
Smart Contract Code
Review And Security
Analysis Report

Customer: Sock

Date: 5 Dec, 2023

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank Sock for allowing us to conduct a Smart Contract Security

Assessment. This document outlines our methodology, limitations, and results

of the security assessment.

Sock is an ERC�4337 compliant contract implementation, and is designed to

allow for self-custody storage of cryptocurrencies in a safe and controlled

space.

Platform: EVM

Language: Solidity

Tags: Authorization, ERC�4337

Timeline: 24.11.2023 - 05.12.2023

Methodology: Link

Last review scope

Repository https://github.com/SockFinance/sock-account

Commit 0e95242dceab8815a44767f6ef2b20a693765e56

Remediation 1 79c848d82a59e9d99d4722b7f939e94c9a95df44

Remediation 2 0ba8d366dc7f386539f7e11037fda8ee7ce90223

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

10/10
Code quality score

100%
Test coverage

10/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

2
Total Findings

2
Resolved

0
Acknowledged

0
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 0 0 0 0

High 1 1 0 0

Medium 0 0 0 0

Low 1 1 0 0

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
Sock

Audited By
Arda Usman | SC Lead Auditor at Hacken OÜ
Kornel Światłowski| SC Auditor at Hacken OÜ

Approved By Grzegorz Trawiński | SC Audits Expert at Hacken OÜ

Website https://www.sock.app/

Changelog 27.11.2023 – Preliminary Report
05.12.1223 – Final Report

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://www.sock.app/
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Last review scope...2
Introduction... 6
System Overview..6
Executive Summary.. 7
Findings... 9

Critical..9
High..9

H01. Missing Constructor And Assagnition Of Admins In SockOwnable..... 9
Medium...11
Low... 12

L01. Missing Zero Address Validation... 12
Informational... 13

I01. Floating Pragma..13
I02. Higher Deployment Cost Due To Complex Implementation Of
_getFunctionSig().. 13
I03. Gas Inefficient Counter...14

Disclaimers.. 16
Appendix 1. Severity Definitions.. 17

Risk Levels... 18
Impact Levels.. 18
Likelihood Levels.. 19
Informational..19

Appendix 2. Scope... 20

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction
Hacken OÜ �Consultant) was contracted by Sock �Customer) to conduct a

Smart Contract Code Review and Security Analysis. This report presents the

findings of the security assessment of the Customer's smart contracts.

System Overview

Sock is an ERC�4337 compliant contract implementation, and is designed to

allow for self-custody storage of cryptocurrencies in a safe and controlled

space. It has the following contracts:

● SockRegistryAccessManager - Contract module that provides access

control mechanisms over the sock function registry.

● SockFunctionRegistry - A registry contract to manage allowed and

disallowed functions and their properties

● SockUserPermissions - Abstract contract module to handle user

permissions

● SockOwnable - Provides access control mechanisms with two types of

owners - 'owner' and 'sockOwner'. The 'owner' and 'sockOwner' can have

distinct rights and the distinction allows functions to be restricted to

either of them or both.

Privileged roles

● Owner: Maximal amount of control with the ability to change all other

roles within the contract.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● SockOwner: Can execute functions that fall within the Sock Function

registry.

● RegistryOwner: Can change the Owner of the contract only if recovery is

enabled.

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.

● Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 100.00% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score

As a result of the audit, the code contains no issues. The security score is 10

out of 10.

All found issues are displayed in the “Findings” section.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Summary

According to the assessment, the Customer's smart contract has the following

score: 10.0. The system users should acknowledge all the risks summed up in

the risks section of the report.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

No critical severity issues were found.

High

H01. Missing Constructor And Assignment Of Admins In SockOwnable

Impact High

Likelihood Medium

The SockOwnable entails a specialized implementation featuring three

administrative roles: _sockOwner, _owner, and _recoveryOwner. However, the

SockOwnable, SockRegistryAccessManager or SockUserPermissions contracts

lack a constructor() and the assignment of these roles, along with the necessary

functions for such assignments. For contracts intending to implement

SockOwnable, the responsibility falls upon them to manually assign these roles.

Failure to execute this assignment during deployment renders it impossible

afterward. Consequently, default values of the address �0�0� will be assigned to

these roles, rendering the ownable functionality unused.

Proof of Concept:

1. SockUserPermissions contract is implemented in ExampleSmartContract

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

2. ExampleSmartContract is missing an assignment of _sockOwner, _owner,

and _recoveryOwner roles.

3. Mentioned roles have a default value of 0�0 and can not be changed.

4. The role related operations will not be able to be performed by the

contract creator and the roles will not be assigned to new addresses

because the current authorized address is 0�0. This will create a lock

situation.

Recommendation: It is recommended to implement a constructor() in

SockOwnable, SockRegistryAccessManager or SockUserPermissions. and

assigning the provided addresses to the admin variables and conducting checks

against addresses with the value 0�0.

Path: ./contracts/sock-account/SockOwnable.sol

Found in: 0e95242dceab8815a44767f6ef2b20a693765e56

Status: Fixed �Revised commit: 79c848d8�

Remediation: Constructor with assignments of _sockOwner and _owner is now

added to the SockOwnable contract.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Medium

No medium severity issues were found.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Address parameters are being used without checking against the possibility of

0�0.

This can lead to unwanted external calls to 0�0.

Path: ./contracts/sock-account/SockRegistryAccessManager.sol:

_transferSockFunctionRegistry()

./contracts/sock-account/SockOwnable.sol: _transferSockOwnership(),

_transferOwnership()

Recommendation: Implement zero address checks.

Found in: 0e95242dceab8815a44767f6ef2b20a693765e56

Status: Fixed �Revised commit: 79c848d8�

Remediation: The zero address check is currently added into the

_transferOwnership() function. However, absence of zero address checks in the

remaining mentioned functions is desired to facilitate the revocation of sock

admin.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Informational

I01. Floating Pragma

The project uses floating pragmas ^0.8.17.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For example, they

might be deployed using an outdated pragma version which may include bugs

that affect the system negatively.

Paths: ./contracts/registry/SockFunctionRegistry.sol

./contracts/sock-account/SockUserPermissions.sol

./contracts/sock-account/SockRegistryAccessManager.sol

./contracts/sock-account/SockOwnable.sol

./contracts/interfaces/ISockFunctionRegistry.sol

./contracts/interfaces/ISockUserPermissions.sol

Recommendation: Consider locking the pragma version whenever possible and

avoid using a floating pragma in the final deployment. Consider known bugs

(https://github.com/ethereum/solidity/releases) for the compiler version that is

chosen.

Found in: 0e95242dceab8815a44767f6ef2b20a693765e56

Status: Fixed �Revised commit: 79c848d8�

Remediation: Pragma is now set to 0.8.17.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/ethereum/solidity/releases
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I02. Higher Deployment Cost Due To Complex Implementation Of
_getFunctionSig()

The present implementation of the _getFunctionSig() function contributes to the

escalation of deployment costs for the SockFunctionRegistry contract.

Achieving the same functionality can be accomplished with significantly

reduced deployment costs and complexity by implementing the following

formula: return bytes4(func[:4]);.

function _getFunctionSig(bytes calldata func) internal pure returns (bytes4) {

return bytes4((uint32(uint8(func[0])) << 24) | (uint32(uint8(func[1])) << 16) |

(uint32(uint8(func[2])) << 8) | uint32(uint8(func[3])));

}

Path: ./contracts/registry/SockFunctionRegistry.sol: _getFunctionSig()

Recommendation: Consider using the mentioned formula to lower deployment

costs and complexity of the contract.

Found in: 0e95242dceab8815a44767f6ef2b20a693765e56

Status: Fixed �Revised commit: 79c848d8�

Remediation: The suggested solution is used and deployment cost is now

reduced.

I03. Gas Inefficient Counter

In Solidity version 0.8 and above, arithmetic operations automatically include

checks for underflows and overflows. Although these checks are useful for

preventing calculation errors, they consume additional gas, leading to higher

transaction costs.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

In scenarios where underflows and overflows are not possible, the additional

checks introduced by Solidity 0.8 can be bypassed to save gas. This can be

done by placing the increment operation inside an unchecked{} block. This block

enables developers to perform arithmetic operations without the automatic

underflow and overflow checks, thus conserving gas when they are not needed.

Path: ./contracts/sock-account/SockUserPermissions.sol:

initializeUserPermissions()

Recommendation: To improve gas efficiency, consider placing the post-iteration

increment operation at the end of the loop inside an unchecked{} code block.

This avoids the standard overflow checks, thereby conserving gas. Ensure that

this technique is only employed in cases where an overflow is not possible.

Found in: 0e95242dceab8815a44767f6ef2b20a693765e56

Status: Fixed �Revised commit:

0ba8d366dc7f386539f7e11037fda8ee7ce90223�

Remediation: The suggested solution is used and deployment cost is now

reduced.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Scope details

Repository https://github.com/SockFinance/sock-account

Commit 0e95242dceab8815a44767f6ef2b20a693765e56

Whitepaper -

Requirements Link

Technical
Requirements Link

Contracts in Scope

./contracts/registry/SockFunctionRegistry.sol

./contracts/sock-account/SockUserPermissions.sol

./contracts/sock-account/SockRegistryAccessManager.sol

./contracts/sock-account/SockOwnable.sol

./contracts/interfaces/ISockFunctionRegistry.sol

./contracts/interfaces/ISockUserPermissions.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/SockFinance/sock-account
https://github.com/SockFinance/sock-account
https://github.com/SockFinance/sock-account
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Scope details

Repository https://github.com/SockFinance/sock-account

Commit 79c848d82a59e9d99d4722b7f939e94c9a95df44

Whitepaper -

Requirements Link

Technical
Requirements Link

Contracts in Scope

./contracts/registry/SockFunctionRegistry.sol

./contracts/sock-account/SockUserPermissions.sol

./contracts/sock-account/SockRegistryAccessManager.sol

./contracts/sock-account/SockOwnable.sol

./contracts/interfaces/ISockFunctionRegistry.sol

./contracts/interfaces/ISockUserPermissions.sol

Scope details

Repository https://github.com/SockFinance/sock-account

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/SockFinance/sock-account
https://github.com/SockFinance/sock-account
https://github.com/SockFinance/sock-account
https://github.com/SockFinance/sock-account
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Commit 0ba8d366dc7f386539f7e11037fda8ee7ce90223

Whitepaper -

Requirements Link

Technical
Requirements Link

Contracts in Scope

./contracts/registry/SockFunctionRegistry.sol

./contracts/sock-account/SockUserPermissions.sol

./contracts/sock-account/SockRegistryAccessManager.sol

./contracts/sock-account/SockOwnable.sol

./contracts/interfaces/ISockFunctionRegistry.sol

./contracts/interfaces/ISockUserPermissions.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/SockFinance/sock-account
https://github.com/SockFinance/sock-account
https://hacken.io/

