
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: VeChain
Date: 28 Nov, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for VeChain

Approved By
Niccolò Pozzolini | Lead Solidity SC Auditor
Maksym Fedorenko | Co-Auditor
Paul Fomichov | Approver

Tags Marketplace

Platform EVM

Language Solidity

Methodology Link

Website https://www.vechain.org/

Changelog 16.11.2023 – Initial Review
28.11.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Table of contents
Introduction 4
System Overview 4
Executive Summary 6
Risks 6
Findings 8

Critical 8
High 8

H01. Requirement Violation 8
H02. Denial of Service - Broken Functionality of the Auction 8
H03. Requirements Violation, Admin Cannot Cancel Users’ Auctions 9

Medium 10
M01. Redundant receive() functionality 10

Low 11
L01. Check-Effect-Interaction Pattern Violation 11
L02. Funds Collected By Operators Instead Of By Admins 11
L03. Redundant SafeMath Library 11
L04. Unclear Require Statement Error Strings 12
L05. Unvalidated Parameters 13
L06. Missing Event Emitting 13
L07. Unfinalized Code 14

Informational 14
I01. Usage of Magic Numbers Instead Of Constants 14
I02. Redundant Mapping Keys 14
I03. Unindexed offerType Events Parameter 15
I04. Code Duplication 16
I05. Redundant _msgSender(), Meta-Transactions Not Implemented 16
I06. Default State Variable Visibility 17
I07. Redundant Conditional Statement 17
I08. Redundant Structure Declaration 17
I09. Redundant Structure Field 17
I10. Use of uint256 Instead of Enums 18

Disclaimers 19
Appendix 1. Severity Definitions 20

Risk Levels 20
Impact Levels 21
Likelihood Levels 21
Informational 21

Appendix 2. Scope 22

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by VeChain (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The audit scope is composed by three implementations of marketplaces for
ERC721 tokens (VIP181 since the project is going to be deployed on
VeChain):

● OfferContractVIP180 - a contract which allows to set offers for
specific NFTs or NFT collections, the purchase offer might be made
with ERC-20/VIP-180 tokens.

● WorldOfVBidAuction - a contract for NFT auctions, which allows to set
up auctions for the NFT and specify the token which should be used
for purchase. Purchase might be made via an ERC-20/VIP-180 token or
native token.

● WorldOfVFixedPriceNonCustodial - non custodial marketplace where the
seller creates a listing and anyone as a buyer may execute the sale
by providing the price requested by the seller.

Privileged roles
● The role DEFAULT_ADMIN_ROLE can set “rotate” code to change the

operator, and modify the foundation fee.
● The role OPERATOR_ROLE can:

○ Cancel any listing on WorldOfVFixedPriceNonCustodial contract;
○ Cancel any auction on WorldOfVBidAuction contract;
○ Pause the contract to block such functionality:

■ OfferContrctVIP180
■ create a purchase offer for NFT or collection;
■ close purchase offer;

■ WorldOfBidAuction
■ create auction place a bid;
■ execute sale;
■ cancel auction;

■ WorldOfVFixedPriceNonCustodial
■ create listing;
■ make a purchase;
■ cancel listing;
■ cancel listing by admin.

○ Whitelist/de-whitelist VIP-180 and VIP-181 tokens which might
be used;

○ Modify enterprise fees;

www.hacken.io
4



○ Withdraw VTHO tokens from the contracts.

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided;
● Technical description is provided;
● NatSpec is complete.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured;

Test coverage
Code coverage of the project is 90.2% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score
As a result of the audit, the code contains no severity issue. The security
score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

15 November 2023 7 1 3 0

28 November 2023 0 0 0 0

Risks

● Fee-on-transfer tokens should not be whitelisted as they are not
compatible with the marketplaces.

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


● The marketplaces allow for enterprise and foundation fees, each one
is capped to 20%. There is thus the possibility for the marketplace
fees to be 40% of the paid price.

● The fees amount specified by NFT contracts following the ERC2981
standard, is overridden to be <= 50%.

● The contracts allow OPERATOR_ROLE to perform actions on behalf of the
users. Such functionality should be carefully implemented through
backend checks to prevent misuse from malicious users.

● The contract WorldOfVBidAuction allows to create an auction with a
start date in the past, while checking that the end date is in the
future.

● Auctions on WorldOfVBidAuction are not enforced: the seller can
cancel them even when they are expired.

● Operators can cancel any auction on WorldOfVBidAuction and any
listing on WorldOfVFixedPriceNonCustodial

● Fees in WorldOfVFixedPriceNonCustodial are retroactive: when changed
by the administrators, also open listings are affected.

● VTHO tokens might be withdrawn from the contract by the Operator.
● The contracts are upgradable, the logic and implementation might be

changed by the admin.
● The proxy implementation is out of scope.
● When the OfferContractVIP180 contract is paused any existing offer

might still be accepted.

www.hacken.io
7



Findings

Critical

No critical severity issues were found.

High

H01. Requirement Violation

Impact High

Likelihood High

The NatSpec of the function makeBuyOfferToToken() specifies that
“Amount of the offer is put in escrow until the offer is withdrawn or
superseded“, but this is not happening.

The function only checks that the user making the offer is allowing
the offer amount to the contract.

Path: ./contracts/OfferContractVIP180.sol : makeBuyOfferToToken()

Recommendation: Align the NatSpec requirements to the code logic, by
either adjusting the NatSpec or implementing the missing
functionality.

Found in: ab09639

Status: Fixed (Revised commit: b2568fc)

H02. Denial of Service - Broken Functionality of the Auction

Impact High

Likelihood High

The marketplace WorldOfBidAuction implements an auction sale model.
When a user gets outbidden, the previous highest bid is refund
through a push based approach susceptible to Denial of Service.

This refund should be pull based, because the implemented push based
design is vulnerable to a malicious contract reverting the
transaction when receiving the funds. It suffices for such a
malicious contract to implement a receive() function with a revert.

As a consequence, the auction being targeted cannot be outbidden, as
any attempt will revert. The malicious user would win any auction
with only one bid.

The auction cannot even be canceled since the cancelAuction()
function has the same problem.

www.hacken.io
8



Proof of Concept:

1. Deploy a contract with the following features:
○ A receive() function which reverts
○ A makeBid() function to perform the bid on the

marketplace
○ ERC721TokenReceiver’s onERC721Received() function to be

able to receive the NFT
2. Make a bid on an auction through the makeBid() function of the

malicious contract
3. Any further bid() on the marketplace will revert even if the

funds are higher than the malicious bid. The same applies for
cancelAuction()

Path: ./contracts/WorldOfBidAuction.sol : bid(), cancelAuction()

Recommendation: The general solution as already mentioned is to
implement a pull based approach: the user must come back to the
contract and call a specifically designed function to withdraw their
funds.

When a user gets outbidden, the contract should just increase an
internal balance for him to come and withdraw the related funds.

Found in: ab09639

Status: Fixed (Revised commit: 7282b76)

H03. Requirements Violation, Admin Cannot Cancel Users’ Auctions

Impact High

Likelihood High

According to the implementation of the WorldOfBidAuction marketplace,
any auction might be canceled at any time during the auction by the
admin. This is done using the cancelAdminAuction() function, which
sends the NFT back to the seller by calling the
ERC721(token).safeTransferFrom() function. However, if the seller is
a contract, this transfer execution might be reverted in the
onERC721Received callback function, when the seller does not wish to
end the auction.

This leads to the requirement violation and results in the inability
to cancel the auction by the admin.

Another minor situation arising from a possible abuse of the
ERC721(token).safeTransferFrom() functionality, is in the
executeSale() function. A malicious max bidder could prevent the
execution of executeSale() from the seller by reverting the NFT
receival. This combined with issue H03 would lead to the lock of the
NFT on sale, which could be unlocked only by outbidding the malicious
user. The likelihood of this minor situation is low, since the

www.hacken.io
9



attacker would also have his bidden funds locked together with the
NFT.

Proof of Concept:

1. The seller is a malicious contract which reverts on the
onERC721Received() function call when some flag is set and
works according to the standard otherwise.

2. The seller creates an auction from the “seller contract” and
transfers its NFT from it.

3. The seller sets the “seller contract” to revert the execution
when onERC721Received() function is called.

The Admin may not cancel the auction, OPERATOR_ROLE or maxBidUser are
not able to execute the sale until the seller decides to.

Path: ./contracts/WorldOfBidAuction.sol : cancelAdminAuction(),
executeSale()

Recommendation: Implement a pull based approach: the user must call a
specifically designed function to withdraw their NFTs, so the NFT
transfer may not block the function execution.

Found in: ab09639

Status: Fixed (Revised commit: 0036400)

Medium

M01. Redundant receive() functionality

Impact Medium

Likelihood Low

WorldOfVFixedPriceNonCustodial and WorldOfVBidAuction contracts
implement a receive() function, which is not required.

Mistakes from users would lead to funds loss. The funds would not
even be recovered by the administrators since a withdraw function is
lacking.

Path: ./contracts/WorldOfVFixedPriceNonCustodial.sol : receive()

./contracts/WorldOfVBidAuction.sol : receive()

Recommendation: Remove the receive() functions as they pose an
unnecessary risk for the users.

Found in: ab09639

Status: Fixed (Revised commit: f83a19e)

www.hacken.io
10



Low

L01. Check-Effect-Interaction Pattern Violation

Impact Medium

Likelihood Low

It is considered following best practices to avoid unclear situations
and prevent common attack vectors.

The Checks-Effects-Interactions pattern is violated. During the bid
function call, the state variables auction.maxBidUser, auction.maxBid
are updated after the external calls.

This may lead to reentrancies, race conditions, and denial of service
vulnerabilities during implementation of new functionality.

Paths: ./contracts/WorldOfVBidAuction.sol : createTokenAuction(),
bid()

Recommendation: Follow common best practices and implement the
function according to the Checks-Effects-Interactions pattern.

Found in: ab09639

Status: Fixed (Revised commit: f14c207)

L02. Funds Collected By Operators Instead Of By Admins

Impact Medium

Likelihood Low

The function adminWithdrawEnergy() lets operators withdraw VTHO
tokens from the marketplace contracts.

If such operation is part of the protocol operativity, it is okay to
be performed by operators, but the collected funds should not end up
in their control. VTHO tokens should be withdrawn to an address
solely controlled by the marketplace administrators.

Path: ./contracts/BaseMarketplaceContract.sol : adminWithdrawEnergy()

Recommendation: Change the funds recipient from the msg.sender
operator to a fund controlled by the administrators.

Found in: ab09639

Status: Fixed (Revised commit: f2e625e)

L03. Redundant SafeMath Library

Impact Medium

www.hacken.io
11



Likelihood Low

The marketplace contracts adopt SafeMath library for math operations,
while using solc version 0.8.22.

Prior to Solidity version 0.8.0, arithmetic overflows were not
handled natively by the language, and developers were encouraged to
use the SafeMath library as a safeguard against such errors.

However, with the release of Solidity version 0.8.0, the language
introduced new arithmetic overflow and underflow protection features
that made the SafeMath library redundant if using Solc versions above
0.8.0.

Paths: ./contracts/OfferContractVIP180.sol
./contracts/WorldOfVBidAuction.sol
./contracts/WorldOfVFixedPriceNonCustodial.sol

Recommendation: If the project utilizes a Solidity version above
0.8.0, it is recommended to avoid using the SafeMath library for
arithmetic operations. Instead, leverage the native arithmetic
overflow and underflow protection features provided by Solidity from
version 0.8.0 onwards.

Found in: ab09639

Status: Fixed (Revised commit: 761237)

L04. Unclear Require Statement Error Strings

Impact Medium

Likelihood Low

Error strings in require statements are often unclear and confusing.
It is suggested to also let the error sentence start with a capital
letter.

If the error strings have been made short to save Gas, the require
statement should be replaced by the if/revert pattern with custom
errors.

Path:

./contracts/OfferContractVIP180.sol : lines 200 (the contract uses a
whitelist, not a blacklist), 202, 253,

./contracts/WorldOfVBidAuction.sol : lines 142, 189,

./contracts/WorldOfVFixedPriceNonCustodial.sol : lines 107, 163, 164,
165, 227, 228, 252,

Recommendation: Change the error messages making them meaningful to
let the users understand what happened and how to prevent the error
from happening again.

www.hacken.io
12



Found in: ab09639

Status: Fixed (Revised commit: b302b29)

L05. Unvalidated Parameters

Impact Medium

Likelihood Low

The variables WorldOfVBidAuction.timerDuration and
BaseMarketplaceContract.CODE_VALIDITY are heavily used throughout the
contracts while not being validated when set during the contracts
initialization.

Since no setter is available for such variables, an erroneous setting
would require a contract redeploy.

Path:

./contracts/BaseMarketplaceContract.sol : CODE_VALIDITY

./contracts/WorldOfVBidAuction.sol : timerDuration

Recommendation: Validate the variables by checking that their value
is not zero, and possibly bound it to reasonable values.

Found in: ab09639

Status: Fixed (Revised commit: 773c2a6)

L06. Missing Event Emitting

Impact Medium

Likelihood Low

The contracts within the system do not emit events during the
important state changes such as fees changes, tokens withdrawals by
the admin and tokens whitelisting/de-whitelisting.

Events for critical state changes should be emitted for tracking
contract activity off-chain.

Paths:

./contracts/BaseMarketplaceContract.sol : rotate(),
adminModifyFoundationFee(), adminModifyEnterpriseFee(),
adminModifyVIP180(), adminModifyVIP181(), adminWithdrawEnergy().

Recommendation: Implement event emitting for all important state
changes to inform users and tracking things off-chain.

Found in: ab09639

Status: Fixed (Revised commit: 8b74769)
www.hacken.io

13



L07. Unfinalized Code

Impact Low

Likelihood Medium

The contracts have multiple commented lines and TODO comments,
qualifying the provided contracts as drafts.

Security audits are tied to specific code versions through commits,
the audited code should thus be the final version to be deployed.

Path: ./contracts/OfferContractVIP180.sol : lines 150, 192, 203

./contracts/WorldOfVBidAuction.sol : line 39

./contracts/WorldOfVFixedPriceNonCustodial.sol : lines 33, 156, 246

Recommendation: Finalize the contracts development.

Found in: ab09639

Status: Fixed (Revised commit: 58db80c)

Informational

I01. Usage of Magic Numbers Instead Of Constants

The contracts make large use of numeric literals, which should be
defined as constant variables to improve readability and code
clarity, since the variable name would already detail the numbers’
means.

Path: ./contracts/BaseMarketplaceContract.sol : init(),
adminModifyFoundationFee(), adminModifyEnterpriseFee()

./contracts/OfferContractVIP180.sol : initialize(), handleTransfer()

./contracts/WorldOfVBidAuction.sol : executeSale()

./contracts/WorldOfVFixedPriceNonCustodial.sol : initialize(),
handleProjectRoyaltySplit()

Recommendation: Declare numeric literal as constants and use the
declared constant variables throughout the contracts’ logic.

Found in: ab09639

Status: Fixed (Revised commit: 0c50377)

I02. Redundant Mapping Keys

Each marketplace contract declares a mapping to map three keys to the
auction/sale/listing.

www.hacken.io
14



The mappings are:

● OfferContractVIP180.offerToToken
● OfferContractVIP180.collectionOfferToToken
● WorldOfVBidAuction.tokenToAuction
● WorldOfVFixedPriceNonCustodial.tokenToSale

The three keys are:

● offerId/auctionId/saleId
● The NFT collection address
● The NFT’s tokenID - missing in

OfferContractVIP180.collectionOfferToToken but the issue is
still valid with a single redundant key

Since the offerId/auctionId/saleId are unique, the other two keys are
redundant.

The variables offerId/auctionId/saleId are made non-overlapping
through the marketplaces contract; at line 23 of OfferContractVIP180
contract the developers noted in a comment “using this trick we can
keep the saleId as parameter in the URL to ease the URL size”, but
this is not the case if the other two keys are not removed from the
mappings.

Paths:

./contracts/OfferContractVIP180.sol

./contracts/WorldOfVBidAuction.sol

./contracts/WorldOfVFixedPriceNonCustodial.sol

Recommendation: Remove the redundant keys and enforce the
relationship offerId/auctionId/saleId to NFT through other means,
such as require statements or if/revert.

If the client desires to keep the mappings as-is, the adoption of
named mappings is suggested to improve the code readability.

Found in: ab09639

Status: Fixed (Revised commit: e33f97a)

I03. Unindexed offerType Events Parameter

The marketplace contract OfferContractVIP180 allows for two type of
offers: offers to specific tokens and offers to any token of a
specific collection.

The events are being shared between the two offers, and the offerType
parameter is not indexed because the maximum number of indexed
parameters has been reached.

www.hacken.io
15



Off-chain tracking will be inefficient, unless the events get
duplicated for the two offer types.

Path: ./contracts/OfferContractVIP180.sol

Recommendation: To improve off-chain events tracking, duplicate the
events to have one set for token offers and one set for collection
offers.

Found in: ab09639

Status: Fixed (Revised commit: e33f97a)

I04. Code Duplication

The functions acceptCollectionBuyOffer() and acceptTokenBuyOffer()
implement the same code besides the offerInfo variable declaration.

A large portion of code is also shared by the functions
cancelAuction() and cancelAdminAuction() in WorldOfVBidAuction
contract.

Code duplication within the contract leads to increased deployment
gas costs and decreased code quality.

Path: ./contracts/OfferContractVIP180.sol

Recommendation: Refactor the duplicated code segments into reusable
functions or employ appropriate design patterns to eliminate code
duplication.

Found in: ab09639

Status: Fixed (Revised commit: cf4d39f)

I05. Redundant _msgSender(), Meta-Transactions Not Implemented

The _msgSender() function is needed to handle the meta transactions,
in the OpenZeppelin library, it is used to support the development of
the libraries which might be used with the contracts with the
specified TrustedForwarder or to be used in such contracts directly.

However, the current implementation is not a library and does not
rewrite the _msgSender() function to support meta transactions.

This affects the code clarity.

Paths:

./contracts/OfferContractVIP180.sol

./contracts/WorldOfVBidAuction.sol

./contracts/WorldOfVFixedPriceNonCustodial.sol

./contracts/BaseMarketplaceContract.sol

www.hacken.io
16



Recommendation: Replace the _msgSender() with a regular msg.sender.

Found in: ab09639

Status: Fixed (Revised commit: a277a39)

I06. Default State Variable Visibility

The lack of variable visibility may cause unexpected variable
visibility in derived contracts.

Path: ./contracts/BaseMarketplaceContract.sol : CODE_VALIDITY

Recommendation: Specify the needed visibility during the variable
initialization.

Found in: ab09639

Status: Fixed (Revised commit: 19c054c)

I07. Redundant Conditional Statement

The BaseMarketplaceContract contract has the function
adminModifyVIP180 which allows to whitelist tokens which might be
accepted within the marketplace, but it is required to transfer one
token to the contract before whitelisting it. These tokens might not
be retrieved from the contract.

Path: ./contracts/BaseMarketplaceContract.sol : adminModifyVIP180()

Recommendation: Remove the conditional statement which requires to
transfer 1 token to the contract before whitelisting.

Found in: ab09639

Status: Fixed (Revised commit: 9ce4e38)

I08. Redundant Structure Declaration

The OfferContractVIP180 contract declares the GlobalOfferDetails
structure, which is never used within the contract. This affects the
code readability.

Path: ./contracts/OfferContractVIP180.sol : GlobalOfferDetails

Recommendation: Remove unused structure declaration to simplify the
code readability, verify that this is not a part of unfinalized smart
contract functionality.

Found in: ab09639

Status: Fixed (Revised commit: b2568fc)

I09. Redundant Structure Field

The OfferContractVIP180 contract declares the TokenOfferDetails and
GlobalCollectionDetails structure, which have the seller field that

www.hacken.io
17



is never used within the contract. The field is only set to zero
value, which does not affect the logic.

Path: ./contracts/OfferContractVIP180.sol : TokenOfferDetails,
GlobalCollectionDetails

Recommendation: Either remove the unused structure field or make use
of the seller field by assigning the correct value, instead of
address(0). This adjustment is necessary if the value needs to be
accessed on the frontend or by third-party smart contract systems.

Found in: ab09639

Status: Fixed (Revised commit: 0ab450a)

I10. Use of uint256 Instead of Enums

The OfferContractVIP180 contract has multiple structures with the
offerType field; the field has 3 possible values such as: 0, 1, 3.

This effect is code readability and supportability.

Path: ./contracts/OfferContractVIP180.sol :
TokenOfferDetails.offerType, GlobalOfferDetails.offerType,
GlobalCollectionDetails.offerType

Recommendation: Declare the OfferType enum and update the offerType
field type to this Enum.

Found in: ab09639

Status: Fixed (Revised commit: a5084f9)

www.hacken.io
18



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
19



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
20



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
21



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/vechainfoundation/nft-maas-sc

Commit ab09639829a

Contracts File: BaseMarketplaceContract.sol
SHA3: c4f55d4c6c2609cd3d1e40270e4d3cc75fcafdd4db0e7623ac65c74debee8472

File: OfferContractVIP180.sol
SHA3: 5ea7cba1d2893253101c1c6b79440d4e84d28808e77bfcc27ba4483d49dda1d3

File: WorldOfVBidAuction.sol
SHA3: 68763861e56be43df41ad1d44682a6d0ad4d7cb3c1b561cb8630f62e9e1ae3cc

File: WorldOfVFixedPriceNonCustodial.sol
SHA3: 2f432b1b44a635ce3dbe85a4250c1552469b521fda09cb9202a9ca588496e41d

www.hacken.io
22


