
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: VitalTale
Date: 10 October, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for VitalTale

Approved By Grzegorz Trawiński | Lead Solidity SC Auditor at Hacken OÜ

Tags ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website N/A

Changelog 20.09.2023 – Initial Review
10.10.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10

M01. Missing Input Validations: setPaymentConfig() 10
Low 10

L01. Missing Events on Critical State Updates 10
Informational 11

I01. Floating Pragma 11
I02. Solidity Style Guide Violation: Order Of Layout 11
I03. Unused Function Arguments 12
I04. Functions That Should Be Declared View 12
I05. Functions That Should Be Declared External 12

Disclaimers 14
Appendix 1. Severity Definitions 15

Risk Levels 15
Impact Levels 16
Likelihood Levels 16
Informational 16

Appendix 2. Scope 17

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by VitalTale (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

VitalTale is a protocol with the following contracts:
● VITALTALE — simple ERC-20 token with custom minting mechanism.

Minting is allowed for the user with the MINTER_ROLE after the mint
config is set by the DEFAULT_ADMIN_ROLE.
It has the following attributes:

○ Name: VITALTALE
○ Symbol: VTTL
○ Decimals: 18

● AntiSnipe — a whitelist contract for blocking ERC-20 transfers
performed by non-whitelisted addresses.

Privileged roles
● The DEFAULT_ADMIN_ROLE of the VITALTALE contract can update mint

config and payment config, enable/disable antisnipe (whitelist)
feature and change the antisnipe contract address.

● The MINTER_ROLE of the VITALTALE contract can perform mintings after
the mint config is set by the admin.

● The owner of the AntiSnipe contract can add and remove addresses from
the whitelist.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● Natspec comments are not included.

Code quality
The total Code Quality score is 9 out of 10.

● Solidity Style Guide is not being followed (I02)

Test coverage
Code coverage of the project is 100% (branch coverage).

● Tests are not required for projects with less than 250 lines of code.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.5. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

20 September 2023 1 1 0 0

10 October 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

No risks were identified.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I02

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No medium severity issues were found.

High

No high severity issues were found.

Medium

M01. Missing Input Validations: setPaymentConfig()

Impact High

Likelihood Low

The function setPaymentConfig() changes the stored payment config
(fee receiver and fee percentage), but the function does not validate
the inputted values.

The function payment() will perform transactions relying on the
payment config. There are two cases where transactions can fail if
the payment config is invalid:

● _paymentConfig.receiver is address(0) - fee transfer will fail,
as transferring to the address(0) is not valid;

● _paymentConfig.fee is above 10000 - despite there is
documentation that fee has two decimals, the fee percentage is
not validated by the setter and values above 10000 can be
provided.

Path: VITALTALE.sol: setPaymentConfig().

Recommendation: Add proper validation to the setPaymentConfig()
function.

Found in: [N/A]

Status: Fixed (Revised commit: N/A)

Remediation: The setPaymentConfig() now implements input validation.
The receiver can not be set to address(0). The fee must be set
between 0 and 10000 inclusively.

Low

L01. Missing Events on Critical State Updates

Impact Low

Likelihood Medium

www.hacken.io
10



Critical state changes should emit events for tracking things
off-chain.

This can lead to inability for users to subscribe events and check
what is going on with the project.

Path: VITALTALE.sol: setMintConfig(), setPaymentConfig().

Recommendation: Emit events on critical state changes.

Found in: [N/A]

Status: Fixed (Revised commit: N/A)

Remediation: All mentioned functions now emit adequate events.

Informational

I01. Floating Pragma

The project uses floating pragmas ^0.8.9.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: *

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: [N/A]

Status: Fixed (Revised commit: N/A)

Remediation: The floating pragma is now locked on 0.8.19 version.

I02. Solidity Style Guide Violation: Order Of Layout

Inside each contract, library or interface, use the following order:
1. Type declarations
2. State variables
3. Events
4. Errors
5. Modifiers
6. Functions

a. constructor
b. initializer (if exists)
c. receive function (if exists)
d. fallback function (if exists)
e. external

www.hacken.io
11

https://github.com/ethereum/solidity/releases


f. public
g. internal
h. private

Path: VITALTALE.sol.

Recommendation: Change order of layout to fit Official Style Guide.

Found in: [N/A]

Status: Reported

Remediation: No change in VITALTALE.sol file was observed since
initial review.

I03. Unused Function Arguments

The function assureCanTransfer() arguments from, to and amount are
never used.

Path: AntiSnipe.sol: assureCanTransfer().

Recommendation: Remove unused variables, completely or partially
(just letting the types and excluding the variable names, for
interface compatibility purposes).

Found in: [N/A]

Status: Fixed (Revised commit: N/A)

Remediation: The unused variables are now partially removed from the
assureCanTransfer() function leaving only the types in function
signature.

I04. Functions That Should Be Declared View

The function _beforeTokenTransfer() does not change the state of the
network and should be declared “view”.

Path: VITALTALE.sol: _beforeTokenTransfer().

Recommendation: Change function to view.

Found in: [N/A]

Status: Fixed (Revised commit: N/A)

Remediation: The _beforeTokenTransfer() function is now declared as
“view”.

I05. Functions That Should Be Declared External

Functions that are only called from outside the contract should be
defined as external. External functions are much more Gas efficient
compared to public functions.

Paths:
www.hacken.io

12

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout


VITALTALE.sol: mint(), isMintStarted(), isMintEnded(),
getMintPeriod(), getMintConfig(), setMintConfig(), payment(),
getPaymentConfig(), setPaymentConfig();

AntiSnipe.sol: addToWhitelist(), removeFromWhitelist(),
assureCanTransfer().

Recommendation: Change function visibilities to external.

Status: Fixed (Revised commit: N/A)

Remediation: All mentioned functions are now declared as external.

www.hacken.io
13



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
14



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
15



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
16



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository N/A, smart contracts were obtained from Goerli Testnet.

Commit N/A

Whitepaper N/A

Requirements Link

Technical
Requirements N/A

Contracts
Addresses

https://goerli.arbiscan.io/address/0x3d1454Ab6C304822a8680726C0B368bCF
2e2eE58#code
https://goerli.arbiscan.io/address/0xc2D19c3A64D3fd2998cDcc480d38046cF
3D847b5#code

Contracts File: VITALTALE.sol
SHA3: cb4946c05910ffd902b763d53bec7bc31cb24bd57ea330857853db50887d6e4a

File: Antisnipe.sol
SHA3: f4ba7bb8488970aa48f4dc457e4391cd79c9c840006e6faa5739caa931a8b555

Second review scope

Repository N/A, files were provided as a zipped package.

Commit N/A

Whitepaper N/A

Requirements Link

Technical
Requirements N/A

Contracts
Addresses https://arbiscan.io/address/0xB0f778A62d0DA8d7a6Ac03d390c47f2D85c386c1

Contracts File: VITALTALE.sol
SHA3: 0594ff681d1146c7e6e1dda63958ad313d7e18e3824fe3fd956ccc77a10f1115

File: Antisnipe.sol
SHA3: 7e3989040a3b44a1dba6a1707b5092ccf44b9e781d62152a7dca00f857a793b1

www.hacken.io
17

https://docs.google.com/document/d/1v1NEyXx5r6JRFKHx5g40FcZT_kCvn_zya95JPCdnrfo/edit#heading=h.q8zqei40wmnu
https://goerli.arbiscan.io/address/0x3d1454Ab6C304822a8680726C0B368bCF2e2eE58#code
https://goerli.arbiscan.io/address/0x3d1454Ab6C304822a8680726C0B368bCF2e2eE58#code
https://goerli.arbiscan.io/address/0xc2D19c3A64D3fd2998cDcc480d38046cF3D847b5#code
https://goerli.arbiscan.io/address/0xc2D19c3A64D3fd2998cDcc480d38046cF3D847b5#code
https://docs.google.com/document/d/1v1NEyXx5r6JRFKHx5g40FcZT_kCvn_zya95JPCdnrfo/edit#heading=h.q8zqei40wmnu
https://arbiscan.io/address/0xB0f778A62d0DA8d7a6Ac03d390c47f2D85c386c1

