions return state variables that are already
public, and thus can already be read without creating additional
functions.

Redundant code should be removed from the contracts for
simplification and decrease of the contract deployment Gas cost.

Paths:
./contracts/Staking/DualStaking.sol : balanceOf(), balanceOfTokens(),
totalStaked(), stakedAmount().
./contracts/Tokens/esVKAToken.sol: balanceOf(), allowance().
./contracts/Treasury.sol: getAssets().
./contracts/Vesting/Vester3Months.sol: balanceOf(), getTotalVested().
./contracts/Vesting/Vester12Months.sol: balanceOf(),
getTotalVested().

Recommendation: Consider removing redundant functions.

Found in: 67124d3

Status: Fixed (3407a61).

www.hacken.io
25

L07. Inefficient Gas Model; Redundant State Variable Access

Impact Medium

Likelihood Low

The state variable dr.debtUSDC is updated twice when calling stake()
and withdraw(), since it has been already set in claimProtocolFee(),
spending more Gas.

Path: /contracts/Staking/DualStaking.sol : stake(), withdraw(),
claimProtocolFee();

Recommendation: Consider removing the storage access from stake() and
withdraw().

Found in: 67124d3

Status: Fixed (3407a61).

L08. Unused Variable

Impact Medium

Likelihood Low

The call to get bonusTokenSymbol is unused since the function
rewarderBonusTokenSymbol() does not return the symbol.

Path: /contracts/Staking/SingleStaking.sol: pendingTokens(),
rewarderBonusTokenSymbol().

Recommendation: Consider removing the bonusTokenSymbol variable in
pendingTokens() and the returned variable with the same name in
rewarderBonusTokenSymbol().

Found in: 67124d3

Status: Fixed (3407a61).

L09. Redundant SafeERC20

Impact Low

Likelihood Low

Using the SafeERC20 library on a token contract is unnecessary.

Path: /contracts/Tokens/esVKAToken.sol

Recommendation: Remove the library.

Found in: 67124d3

Status: Fixed (3407a61).

www.hacken.io
26

L10. Inefficient Gas Model

Impact Low

Likelihood Low

In notifyClaimable(), the state variable currentId is read multiple
times for a lot of Gas, instead of using a memory variable.

In allocateRevenueSplit(), the state variable supportedAssets[i] is
read multiple times for a lot of Gas, instead of using a memory
variable.

Paths:
./contracts/Claim.sol: notifyClaimable().
./contracts/Treasury.sol: allocateRevenueSplit().

Recommendation: Consider creating a memory variable for currentId to
be used for all cases in which that variable is read.

Found in: 67124d3

Status: Fixed (3407a61).

L11. Inefficient Gas Model

Impact Low

Likelihood Medium

In notifyClaimable() and notifyAdditionalClaimable(), the array
_users is read at every iteration of the for loop to calculate its
length.

In claimMultiple(), a similar situation appears with _ids.

By caching the length, creating a new memory variable length to be
used within the iteration, it is possible to save Gas.

Paths:
./contracts/Claim.sol: notifyClaimable(),
notifyAdditionalClaimable().

Recommendation: It is recommended to cache the length of said arrays.

Found in: 67124d3

Status: Fixed (3407a61).

Informational

I01. Unindexed Events

Having indexed parameters in the events makes it easier to search for

these events using indexed parameters as filters.

www.hacken.io
27

Paths: /contracts/Vesting/Vester3Months.sol Claim(), Deposit(),
Withdraw();

/contracts/Vesting/Vester12Months.sol Claim(), Deposit(), Withdraw();

Recommendation: Use the “indexed” keyword to the event parameters.

Found in: 67124d3

Status: Fixed (3407a61).

I02. Functions Should Be Declared External

In order to save Gas, public functions that are never called in the

contract should be declared as external.

Paths:
./contracts/Staking/DualStaking.sol : totalStaked(), stakedAmount(),
harvest();
./contracts/Staking/SingleStaking.sol : add(), set(),
emergencyWithdraw(), dev(), setDevPercent(), setTreasuryAddr(),
setTreasuryPercent(), setInvestorAddr(), setInvestorPercent(),
updateEmissionRate(), getUserAmonut(), deposit(), withdraw(),
unstakeAndLiquidate(), updateBoostMultiplier().
./contracts/Vesting/Vester3Months.sol : getTotalVested(),
balanceOf(), transfer(), allowance(), approve() ;
./contracts/Vesting/Vester12Months.sol : getTotalVested(),
balanceOf(), transfer(), allowance(), approve(), transferFrom();
./contracts/Boosting.sol : setStakingContracts(),
setMaxBoostPrecision(), getBoostMultiplier(),
getBoostMultiplierWithDeposit();
./contracts/Staking/RewarderPerSec.sol: decreaseRewardRate().
./contracts/Treasury.sol: setesVKAStaking(), setUniRouters(),
setProtocolReserveFund(), setFee(), setProtocolFees(), addAsset(),
removeAsset(), setBuyBackpath(), allocateRevenueSplit().

Recommendation: Use the external attribute for functions never called

from the contract.

Found in: 67124d3

Status: Fixed (3407a61).

I03. State Variables Can Be Declared Immutable

Some variables are assigned a value only in the constructor and never
changed later.

To lower the Gas fees, these variables can be declared as immutable.

Paths:
./contracts/Staking/DualStaking.sol: stakingToken1, stakingToken2,
rewardToken, usdcToken.
./contracts/Staking/SingleStaking.sol: esVKAToken, boostContract,

www.hacken.io
28

startTimestamp.
./contracts/Vesting/Vester3Months.sol: vestingDuration, esToken,
claimableToken.
./contracts/Vesting/Vester12Months.sol: vestingDuration, esToken,
claimableToken.

Recommendation: Declare mentioned variables as immutable.

Found in: 67124d3

Status: Acknowledged

I04. Long Uint Literals

In the VKA and esVKA contracts, there are various uint with long
literals that are not properly separated to aid readability.

Path: ./contracts/Tokens/*

Recommendation: Rewrite the long literals.

Found in: 67124d3

Status: Fixed (3407a61).

I05. Missing Events for Critical Value Updates

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Paths:
./contracts/Staking/DualStaking.sol: setTreasury(),
setWithdrawalTimeLock().
./contracts/RewardsPerSec.sol: constructor() → tokenPerSec.
./contracts/SingleStaking.sol: constructor() → devAddr, treasuryAddr,
investorAddr, esVKAPerSec, devPercent, treasuryPercent,
investorPercent; setLeverageVault(); setDoubleRewardsAsset(),
setDevPercent(), setTreasuryPercent(), setTreasuryAddr();
setInvestorAddr(), setInvestorPercent().
./contracts/Tokens/esVKAToken.sol: setRecipientAllowed(),
setInPrivateTransferMode(), setHandler().
./contracts/Boosting.sol: setStakingContracts(),
setMaxBoosPrecision().
./contracts/Claim.sol: constructor().
./contracts/Treasury.sol: initialize() → uniRouter, fee.
./contracts/Vester/Vester3Months.sol: setHandler().
./contracts/Vester/Vester12Months.sol: setHandler().

Recommendation: Consider emitting events in said functions.

Found in: 67124d3

Status: Acknowledged

www.hacken.io
29

I06. Best Practice Violation; Non-Explicit Variable Unit Sizes

Variable type uint is used without explicitly setting its size.

Path: ./contracts/Staking/DualStaking.sol: pendingRewardsUSDC().

Recommendation: It is a best practice to explicitly set the size of
uint variable types.

Found in: 67124d3

Status: Fixed (3407a61).

I07. Reference To Other Contracts

There are constant references to Joe contracts instead of their own.

Path: ./contracts/Staking/RewardsPerSec.sol.

Recommendation: Consider updating the references to the own protocol
instead of other protocols.

Found in: 67124d3

Status: Fixed (3407a61).

I09. Variables That Can Be Set Constant

The variables BOOST_PRECISION and BASE_MULTIPLIER are hardcoded in
the constructor and never change. Instead, it is recommended to set
those variables as constant to save Gas.

Paths:
./contracts/Boosting.sol: BOOST_PRECISION, BASE_MULTIPLIER.

Recommendation: Consider using the keyword constant for said
variables.

Found in: 67124d3

Status: Acknowledged

I10. Typo

At line 11 of the DualStaking.sol contract, it is written accpet
instead of accept.

Paths:
./contracts/Staking/DualStaking.sol

Recommendation: Fix the typo.

Found in: 67124d3

Status: Fixed (3407a61).

www.hacken.io
30

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
31

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
32

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
33

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Vaultka-Project/Vaultka-tokenomics

Commit 67124d365185e18bc30d9c4d9c652c323917b568

Requirements $VKA Tokenomics (Vaultka).pdf

Contracts File: contracts/Boosting.sol
SHA3: d18eef9e06aba97aa9a3deb6bb053ec9da667f94e6497ff314a9468aad763815

File: contracts/Claim.sol
SHA3: e4a32d3f8382b21f92ec5e83b8b90dce9a1514d7cfad08e7c0433dfb3f72f232

File: contracts/VaultkaTreasury.sol
SHA3: c00fdc1209c0576982375b5490b5c665c686479c47175c7d5989e36ee100c17e

File: contracts/Staking/DualStaking.sol
SHA3: d20ea58be35b6b32dc2f3164e686af60f0696a55a8946047bbb655fa485ff7e3

File: contracts/Staking/RewarderPerSec.sol
SHA3: ecde7e79998e65c4408e5e9c4f8f0b7abab3432981cfe6a1f260902c2becaffa

File: contracts/Staking/SingleStaking.sol
SHA3: 96585fe223343d22868bf95775fab4c5500ef4ec97d4e9ea91120b499e7e8f04

File: contracts/Tokens/esVKAToken.sol
SHA3: 4e6d6b3de60b21258f3b11ba231e6803d572153041c802ea8f419e923bb86336

File: contracts/Tokens/VKAToken.sol
SHA3: d8510bb53d9e2ef9b316a097c78581794351529ebe6e8531e0998d86fb0c9042

File: contracts/Vesting/Vester12Months.sol
SHA3: 54fc653bad71f823ff982aafeb88a8aaf9a6cc87ed39787b95ea8ec8a8f027f0

File: contracts/Vesting/Vester3Months.sol
SHA3: 4632cca12640d963589a6259058a124569be1e92e69ea8ba4b9f57d19d923592

File: contracts/interfaces/IesVKAStaking.sol
SHA3: 5b454dc66a6e2d33cb9cd6404f5b2759f1b4bc6284f22ea7bd8215310c55e3d0

File: contracts/interfaces/IGMXStrategy.sol
SHA3: e79928b1e43118e1bf5cf85d9d40538476a3a66761c14a3edad111fee298f284

File: contracts/interfaces/ILeverageVault.sol
SHA3: fc2bf76eaa5274e5d21d4cd1710bfcc6afeee40bc011dea6c1810cb6ef871bd3

File: contracts/interfaces/ISwapRouter.sol
SHA3: cb12f9bb69683710c8ba8e5fcc2116a9c3a822eeac9066e93c0ca2eee0d09d26

File: contracts/interfaces/ITokenBurnable.sol
SHA3: ccb86bf020fab01cab638f4135e4c88175607eeebf904f54b6c8875bb13e728c

File: contracts/interfaces/IUnirouter.sol
SHA3: d0d7abbbb7d09870f8efbf0a9e5b5dede3347faa46b520a8f2a50def32f57a0d

www.hacken.io
34

Second review scope

Repository https://github.com/Vaultka-Project/Vaultka-tokenomics

Commit 3407a6150129772ec494663a13989b4391b4c527

Requirements https://docs.vaultka.com/welcome-to-vaultka/overview

Contracts File: contracts/Boosting.sol
SHA3: c94b6486a752c7a700eb4c0bef351bcc02c6e110a9a6a5676c44f7c27cfc83a1

File: contracts/Claim.sol
SHA3: 471d609bdf2bec8c069b0232ce2972280e0e610d01f327cd3e0fa9fe27ee7b44

File: contracts/VaultkaTreasury.sol
SHA3: 4cc72c68e4f65fcdc604f77f7effc84855070e333ec9d4318748b005443cd3f5

File: contracts/Staking/DualStaking.sol
SHA3: d553fc8583bd3460caf804fe310bcb3109a1abac0529909dd1386275ee6a9238

File: contracts/Staking/RewarderPerSec.sol
SHA3: e6c704596f5682df872890d1f92bd1349aca7306096cf54398cd912e35553241

File: contracts/Staking/SingleStaking.sol
SHA3: 2dae9afe852235f18f5ba4e51471ba19dae5acd6205e546f33edda7a842923a7

File: contracts/Tokens/esVKAToken.sol
SHA3: d5b9a89c8b1927f3813fe97e82af3cccd8decb90259830418eff3d71844d2d30

File: contracts/Tokens/VKAToken.sol
SHA3: 096d8c38f93fb90cafe8c2e9312f0b2b391dbb9033ada6a0e85d1528aa40a1c9

File: contracts/Vesting/Vester12Months.sol
SHA3: 55b4f40c4519713438613cff2894a9eeb87ba9d16876f70f8f899aec022a124b

File: contracts/Vesting/Vester3Months.sol
SHA3: c31ef1b0744554068e1e95149ca0f07491dd111784a7566d20f2d7952cf477da

File: contracts/interfaces/IesVKAStaking.sol
SHA3: 7a47a4775cfe213f1a5921cfb596020f915cf8aabf2f06734be0fa5fdef6563c

File: contracts/interfaces/IGMXStrategy.sol
SHA3: e79928b1e43118e1bf5cf85d9d40538476a3a66761c14a3edad111fee298f284

File: contracts/interfaces/ILeverageVault.sol
SHA3: fc2bf76eaa5274e5d21d4cd1710bfcc6afeee40bc011dea6c1810cb6ef871bd3

File: contracts/interfaces/ISwapRouter.sol
SHA3: cb12f9bb69683710c8ba8e5fcc2116a9c3a822eeac9066e93c0ca2eee0d09d26

File: contracts/interfaces/ITokenBurnable.sol
SHA3: ccb86bf020fab01cab638f4135e4c88175607eeebf904f54b6c8875bb13e728c

File: contracts/interfaces/IUnirouter.sol
SHA3: d0d7abbbb7d09870f8efbf0a9e5b5dede3347faa46b520a8f2a50def32f57a0d

www.hacken.io
35

https://docs.vaultka.com/welcome-to-vaultka/overview

