
Smart Contract Code

Review And Security

Analysis Report

Customer: Avive

Date: 18/12/2023



We thank Avive for allowing us to conduct a Smart Contract Security Assessment. This document

outlines our methodology, limitations, and results of the security assessment.  

Avivie is an ERC20 token.

Platform: Artbitrum

Language: Solidity

Tags: ERC20 Burnable, ERC20 Pausable

Timeline: 12.12.2023 - 14.12.2023

Methodology: https://hackenio.cc/sc_methodology

Last Review Scope

Repository https://github.com/AviveWorld/Token/tree/main/

Commit c1232b2933b42c7b8ab0e7902a763f3e2f73c147

2

https://hackenio.cc/sc_methodology
https://github.com/AviveWorld/Token/tree/main/


Audit Summary

10/10 9/10 75% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.8/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 0 2 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 2

Vulnerability Status

F-2023-0120 - Ownership Irrevocability Vulnerability Accepted

F-2023-0121 - Single-Step Ownership Transfer Accepted

3

https://portal.hacken.io/App/Projects/Details/350eaed5-5725-4457-82eb-3373c05b1c88/Finding/352f7bc8-d397-4e4b-ace9-05e79d71cc6f
https://portal.hacken.io/App/Projects/Details/350eaed5-5725-4457-82eb-3373c05b1c88/Finding/4f60f8ad-f78e-4bc3-acdd-e7b49c7923f7


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Avive

Audited By Vladyslav Khomenko, Eren Gonen

Approved By Przemyslaw Swiatowiec

Website https://www.avive.world/

Changelog 14/12/2023 - Preliminary Report

4

https://www.avive.world/


6

6

7

7

7

7

7

7

8

9

9

9

11

12

12

13

14

14

14

15

16

Table to Contents

System Overview

Privileged Roles

Executive Summary

Documentation Quality

Code Quality

Test Coverage

Security Score

Summary

Risks

Findings

Vulnerability Details

F-2023-0120 - Ownership Irrevocability Vulnerability - Low

F-2023-0121 - Single-Step Ownership Transfer - Low

Observation Details

F-2023-0119 - Floating Pragma - Info

F-2023-0122 - Missing Zero Address Validation - Info

Disclaimers

Hacken Disclaimer

Technical Disclaimer

Appendix 1. Severity Definitions

Appendix 2. Scope



System Overview

Avive is a ERC20 token with the following contract:

Avive  — simple ERC-20 token with burnable functionality that mints all initial supply to a deployer.

Additional minting is not allowed.

It has the following attributes:

Name: Avive

Symbol: Avive

Decimals: 18

Total supply: 10 billion.

Privileged roles

The owner of the Avive contract can pause or unpause the token transfer for all users at any time.

6



Executive Summary

This report presents an in-depth analysis and scoring of the Customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

NatSpec's are good

Technical description is provided.

Code quality

The total Code Quality score is 9 out of 10.

The development environment is configured.

Missing zero address checks were identified.

Test coverage

Code coverage of the project is 75% (branch coverage)

Deployment and basic interactions are covered with tests.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 2 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the Customer's smart contract yields an overall score of 9.8. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The owner of the Avive contract has the authority to pause or unpause token transfers for all

users at any time, without prior notice. If the contract is paused, users will not be able to transfer

their tokens.

The supply is not hard-coded into the contract but rather set on deployment.

8



Findings

Vulnerability Details

F-2023-0120 - Ownership Irrevocability Vulnerability - Low

Description: The smart contract under inspection inherits from the Ownable library,

which provides basic authorization control functions. The contract in

question allows the owner to pause/unpause token use. The contract

simply retains the default renounceOwnership function and

transferOwnership function from Ownable library.

Given this, once the owner renounces ownership using the

renounceOwnership function, the contract becomes ownerless. As

evidenced in the provided transaction logs, after the

renounceOwnership function is called, attempts to call functions that

require owner permissions fail with the error message:

OwnableUnauthorizedAccount.

This state renders the contract's adjustable parameters immutable and

potentially makes the contract useless for any future administrative

changes that might be necessary.

Assets:
Avive.sol [https://github.com/AviveWorld/Token/commits/main]

Avive.sol [https://github.com/AviveWorld/Token/commits/hacken-initial-

audit/]

Status: Accepted

Classification

Severity: Low

Impact: 2/5

Recommendations

Recommendation: To mitigate this vulnerability:

Override the renounceOwnership function to revert transactions: By

overriding this function to simply revert any transaction, it will become

impossible for the contract owner to unintentionally (or intentionally)

render the contract ownerless and thus immutable.

9

https://portal.hacken.io/App/Projects/Details/350eaed5-5725-4457-82eb-3373c05b1c88/Finding/352f7bc8-d397-4e4b-ace9-05e79d71cc6f


F-2023-0121 - Single-Step Ownership Transfer - Low

Description: The current implementation of the Avive contract utilizes OpenZeppelin's

Ownable.sol, which facilitates a single-step process for ownership

transfer. This approach, while straightforward, does not include a

verification step for the new owner address before finalizing the transfer.

The absence of such a precautionary measure can lead to significant

security and operational risks, particularly if an incorrect address is

provided during the ownership transfer process. Mistakes or malicious

activities could result in the permanent transfer of ownership to an

unintended address, potentially leading to loss of control over the

contract's administrative functionalities.

Security Risks:

The single-step ownership transfer process increases the risk of

accidental or malicious transfers, as there is no opportunity to verify or

cancel the transfer once initiated.

Operational Risks:

An incorrect transfer of ownership could result in administrative functions

becoming inaccessible, potentially crippling the contract's operations and

management.

Assets:
Avive.sol [https://github.com/AviveWorld/Token/commits/hacken-initial-

audit/]

Avive.sol [https://github.com/AviveWorld/Token/commits/main]

Status: Accepted

Classification

Severity: Low

Impact: 2/5

Recommendations

Recommendation: Implement the Ownable2Step extension or a similar mechanism that

introduces a two-step process for ownership transfer. This process

typically involves nominating a new owner and then requiring a separate

confirmation step to finalize the transfer.

10

https://portal.hacken.io/App/Projects/Details/350eaed5-5725-4457-82eb-3373c05b1c88/Finding/4f60f8ad-f78e-4bc3-acdd-e7b49c7923f7


Observation Details

F-2023-0119 - Floating Pragma - Info

Description: A floating pragma in Solidity refers to the practice of using a pragma

statement that does not specify a fixed compiler version but instead

allows the contract to be compiled with any compatible compiler version.

This issue arises when pragma statements like pragma solidity ^0.8.0 are

used without a specific version number, allowing the contract to be

compiled with the latest available compiler version. This can lead to

various compatibility and stability issues.

Version Compatibility: Using a floating pragma makes the contract

susceptible to potential breaking changes or unexpected behavior

introduced in newer compiler versions. Contracts that rely on specific

compiler features or behaviors may break when compiled with a different

version.

Interoperability Issues: Contracts compiled with different compiler

versions may have compatibility issues when interacting with each other

or with external services. This can hinder the interoperability of the

contract within the Ethereum ecosystem.

The project uses floating pragma ^0.8.20.

Path: contracts/Avive.sol

Assets:
Avive.sol [https://github.com/AviveWorld/Token/commits/hacken-initial-

audit/]

Avive.sol [https://github.com/AviveWorld/Token/commits/main]

Status: Fixed

Recommendations

Recommendation: To mitigate these risks, it is recommended to use a fixed pragma

statement that specifies a known, well-tested compiler version. This helps

ensure the stability, security, and predictability of the smart contract

throughout its lifecycle.

11

https://portal.hacken.io/App/Projects/Details/350eaed5-5725-4457-82eb-3373c05b1c88/Finding/f15e5268-6af5-4982-9994-c71d2b16dc47


F-2023-0122 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x0000000000000000000000000000000000000000 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. 

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.  

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

There constructor() function is not protected against use of zero

address.

Assets:
Avive.sol [https://github.com/AviveWorld/Token/commits/main]

Avive.sol [https://github.com/AviveWorld/Token/commits/hacken-initial-

audit/]

Status: Accepted

Recommendations

Recommendation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

12

https://portal.hacken.io/App/Projects/Details/350eaed5-5725-4457-82eb-3373c05b1c88/Finding/9653e582-dfce-487c-94cf-c31ea40c7bba


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

13



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that considers the potential

impact of any vulnerabilities and the likelihood of them being exploited. The matrix of impact and

likelihood is a commonly used tool in risk management to help assess and prioritize risks. 

The impact of a vulnerability refers to the potential harm that could result if it were to be exploited.

For smart contracts, this could include the loss of funds or assets, unauthorized access or control, or

reputational damage. 

The likelihood of a vulnerability being exploited is determined by considering the likelihood of an

attack occurring, the level of skill or resources required to exploit the vulnerability, and the presence

of any mitigating controls that could reduce the likelihood of exploitation.

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

14



Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/AviveWorld/Token/tree/hacken-initial-audit

Commit bf614ddacb85ca6e984cac3dc698da60609a37e3

Whitepaper Not provided

Requirements Confidential

Technical

Requirements

https://github.com/AviveWorld/Token/blob/hacken-initial-

audit/README.md

Scope Details

Repository https://github.com/AviveWorld/Token

Commit c1232b2933b42c7b8ab0e7902a763f3e2f73c147

Whitepaper Not provided

Requirements Confidential

Technical Requirements https://github.com/AviveWorld/Token/blob/main/README.md

Contracts in Scope

./contracts/Avive.sol

15

https://github.com/AviveWorld/Token/tree/hacken-initial-audit
https://github.com/AviveWorld/Token/blob/hacken-initial-audit/README.md
https://github.com/AviveWorld/Token
https://github.com/AviveWorld/Token/blob/main/README.md



