
Smart Contract Code

Review And Security

Analysis Report

Customer: Bonuz

Date: 18.12.2023



We thank Bonuz for allowing us to conduct a Smart Contract Security Assessment. This document

outlines our methodology, limitations, and results of the security assessment.  

Bonuz is a groundbreaking solution, synthesizing top-tier DEX methodologies into a novel, high-

performance flywheel.

Platform: EVM

Language: Solidity

Tags: ERC721

Timeline: 15.12.2023-18.12.2023

Methodology: https://hackenio.cc/sc_methodology

Last Review Scope

Repository https://github.com/bonuz-market/BonuzSmartContracts

Commit 4f6817d

2

https://hackenio.cc/sc_methodology
https://github.com/bonuz-market/BonuzSmartContracts


Audit Summary 

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 2 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 2

Vulnerability Status

F-2023-0027 - Missing zero address check Fixed

F-2023-0034 - Missing validation in reedem voucher function Fixed

3

https://portal.hacken.io/App/Projects/Details/b8f93350-7f2c-430c-aa6e-06c635349641/Finding/0e1effff-52b7-4073-a85e-5e19ce61a27a
https://portal.hacken.io/App/Projects/Details/b8f93350-7f2c-430c-aa6e-06c635349641/Finding/c027d4d9-e14d-4b9a-be11-d026a864ac3e


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Bonuz

Audited By Carlo Parisi, Roman Tiutiun

Approved By Przemyslaw Swiatowiec

Changelog 18.12.2023 Initial Review

4



6

6

7

7

7

7

7

8

9

9

12

14

15

16

Table to Contents

System Overview

Privileged Roles

Executive Summary

Documentation Quality

Code Quality

Test Coverage

Security Score

Risks

Findings

Vulnerability Details

Observation Details

Disclaimers

Appendix 1. Severity Definitions

Appendix 2. Scope



System Overview

The BonuzTokens Contract creates and manages, ERC721 tokens, featuring specialized roles for

administrators and issuers, and capabilities for token metadata handling, redemption, and loyalty

point management.

The BonuzSocialId Contract focuses on establishing and managing user profiles on the blockchain,

allowing the addition and control of personal details and social links, with specific functionalities

accessible only to authorized issuers and designed with upgradeability and security in mind.

Privileged roles

The owner of the bonuzSocialId contract is able to:

 pause; 

unpause;

set issuer;

set allowed social link;

The issuer of BonuzSocialId contract is able to:

set the user image;

set the user handle;

set the user name;

set the user social links;

The Issuer of the BonuzTokens contract is able to:

mint tokens;

redeem voucher;

add loyalty Points;

remove loyalty points;

The ower of the BonuzTokens contract is able to:

set an admin;

set pause;

The admin of BonuzTokens contract is able to:

set an issuer;

6



Executive Summary

The score measurement details can be found in the corresponding section of the scoring

methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Development environment is described.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 100% (branch coverage),

Security score

As a result of the audit, the code contains 0 issues. The security score is 10 out of 10. 

All found issues are displayed in the “Findings” section.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

The mint() function in the provided smart contract lacks proper validation for the _expiryDate

parameter when called by an onlyIssuer. If an onlyIssuer adds _expiryDate as 0, it creates a

vulnerability where the token becomes locked indefinitely. This oversight may allow an issuer to

unintentionally or maliciously lock a token permanently, impacting the token's intended lifecycle

and functionality.

Using a version of the OpenZeppelin contracts from the version 5 and above will create problems

when using the dependency ERC721, the project overrides _beforeTokenTransfer() to reject

invalid transactions, the function _beforeTokenTransfer() has been removed in the newer

version of the OpenZeppelin contracts.

Using a version of the OpenZeppelin contracts from the version 5 and above will create problems

when using the dependency Ownable and OwnableUpgradeable, the constructor() and

initializer() have changed in the newer version of the OpenZeppelin contracts.

Every function in the scope is either a view function or a function assigned to a predetermined

role in the contract, as such, the contracts are extremely centralized, the admin, owners and

issuers hold a lot of power over the contracts that should be handled carefully.

The function getUserProfileAndSocialLinks() will return an array of social links, among

other things, if any of the requested platforms are not allowed the returned array will have empty

elements, this should be taken into account when interacting with this function.

8



Findings

Vulnerability Details

F-2023-0027 - Missing zero address check - Low

Description: BonuzSocialId.sol and BonuzTokens.sol contracts, address

parameters are used without proper validation against a zero address

(0x0) check. 

This could lead to the assignment of a zero address. For instance

initialize() in BonuzSocialId.sol contract might allow adding a

zero address to the issuers mapping,

The following parameters are not checked for the zero value:

BonuzSocialId.sol

initialize()

address[] memory _initialIssuers;

setUserName()

address _user;

setSocialLink()

address _user;

BonuzTokens.sol

setIssuer()

address _account

setAdmin()

address _account - if 0x0 was set as an owner, the privileged

users will be able to fix the issue in a separate transaction.

The impact of this issue was estimated as low. However, It could still

disrupt the intended functionality of the smart contract for a limited

amount of time.

Path: ./contracts/BonuzSocialId.sol:  initialize(), setUserName(),

setSocialLink();

./contracts/BonuzTokens.sol:  initialize(), setUserName(), setSocialLink();

Found in: 16b25aa

Status: Fixed

Classification

Severity: Low

Impact: 2/5

9

https://portal.hacken.io/App/Projects/Details/b8f93350-7f2c-430c-aa6e-06c635349641/Finding/0e1effff-52b7-4073-a85e-5e19ce61a27a


Likelihood: 1/5

Recommendations

Recommendation:  It is recommended to implement a zero address check when an address

is passed as a parameter of a function.

Resolution

Zero address checks were introduced.

10



F-2023-0034 - Missing validation in redeem voucher function - Low

Description: The redeemVoucher() function is susceptible to a double spending

vulnerability due to the absence of a check to verify whether a voucher

has been previously redeemed. Without this validation, an attacker or

system error could exploit the oversight, allowing the same voucher to be

redeemed multiple times. Double spending, in this context, refers to the

unauthorized or unintentional reuse of vouchers, leading to potential

financial discrepancies and compromising the integrity of the system.

Implementing a validation check is essential to mitigate the risk of double

spending and ensure the proper functioning of the voucher redemption

process.

Path: ./contracts/BonuzTokens.sol:  redeemVoucher();

Found in: 16b25aa

Status: Fixed

Classification

Severity: Low

Impact: 3/5

Likelihood: 1/5

Recommendations

Recommendation: Add a check to verify that the voucher has not been redeemed already.

Code Example:

require(_token[tokenId].redeemDate == 0, “The voucher has

already been redeemed”);

Resolution

Check was added to the redeem voucher function.

11

https://portal.hacken.io/App/Projects/Details/b8f93350-7f2c-430c-aa6e-06c635349641/Finding/c027d4d9-e14d-4b9a-be11-d026a864ac3e


Observation Details

F-2023-0033 - Functions That Can Be Declared External - Info

Description: In order to save Gas, public functions that are never called in the contract

should be declared as external.  

setUserProfile(), setSocialLink(), setSocialLinks(),

getUserProfileAndSocialLinks(), getIssuer() and

getAllowedSocialLinks() can be declared external.

Path: ./contracts/BonuzSocialId.sol: setUserProfile(), setSocialLink(),

setSocialLinks(), getUserProfileAndSocialLinks(), getIssuer(),

getAllowedSocialLinks() ;

Found in: 16b25aa

Status: Fixed

Recommendations

Recommendation: Use the external attribute for functions never called from the contract.

Resolution

Functions aforementioned functions are declared as external.

12

https://portal.hacken.io/App/Projects/Details/b8f93350-7f2c-430c-aa6e-06c635349641/Finding/715a8692-2b1a-4650-9311-ab26b78db664


F-2023-0079 - Floating Pragma - Info

Description: The project uses floating pragmas pragma solidity ^0.8.17.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Path: ./contracts/*

Found in: 16b25aa

Status: Fixed

Recommendations

Recommendation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the

compiler version that is chosen.

Resolution

The pragma is now locked to 0.8.17 version.

External References:
Known Bug

13

https://portal.hacken.io/App/Projects/Details/b8f93350-7f2c-430c-aa6e-06c635349641/Finding/b8d088b3-03cf-41ff-be12-4e31f6beda87
https://github.com/ethereum/solidity/releases


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

14



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that considers the potential

impact of any vulnerabilities and the likelihood of them being exploited. The matrix of impact and

likelihood is a commonly used tool in risk management to help assess and prioritize risks. 

The impact of a vulnerability refers to the potential harm that could result if it were to be exploited.

For smart contracts, this could include the loss of funds or assets, unauthorized access or control, or

reputational damage. 

The likelihood of a vulnerability being exploited is determined by considering the likelihood of an

attack occurring, the level of skill or resources required to exploit the vulnerability, and the presence

of any mitigating controls that could reduce the likelihood of exploitation.

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

15



Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/bonuz-market/BonuzSmartContracts

Commit 4f6817d

Contracts in Scope

./contracts/BonuzSocialId.sol

./contracts/BonuzTokens.sol

16

https://github.com/bonuz-market/BonuzSmartContracts



