
Customer: Fore Protocol
Date: 24 October, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Fore
Protocol

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OU

Tags Non-fungible Token; Marketplace; Factory; Gamify

Platform EVM

Language Solidity

Methodology Link

Website https://www.foreprotocol.io/

Changelog
14.08.2023 – Initial Review
29.09.2023 – Second Review
24.10.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.foreprotocol.io/


Table of contents
Introduction 5
System Overview 5
Executive Summary 7
Risks 8
Checked Items 10
Findings 13

Critical 13
C01. Mishandled Edge Case; Data Consistency 13
C02. Denial of Service Vulnerability 14
C03. Unauthorized Access To Critical Functions 14
C04. Denial of Service Vulnerability 15
C05. Data Consistency 15
C06. Denial of Service Vulnerability; Invalid Calculations 16

High 17
H01. Mishandled Edge Case; Data Consistency 17
H02. Requirements Violation; Data Consistency 18
H03. Coarse-Grained Access Control 18
H04. Requirements Violation 19
H05. Requirement Violation; Data Consistency 19

Medium 20
M01. Redundant Memory Allocation 20
M02. Best Practices Violation 21
M03. Absence of ReentrancyGuard for ERC721 Functions 21
M04. Requirements Violation; Data Consistency 22
M05. Mishandled Edge Case 22
M06. Accumulation of Dust Values 23

Low 23
L01. Missing Events on Critical State Updates 23
L02. Race Condition 24
L03. Unsafe Minting of ERC721 Tokens 24
L04. Unchecked Transfer 25
L05. Redundant Code 25

Informational 26
I01. Style Guide Violation 26
I02. Typo in require Statement 27
I03. Missing Zero Address Validation 27
I04. State Variables Can Be Declared Immutable 27
I05. Floating Pragma 28
I06. Redundant Import 28
I07. Redundant Block 28
I09. Outdated Encoder Use 29
I10. Empty Code Block 29

Disclaimers 30
Appendix 1. Severity Definitions 31

www.hacken.io
3



Risk Levels 31
Impact Levels 32
Likelihood Levels 32
Informational 32

Appendix 2. Scope 33

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Fore Protocol (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

FORE Protocol is a peer-to-peer predictions protocol that enables users to
create, participate in, and validate prediction markets in a dynamic and
play-to-earn format. FORE Protocol provides the architecture to allow users
to create a prediction market for almost any outcome, and rewards them for
doing so through the redistribution of protocol fees.

The files in the scope:
● ERC721NFTMarketV1.sol — base contract for ForeNftMarketplace.sol
● ICollectionWhitelistChecker.sol - checks if a token can be listed on

the ForeNftMarketplace.sol
● ForeNftMarketplace.sol - the FORE Protocol NFT Marketplace
● ForeProtocol.sol - main protocol contract responsible for the storing

and validation of the markets data, minting Verifier NFT and
increasing or decreasing the power of the Verifier NFT

● IForeProtocol.sol - interface for the ForeProtocol.sol
● IMarketConfig.sol - interface for the MarketConfig.sol
● IProtocolConfig.sol - interface for the ProtocolConfig.sol
● MarketConfig.sol - records the values applied for each marketplace

separately
● ProtocolConfig.sol - stores configuration of the ForeProtocol.sol,

applies changes for all markers
● BasicFactory.sol - factory contract responsible for creation new

BasicMarket.sol
● BasicMarket.sol - base protocol prediction market contract
● library/MarketLib.sol - library for the BasicMarket.sol
● ForeVerifiers.sol - Analyst NFT holding, which will allow to verify

market results
● IForeVerifiers.sol - interface for the ForeVerifiers.sol

Privileged roles
● ForeNftMarketplace.sol:

○ Owner - can recover ERC20/NFTs tokens sent to the contract by
mistake, can set/update admin and treasury address

○ Admin - can add a new , close existing amd modify collections,
can update minimum and maximum prices for a token

www.hacken.io
5



● ProtocolConfig.sol:
○ Owner - can set factory statuses, edit tiers, update market

configurations, can change foundation and high guard accounts,
marketplace contract address, verifier mint price and market
creation price

● BasicMarket.sol:
○ Factory - can initialize new market
○ Verifiers - can perform verification
○ High guard - can resolve a dispute
○ Market Creator - can withdraw market creator reward

● ForeProtocol.sol:
○ Owner - can change base URI
○ Whitelisted factory - can create new markets

● ForeVerifiers.sol:
○ Owner - can change base URI, protocol contract, enables or

disables transferability feature
○ Protocol - can mint token with defined power
○ Fore operator - can increase validation for chosen Id, increase

token power, can transfer verifier NFT’s from any address
○ Fore market - can decrease token power
○ Verifier token Id owner - can decrease power

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed:
○ Project overview is detailed.
○ All roles in the system are described.
○ Use cases are described and detailed.
○ For each contract all futures are described.
○ All interactions are described.

● Technical description is robust:
○ Run instructions are provided.
○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● Solidity Style Guide violations.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions with several users are tested thoroughly.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

14 August 2023 5 6 5 5

29 September 2023 1 0 1 2

24 October 2023 1 0 0 0

Risks

● Dispute outcomes rely solely on the decisions of the HighGuard. This
centralization can lead to potential biases or inaccuracies in
dispute resolutions, putting the fairness of the system at risk.

● Market creators are tasked with setting accurate timelines for
predictions. If a prediction remains active even after real-world
results are known, malicious actors could exploit this oversight,
voting with certainty and gaining undue benefits at the expense of
regular users. It is crucial to ensure timeline accuracy to maintain
the fairness of the prediction market.

● In the event of a dispute, users' tokens and verifiers' NFTs are held
in the contract. Access and retrieval of these assets are paused
until the dispute is resolved by the HighGuard. This may result in
unforeseen delays in accessing assets.

● The platform's prediction market may become "one-sided" when all
participants vote for the same outcome. In such cases, the market
automatically closes as 'INVALID'. This approach has potential
drawbacks:

○ Highly predictable events may lead all users to choose the same
result. This can unexpectedly invalidate the market,
potentially causing dissatisfaction among participants.

○ When a market becomes one-sided, there's no opposing side to
distribute rewards from. As a result, participants may not
receive the rewards they anticipated.

● Incorrect market results might be accepted if no dispute is raised
within the given 12-hour window. This can lead to users losing
rewards to the wrong side and genuine validators being wrongly
penalized with potential NFT burns. Users are advised to actively
review validation outcomes and initiate disputes when discrepancies
are observed.

● In case a market is marked as INVALID, the market creator is not only
denied any rewards but also forfeits the fee initially paid to create
the market. This means market creators have financial disincentives
in scenarios where the market outcome is deemed INVALID, potentially
leading to financial losses for them.

www.hacken.io
8



● The prediction market has no caps on the maximum amount a single
verifier can contribute towards market verification. As a result,
individual verifiers, if sufficiently funded, can influence a large
portion or even the entirety of the market's verification.

www.hacken.io
9



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
10



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Failed L02

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
11

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I01

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12



Findings

Critical

C01. Mishandled Edge Case; Data Consistency

Impact High

Likelihood High

In the prediction market's verification system, the market is
considered "verified" if the larger side's verified amount equals the
total amount of the smaller side. This method can be easily
manipulated, especially when there is a significant difference
between sides. Additionally, a single verifier with a large enough
verification power or in markets where one side has a small size can
unduly influence the verification outcome.

It can lead to loss of trust in the prediction market's fairness,
economic misalignment and potential for manipulation. Verifiers might
be incentivized to select the side with larger amounts, skewing
outcomes. Markets with large imbalances might end up being verified
based on just a few or even a single verifier's input.

Example:

m.sideA = 100 and m.sideB = 1000000.

For the market to be considered "verified" in this scenario:

● If m.verifiedB is at least 100 (total of m.sideA), it is
considered verified. This is easily achievable and will likely
be the common scenario due to the huge discrepancy.

● Alternatively, if m.verifiedA is at least 1000000, it will also
be verified, but this is improbable given the initial
imbalance.

In this scenario, due to the huge discrepancy in the amounts, it is
most likely that the verification will be achieved through the first
condition (m.sideA <= m.verifiedB).

Path: ./contracts/protocol/markets/basic/library/MarketLib.sol :
_isVerified()

Recommendation: introduce a dynamic verification threshold based on a
percentage of the total amount in both market sides, instead of a
fixed threshold. Implement a cap on the maximum amount that can be
verified by a single verifier in the market. For instance, no
verifier should be able to verify more than a certain percentage
(e.g., 10%) of the total market. This prevents undue influence by a
single verifier and ensures collective decision-making in the
verification process.

www.hacken.io
13



Found in: a643ce0

Status: Mitigated (The prediction market's functionality has been
revised. Now, a market is deemed "verified" when the verified amount
on either side is greater than the total market size. However, it is
important to note that a cap on the maximum amount verifiable by an
individual verifier has not been introduced.) (Revised commit:
910f87a)

C02. Denial of Service Vulnerability

Impact High

Likelihood High

The withdrawVerificationReward function attempts to transfer tokens
from its own address using the transferFrom method. Regular ERC20
implementations typically do not allow for this kind of transfer
without prior approval calls, leading to potential denial-of-service
(DoS) attacks as the function can be made to fail consistently.

Users might be unable to withdraw their rewards, leading to financial
losses.

Path: ./contracts/protocol/markets/basic/BasicMarket.sol:
withdrawVerificationReward()

Recommendation: replace the transferFrom method with a direct
transfer method. Direct transfers from the contract's own balance do
not need any allowances and are more straightforward.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

C03. Unauthorized Access To Critical Functions

Impact High

Likelihood High

The withdrawVerificationReward function lacks proper access controls,
enabling any external party to dictate the mode of withdrawal for the
verifier's rewards. This design flaw can be exploited by a malicious
actor to control the power distribution among verifier NFTs,
potentially gaining undue advantages in future prediction markets.

A malicious actor can prevent certain verifiers from increasing the
power of their NFTs. By selectively increasing power for chosen
verifiers, an attacker can rig subsequent prediction markets in their
favor. Verifiers might face unintended financial consequences or lose
opportunities to augment the power of their NFTs.

Path: ./contracts/protocol/markets/basic/BasicMarket.sol:
withdrawVerificationReward()

www.hacken.io
14



Recommendation: implement proper access controls to restrict the
calling of withdrawVerificationReward. Ensure that only the NFT owner
or an authorized protocol entity can determine the withdrawal mode.
Divide the function into specialized functions. One function should
be dedicated to allowing verifiers to either withdraw their rewards
or increase their NFT power. Another function can cater to
administrators or protocol entities for handling incorrect votes and
potential NFT burns. This separation ensures clarity and reduces the
attack surface.

Found in: a643ce0

Status: Mitigated (The updated function now enforces a condition that
restricts its calling. Specifically, only the associated verifier
(linked with the given v.tokenId) or the highGuard entity can invoke
the function, ensuring enhanced security.

Recommended structural division of the function into multiple
specialized functions has not been implemented. Instead, the decision
was made to retain the function's holistic approach, combining reward
withdrawal, NFT power increment, and NFT burn mechanisms.

By resolving the access control vulnerability, the risk associated
with unauthorized entities manipulating the function and potentially
rigging prediction markets has been substantially mitigated.)

C04. Denial of Service Vulnerability

Impact High

Likelihood High

The withdrawVerificationReward function tries to execute transfers
and burns using the foreVerifiers contract's tokens, but the
foreVerifiers contract lacks the ability to grant allowances,
resulting in denial-of-service (DoS) vulnerabilities.

Key platform functionalities can become paralyzed due to this
oversight, leading to operational disruptions.

Path: ./contracts/protocol/markets/basic/BasicMarket.sol:
withdrawVerificationReward()

Recommendation: implement external methods in the foreVerifiers
contract that allow trusted markets to request the transfer or burn
of assets. These methods should be safeguarded to be callable only by
trusted entities (e.g., onlyMarket modifier).

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

C05. Data Consistency

Impact High

www.hacken.io
15



Likelihood High

The function upgradeTier enables a user to upgrade their NFT tier if
they meet the verificationsDone requirement. However, the function
does not check if the tier they are upgrading to actually exists in
the _tiers mapping. As a result, a user might upgrade their NFT to a
non-existent tier. If the owner later defines new tiers, this could
result in data inconsistency where some users have upgraded to tiers
they should not have been able to.

Users might possess NFTs of tiers that they should not have been able
to attain based on their verificationsDone count. If the owner of the
ProtocolConfig.sol later tries to define new tiers, they would have
to handle the already upgraded NFTs, which might now belong to tiers
they should not. This could lead to a loss of trust from the user
base when they realize that tier upgrades are not consistent or fair.

Path: ./contracts/protocol/ForeProtocol.sol: upgradeTier()

Recommendation: shift from a mapping to an array for storing tiers.
This will allow for better control over indices and easier checks for
valid tiers. In the upgradeTier function, before allowing the
upgrade, check that the tier to which the user is upgrading actually
exists. When editing tiers, always ensure the changes maintain data
consistency and no user can be in a tier they should not.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

C06. Denial of Service Vulnerability; Invalid Calculations

Impact High

Likelihood High
In instances when a verifier votes for an incorrect side and is thus
eligible for a penalty, the function designed to calculate the
amounts for toDisputeCreator and toHighGuard incorrectly uses the
multipliedPowerOf function instead of the powerOf function for
calculating amounts to transfer. This discrepancy becomes pronounced
in scenarios where the NFT id multiplier exceeds 100%. Such a
difference can induce a Denial of Service (DoS) at the line :

foreVerifiers.marketBurn(power - toDisputeCreator - toHighGuard);

due to the actual power being less than the multipliedPower, which
does not genuinely reflect the number of tokens held by that
particular NFT id.

When a verifier, who has voted inappropriately, faces a penalty, the
protocol mandates that its NFT should be burned. Consequently, the
tokens held by this NFT are then redistributed among the Dispute
Creator and the High Guard, with any residual tokens being
incinerated. The crux of the vulnerability stems from the

www.hacken.io
16



miscalculation of the amounts designated for toDisputeCreator and
toHighGuard, which are presently determined using the
multipliedPowerOf function. For an accurate representation of the
tokens associated with the penalized NFT, the powerOf function should
be employed.

By misapplying the multipliedPowerOf function, there is a risk of
over-allocating assets to both toDisputeCreator and toHighGuard,
which surpasses the true tokens retained by the NFT. This
inconsistency can initiate a Denial of Service (DoS) during the token
burn process, thereby possibly disrupting standard operations on the
platform, especially during penalty enforcement procedures.

Path: ./contracts/protocol/markets/basic/BasicMarket.sol:
withdrawVerificationReward(), calculateVerificationReward

Recommendation: for accurate token calculations during penalty
enforcement, the multipliedPowerOf function should be supplanted with
the powerOf function in the withdrawVerificationReward and
calculateVerificationReward methods.

Incorporate unit tests tailored to ensure the precise distribution of
tokens and calculation in scenarios where an NFT verifier is
subjected to penalties and multipliedPowerOf of the NFT exceed 100%.

Found in: 4672889

Status: Fixed (Recommended changes are applied. powerOf function is
used to calculate the amounts to transfer.) (Revised commit: 910f87a)

High

H01. Mishandled Edge Case; Data Consistency

Impact High

Likelihood Medium

The fore operator holds overriding control on the verification NFTs
(vNFTs), which creates a centralized point of vulnerability. If the
owner's private keys are compromised, an attacker can take over any
vNFT, potentially devaluing them and extracting tokens.

A vulnerability arises from the isApprovedForAll and _transfer()
functions, which always approve an action if it originates from a
foreOperator. With the setFactoryStatus function, there is a risk of
introducing an erroneous address as a whitelisted factory or, if the
owner's keys are compromised, a malicious address. This address can
then be used to operate on any vNFT.

It can lead to malicious or unauthorized control over any verifier
NFT, regardless of the actual owner, ability to reset the power of
any chosen NFT to its initial state and as a result receiving Fore
tokens that can be sold on the DEX.

www.hacken.io
17



Path: ./contracts/verifiers/ForeVerifiers.sol : isApprovedForAll(),
_transfer()

Recommendation: re-evaluate the need for a universal override in the
isApprovedForAll function. Restricting permissions based on roles and
use cases can be more secure.

Found in: a643ce0

Status: Mitigated (We keep it by design. Fore Operator will be a
MultiSign wallet.)

H02. Requirements Violation; Data Consistency

Impact High

Likelihood Medium

The ProtocolConfig contract allows setting of market validation and
dispute time periods without ensuring they align with the
documentation constraints. Consequently, a market can be created with
periods not matching the documented standards.

With periods not restricted, malicious actors might exploit this
flexibility, especially if shorter periods don't provide stakeholders
adequate time to react. Users might make decisions based on the
documentation's defined standards. Deviations can lead to
unanticipated actions and losses.

Discrepancies between implementation and documentation erode platform
trustworthiness.

Path: ./contracts/protocol/config/ProtocolConfig.sol: constructor(),
_setConfig()

Recommendation: implement checks within _setConfig to ensure
disputePeriodP is up to 12 hours and verificationPeriodP is up to 24
hours. Revise the constructor's default values for disputePeriodP and
verificationPeriodP to ensure they are within the recommended bounds.

Found in: a643ce0

Status: Fixed (Minimum validation and dispute period is now set to 12
hours, maximum for both is set to 96 hours. Default value for both is
24 hours.) (Revised commit: 4672889)

H03. Coarse-Grained Access Control

Impact High

Likelihood Medium

The project's design gives sole privilege to the highGuard address to
resolve disputes. While the protocolConfig contract's owner can
change the highGuard, the exclusive reliance on a single address
poses significant security risks. If control over the highGuard

www.hacken.io
18



private key is compromised, an attacker could manipulate prediction
market results for their advantage.

An attacker with control over the highGuard address could
unilaterally resolve disputes in their favor, potentially
manipulating market outcomes and compromising the integrity of the
entire system. Given the attacker's ability to sway market results,
they could profit dishonestly, leading to loss for honest
participants.

Path: ./contracts/protocol/markets/basic/BasicMarket.sol:
resolveDispute()

Recommendation: instead of a single address, require multiple trusted
entities to confirm a dispute resolution. This would significantly
reduce the risk of manipulation, even if one of the trusted entities
gets compromised.

Found in: a643ce0

Status: Mitigated (The HighGuard will be a MultiSign wallet.Therefore
we keep this by design.)

H04. Requirements Violation

Impact Medium

Likelihood High

Although it is stated that the highGuard address is a bunch of NFT
holders, there is no such implementation in the contract. The
flexibility of the high guard address allows the system owner to
specify any entity, without the requirement for it to be a multi-sig
wallet configuration or limited solely to NFT holders.

Path: ./contracts/protocol/config/ProtocolConfig.sol

Recommendation: implement the required functionality or edit the
documentation.

Found in: a643ce0

Status: Fixed (Documentation was updated) (Revised commit: 4672889)

H05. Requirement Violation; Data Consistency

Impact High

Likelihood Medium

The editTier function lacks comprehensive checks to maintain the
ordered and hierarchical structure of minVerifications and
multipliers across tiers, potentially allowing for inconsistent tier
configurations.

www.hacken.io
19



There is a possibility of setting minVerifications for a tier to a
value greater than its subsequent tier or lesser than its previous
tier, leading to inconsistency in tier structuring.

Similarly, the function does not restrict setting the multiplier
value such that it might not maintain a proper hierarchical
progression when compared to adjacent tiers. This can cause financial
inconsistencies in multiplier calculations across tiers.

Path: ./contracts/protocol/config/ProtocolConfig.sol: editTier()

Recommendation: separate the validation checks for tierIndex == 0 and
tierIndex > 0 to avoid oversight. For tierIndex > 0, in addition to
checking that the new minVerifications is greater than the previous
tier's minVerifications, also ensure that it is less than the next
tier's minVerifications (if it exists). For multiplier, enforce a
check that ensures a proper order relative to the previous and next
tier's multipliers. For the last tier, validate that if there is no
subsequent tier, there should be no limitation on its
minVerifications or multiplier relative to higher tiers, but they
should still be greater than the previous tier's values.

Found in: a643ce0

Status: Fixed (Revised commit: 910f87a)

Medium

M01. Redundant Memory Allocation

Impact Low

Likelihood High

The line MarketLib.Market memory m = market; creates an in-memory
copy of the storage variable market. Given the size of the struct
(multiple variables), this can lead to a significant Gas overhead.

Only one attribute of m (endPredictionTimestamp) is accessed
afterward. It is wasteful to create an entire in-memory copy of the
market for this purpose.

It will lead to increased Gas cost for every invocation of the
function, making predictions more expensive for users.

Path: ./contracts/protocol/markets/basic/library/MarketLib.sol:
_predict()

Recommendation: directly access the endPredictionTimestamp from the
storage variable market instead of creating a memory copy.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

www.hacken.io
20



M02. Best Practices Violation

Impact Low

Likelihood High

All events are declared in the MarketLib.sol library. This is
unconventional. Usually, main contracts declare events, as users and
tools primarily expect to find them there.

Users or tools monitoring events might overlook or not expect events
declared in libraries. This can lead to missed logs or additional
tracking efforts.

Path: ./contracts/protocol/markets/basic/library/MarketLib.sol

./contracts/protocol/markets/basic/BasicMarket.sol

Recommendation: declare all events in the main contract, even if the
library emits them. This way, anyone inspecting the main contract can
identify all possible emitted events in one location.

Found in: a643ce0

Status: Fixed (The issue was fixed by introducing the event
declarations in the main contract.) (Revised commit: 910f87a)

M03. Absence of ReentrancyGuard for ERC721 Functions

Impact High

Likelihood Low

The project's contracts do not utilize the ReentrancyGuard for
functions that interact with ERC721 tokens. Although the project
adheres to the Checks-Effects-Interactions (CEI) pattern, which can
help prevent reentrancy attacks, it remains best practice to
implement ReentrancyGuard as an additional security layer.

Without the explicit use of ReentrancyGuard, functions are
potentially more exposed to reentrancy attacks even if the CEI
pattern is followed. Not using the ReentrancyGuard is a deviation
from accepted smart contract development best practices.

Path: ./contracts/protocol/markets/basic/BasicMarket.sol

Recommendation: incorporate the ReentrancyGuard modifier in all
functions that interact with ERC721 tokens. This ensures an added
layer of security against potential reentrancy attacks.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

www.hacken.io
21



M04. Requirements Violation; Data Consistency

Impact High

Likelihood Low

The project's NFT marketplace documentation specifies that it should
exclusively use the native project ERC20 token for transactions.
However, an inherited method, buyTokenUsingBNB, allows for purchases
using chain native currency. Although the native ForeToken does not
support the deposit method, and a call to buyTokenUsingBNB would
fail, bridged tokens on other chains might contain a fallback
function, opening a door to unintended behavior.

Successful purchases using native chain currency, instead of the
expected ERC20 token, can cause financial discrepancies. Participants
may take advantage of this inconsistency, leading to potential losses
for others.

Path: ./contracts/external/pancake-nft-markets/ERC721NFTMarketV1.sol:
buyTokenUsingBNB()

Recommendation: override the buyTokenUsingBNB method in the
ForeNftMarketplace.sol contract to explicitly disallow its execution.
It should revert immediately if someone attempts to call it.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

M05. Mishandled Edge Case

Impact High

Likelihood Low

The functions withdrawPredictionReward, withdrawVerificationReward,
and marketCreatorFeeWithdraw in the contract compute reward values
based on various market, verification, and user details. Due to
potential rounding discrepancies in mathematical operations, the
computed amounts (toWithdraw, toVerifier, etc.) could occasionally
surpass the contract's available balance.

If the calculated reward values are higher than the balance, the
associated transfer functions will fail. This can hinder users from
withdrawing their rightfully earned rewards, potentially eroding
trust in the system.

Path: ./contracts/protocol/markets/basic/BasicMarket.sol:
withdrawPredictionReward(), withdrawVerificationReward(),
marketCreatorFeeWithdraw()

Recommendation: incorporate validation checks within
withdrawPredictionReward, withdrawVerificationReward, and

www.hacken.io
22



marketCreatorFeeWithdraw functions to ascertain that the computed
reward values do not exceed the contract's balance. Should rounding
cause the reward values to be larger than the available balance,
adjust them to equal the contract's balance. Implementing this
safeguard ensures the transfer functions operate seamlessly,
providing a consistent user experience and preventing undue failures.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

M06. Accumulation of Dust Values

Impact Low

Likelihood High

Due to integer division when splitting the toVerifiers fee, there is
a possibility of truncating small residual balances, leading to minor
discrepancies in token distribution.

Path: ./contracts/protocol/markets/basic/library/MarketLib.sol:
closeMarket()

Recommendation: implement a mechanism to handle the division more
accurately. Consider rounding up or down consistently, or distribute
the residual amounts in subsequent transactions. Alternatively,
allocate potential dust to a predetermined category (e.g., toBurn).

Found in: a643ce0

Status: Mitigated (We agree that this could happen, but the amount of
FORE that could be left as dust is very minimal.)

Low

L01. Missing Events on Critical State Updates

Impact Low

Likelihood Low

Critical state changes should emit events for tracking things
off-chain.

This can lead to inability for users to subscribe events and check
what is going on with the project.

Path: ./contracts/protocol/ForeProtocol.sol: editBaseUri()

ForeVerifiers.sol : editBaseUri(), mintWithPower(),
increaseValidation()

www.hacken.io
23



Recommendation: emit events on critical state changes.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

L02. Race Condition

Impact Medium

Likelihood Low

The functions for market creation and minting verifier NFTs retrieve
fees from the ProtocolConfig.sol contract. The owner can change these
fees, leading to unpredictability for users. Users might end up
paying more than anticipated if the fee is updated during their
transaction.

Users might not have sufficient balance for the new fee, leading to
failed transactions and wasted Gas fees.

Path: ./contracts/protocol/markets/basic/BasicFactory.sol:
createMarket()

ForeProtocol : mintVerifier()

Recommendation: add an additional parameter to the createMarket and
mintVerifier functions for the expected fee. Within the function,
compare the provided fee against the current fee in the protocol. If
they do not match, revert the transaction. This ensures users always
pay what they expect.

Found in: a643ce0

Status: Acknowledged (Noted, no changes have been made) (Revised
commit: 910f87a)

L03. Unsafe Minting of ERC721 Tokens

Impact Medium

Likelihood Low

The createMarket function uses the _mint method to create and assign
ERC721 tokens. This method might not be safe when the receiver is a
contract without ERC721 support, potentially leading to lost tokens.

If the receiver address is a contract that does not support ERC721
tokens, the minted tokens can become permanently inaccessible.

Path: ./contracts/protocol/ForeProtocol.so: createMarket()

www.hacken.io
24



Recommendation: use _safeMint: Switch to the _safeMint method, which
contains an internal check to ensure the receiving address can handle
ERC721 tokens. If the receiving address is a contract, _safeMint will
ensure it implements the required ERC721 functions.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

L04. Unchecked Transfer

Impact Medium

Likelihood Low

The project's contracts do not utilize the SafeERC20 library for
managing ERC20 token transfers. While all transfers within the
protocol employ its native standard ERC20 token, not adhering to best
practices can introduce risks, especially when bridged tokens from
other chains are considered.

Not using the SafeERC20 library is a deviation from the accepted and
recommended best practices for smart contract development.

Path: ./contracts/protocol/ForeProtocol.sol: mintVerifier(),
buyPower()

./contracts/protocol/markets/basic/BasicFactory.sol: createMarket()

./contracts/protocol/markets/basic/BasicMarket.sol: predict(),
openDispute(), resolveDispute(), _closeMarket(),
withdrawPredictionReward(), withdrawVerificationReward(),
marketCreatorFeeWithdraw()

./contracts/verifiers/ForeVerifiers.sol: decreasePower()

Recommendation: integrate the SafeERC20 library into the project's
contracts. This library wraps around the standard ERC20 functions and
reverts transactions if any operation fails, providing a safer
mechanism for token operations.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

L05. Redundant Code

Impact Low

Likelihood Low

The current implementation of the market closure function executes
several unnecessary operations when the market result is
ResultType.INVALID. These additional operations waste gas and
computational resources.

www.hacken.io
25



This lead to increased gas costs for users when handling an INVALID
result.

Path: ./contracts/protocol/markets/basic/library/MarketLib.sol:
closeMarket()

./contracts/protocol/markets/basic/BasicMarket.sol: closeMarket()

Recommendation: in the closeMarket function of the MarketLib.sol
library, the check for ResultType.INVALID should be moved up right
after emitting the CloseMarket event. This avoids unnecessary
calculations and returns immediately. In the _closeMarket function of
the BasicMarket.sol, immediately after obtaining the results from
MarketLib.closeMarket, insert an additional check for the INVALID
result type. If detected, avoid performing any redundant operations.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

Informational

I01. Style Guide Violation

The provided projects should follow the official guidelines.

Inside each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be grouped according to their visibility and
ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Within a grouping, place the view and pure functions last.

It is best practice to cover all functions with NatSpec annotation
and to follow the Solidity naming convention. This will increase
overall code quality and readability.

Path: ./contracts/

Recommendation: follow the official Solidity guidelines.

www.hacken.io
26

https://docs.soliditylang.org/en/v0.8.17/style-guide.html


Found in: a643ce0

Status: Acknowledged (Noted and will be adjusted. However for this
second iteration of the audit we didn’t

make this changes) (Revised commit: 910f87a)

I02. Typo in require Statement

The error message in the require statement:

require(multiplier > 0, "ProtocolConfig: 1st tier multiplier musst bu
greater than zero");

contains a typographical error. Specifically, the word "musst" should
be "must" and "bu" should be "be".

The following NatSpec contains a typo.

///@param pA Prediction contribution for side A

///@param pA Prediction contribution for side B

The ‘pA’ that is on the second line needed to be ‘pB’.

Path: ./contracts/protocol/config/ProtocolConfig.sol: editTier()

./contracts/protocol/markets/basic/library/MarketLib.sol:
calculatePredictionReward()

Recommendation: correct the typos in the code.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

I03. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/protocol/config/ProtocolConfig.sol: constructor(),
setFactoryStatus(), setFoundationWallet(), setHighGuard(),
setMarketplace()

Recommendation: implement zero address checks.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

I04. State Variables Can Be Declared Immutable

In the BasicFactory.sol contract, variable foreProtocol value is set
in the constructor.

www.hacken.io
27



In the BasicMarket.sol contract, variable factory value is set in the
constructor.

Those variables can be declared immutable.

This will lower the Gas taxes.

Path:./contracts/protocol/markets/basic/BasicFactory.sol

./contracts/protocol/markets/basic/BasicMarket.sol

Recommendation: declare mentioned variables as immutable.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

I05. Floating Pragma

The project uses floating pragmas ^0.8.7, ^0.8.4 and ^0.8.0.

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Path: ./contracts/

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

I06. Redundant Import

The import of Strings.sol in the ForeVerifiers.sol contract is
unnecessary for the contract.

The import of IForeProtocol.sol in the ForeProtocol.sol contract is
unnecessary for the contract.

Unused imports should be removed from the contracts. Unused imports
are allowed in Solidity and do not pose a direct security issue. It
is best practice to avoid them as they can decrease readability.

Path: ./contracts/verifiers/ForeVerifiers.sol

Recommendation: remove the redundant import.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

www.hacken.io
28



I07. Redundant Block

The section checking protocol.isForeMarket(msg.sender) permits the
market to fully reduce power. However, the market does not implement
functionality to call decreasePower(). This creates a discrepancy.

Path: ./contracts/verifiers/ForeVerifiers.sol: decreasePower()

Recommendation: remove the redundant code to ensure clarity. If the
market isn't intended to decrease power, eliminate the corresponding
conditions.

Found in: a643ce0

Status: Mitigated (no changes have been made as we will use this
function in a future iteration of the market contracts)

I09. Outdated Encoder Use

The statement pragma abicoder v2 is outdated.

Path: ./contracts/external/pancake-nft-markets/ERC721NFTMarketV1.sol

Recommendation: Use “pragma abicoder v2” instead or use a
contemporary compiler version. The Solidity versions >= 0.8.0 uses
Abicode v2 by default.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

I10. Empty Code Block

An empty code block is detected on lines 26-28.

The presence of an empty code block might lead to confusion, reduced
code readability, potential misinterpretation and implication of
unfinalized code, without immediate functional consequences.

Path: ./contracts/marketplace/ForeNftMarketplace.sol

Recommendation: remove the empty code block.

Found in: a643ce0

Status: Fixed (Revised commit: 4672889)

www.hacken.io
29



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
30



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and in most cases cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
31



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
32



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/FOREProtocol/contracts

Commit a643ce084d338aa5e8cca6613d8bbb9f55e696ba

Whitepaper Link

Requirements https://docs.foreprotocol.io/home/documentation

Technical
Requirements https://docs.foreprotocol.io/home/documentation

Contracts File: contracts/external/pancake-nft-markets/ERC721NFTMarketV1.sol
SHA3: db22708b84144cf05c5563daf3e938381347d01d9637e3c923fc603664fe9b74

File: contracts/marketplace/ForeNftMarketplace.sol
SHA3: 3ea6e0d83cfa7cc454c51221d22f6c24e2590bbeddcd5a2bd4282f7cb69e6af1

File: contracts/protocol/ForeProtocol.sol
SHA3: f9d64999f0fde2892e1aef205353f7655f2cde1eb58d8d6d3484a0c79f2e7c5c

File: contracts/protocol/config/IMarketConfig.sol
SHA3: 30fd1ce166d6e4a9fe26444b6e166d4711eaa09e8e6b6e0aa120d721f15d696a

File: contracts/protocol/config/MarketConfig.sol
SHA3: 6fe5ebc60b144190e29934c20ffeba40cd713cfb096fa8dcef4b80bcf4aa12e2

File: contracts/protocol/config/ProtocolConfig.sol
SHA3: 4dbb907795e66ddf277308e50ad302c25d6839d5e1c9b402d0c1a3d4c39a5bec

File: contracts/protocol/markets/basic/BasicFactory.sol
SHA3: 79f1f39e454fb98e7ab02e512a9d4a7a911e29a7202b3b07588a6c161e3ba92a

File: contracts/protocol/markets/basic/BasicMarket.sol
SHA3: 29146f5633ad6965a455974ef9a9306758bac058ef1363a3945aad6412eb420f

File: contracts/protocol/markets/basic/library/MarketLib.sol
SHA3: 3c887b9c19df13b2b328305648928ab178338bba1a005c90c8d9b974b546f38b

File: contracts/verifiers/ForeVerifiers.sol
SHA3: a7c2f6079b1d24765594e02a21b24045f7783e84025626661fe540605a9decbf

File: contracts/verifiers/IForeVerifiers.sol
SHA3: e1952f4d10c5ffd9516648f626c3a1cf8fd9969e568a4fb6698ab088cac3d130

File: contracts/protocol/config/IProtocolConfig.sol
SHA3: 56ddc1276b1b5dc7f003cfa0685e095effae7ba9f3b7606706f1bee80d0f47e3

File: contracts/protocol/IForeProtocol.sol
SHA3: 79a0fbc38dc11cd5dd2fcd8d217bc29aa2d4cc7e5f64b7a79f3854158f8824c2

www.hacken.io
33

https://github.com/FOREProtocol/contracts
https://docs.foreprotocol.io/home/whitepaper
https://docs.foreprotocol.io/home/documentation
https://docs.foreprotocol.io/home/documentation


Second review scope

Repository https://github.com/FOREProtocol/contracts

Commit 4672889a61a9cd4455aac1d9680fe2cb3eaa3fea

Whitepaper Link

Requirements https://docs.foreprotocol.io/home/documentation

Technical
Requirements https://docs.foreprotocol.io/home/documentation

Contracts File: contracts/external/pancake-nft-markets/ERC721NFTMarketV1.sol
SHA3: 63d4abdfdc0f4ae9dd1ff97c02b5a98d3bf171a15cdbf779136dc338f61ec87b

File: contracts/marketplace/ForeNftMarketplace.sol
SHA3: c61ac96dfe4db443ca9c8053282f19ac868067b64b1613de1dc2305dd5dc309b

File: contracts/protocol/ForeProtocol.sol
SHA3: 7e3df5c6166a5734ce3524d425a52ce2b6ba0cb2ed0f4cf2da685854614470a6

File: contracts/protocol/IForeProtocol.sol
SHA3: 94b04e53fcb5a3be02d8052cc85d199cec9bc1f64ab54389349632fde815adc3

File: contracts/protocol/config/IMarketConfig.sol
SHA3: deb2e1c69381303431e397e9bdfaaf202251ec820d34c06bf187dbbbece0f084

File: contracts/protocol/config/IProtocolConfig.sol
SHA3: 0d24f195f97f187a4d5985b922813b27d1e418c2851ddf34380ec651b8333518

File: contracts/protocol/config/MarketConfig.sol
SHA3: 125825f9a19c9056fb8dd7782860f29ef77af500595190741e49cb3021364f53

File: contracts/protocol/config/ProtocolConfig.sol
SHA3: 2888d66cf4296055637d8692c4033d6149c908a2f2850003909e2950b92af025

File: contracts/protocol/markets/basic/BasicFactory.sol
SHA3: b5bf30a13e60bd361435adf2a03f7d980c9a37d56490b208750d770dade34dbb

File: contracts/protocol/markets/basic/BasicMarket.sol
SHA3: e8a39ff00c736bc306efa9db958dc11fbc82e42c1da24e930c5aa2344e1c1ec7

File: contracts/protocol/markets/basic/library/MarketLib.sol
SHA3: 3652451ed079a7c0da48058f79a1f201aec4ea9b60ab12199d3cdfd9e0a1f67c

File: contracts/verifiers/ForeVerifiers.sol
SHA3: 854907873a5d588d09bef675dae5ba2689667746fd3731abaf52c1254421905d

File: contracts/verifiers/IForeVerifiers.sol
SHA3: 6349deb059fe449ee8955d61a8003885ebe62cd44ab7c6272dfcd1d3dbed9fe1

Third review scope

Repository https://github.com/FOREProtocol/contracts

Commit 910f87a02874128e12b94637b6b5514c790c7bf2

www.hacken.io
34

https://github.com/FOREProtocol/contracts
https://docs.foreprotocol.io/home/whitepaper
https://docs.foreprotocol.io/home/documentation
https://docs.foreprotocol.io/home/documentation
https://github.com/FOREProtocol/contracts


Whitepaper Link

Requirements https://docs.foreprotocol.io/home/documentation

Technical
Requirements https://docs.foreprotocol.io/home/documentation

Contracts File: contracts/external/pancake-nft-markets/ERC721NFTMarketV1.sol
SHA3: 63d4abdfdc0f4ae9dd1ff97c02b5a98d3bf171a15cdbf779136dc338f61ec87b

File: contracts/marketplace/ForeNftMarketplace.sol
SHA3: c61ac96dfe4db443ca9c8053282f19ac868067b64b1613de1dc2305dd5dc309b

File: contracts/protocol/ForeProtocol.sol
SHA3: 7e3df5c6166a5734ce3524d425a52ce2b6ba0cb2ed0f4cf2da685854614470a6

File: contracts/protocol/IForeProtocol.sol
SHA3: 94b04e53fcb5a3be02d8052cc85d199cec9bc1f64ab54389349632fde815adc3

File: contracts/protocol/config/IMarketConfig.sol
SHA3: deb2e1c69381303431e397e9bdfaaf202251ec820d34c06bf187dbbbece0f084

File: contracts/protocol/config/IProtocolConfig.sol
SHA3: 0d24f195f97f187a4d5985b922813b27d1e418c2851ddf34380ec651b8333518

File: contracts/protocol/config/MarketConfig.sol
SHA3: 125825f9a19c9056fb8dd7782860f29ef77af500595190741e49cb3021364f53

File: contracts/protocol/config/ProtocolConfig.sol
SHA3: 2888d66cf4296055637d8692c4033d6149c908a2f2850003909e2950b92af025

File: contracts/protocol/markets/basic/BasicFactory.sol
SHA3: b5bf30a13e60bd361435adf2a03f7d980c9a37d56490b208750d770dade34dbb

File: contracts/protocol/markets/basic/BasicMarket.sol
SHA3: e8a39ff00c736bc306efa9db958dc11fbc82e42c1da24e930c5aa2344e1c1ec7

File: contracts/protocol/markets/basic/library/MarketLib.sol
SHA3: 3652451ed079a7c0da48058f79a1f201aec4ea9b60ab12199d3cdfd9e0a1f67c

File: contracts/verifiers/ForeVerifiers.sol
SHA3: 854907873a5d588d09bef675dae5ba2689667746fd3731abaf52c1254421905d

File: contracts/verifiers/IForeVerifiers.sol
SHA3: 6349deb059fe449ee8955d61a8003885ebe62cd44ab7c6272dfcd1d3dbed9fe1

www.hacken.io
35

https://docs.foreprotocol.io/home/whitepaper
https://docs.foreprotocol.io/home/documentation
https://docs.foreprotocol.io/home/documentation

