
Smart Contract Code

Review And Security

Analysis Report

Customer: Qoodo

Date: 08/01/2024

We thank Qoodo for allowing us to conduct a Smart Contract Security Assessment. This document

outlines our methodology, limitations, and results of the security assessment.

Qoodo integrates blockchain with AI and cloud technologies, offering a multifaceted platform for quality

management and regulatory compliance, featuring transparent data tracking and product authentication.

Platform: Ethereum

Language: Solidity

Tags: ERC20 Staking

Timeline: - - -

Methodology: https://hackenio.cc/sc_methodology

Last Review Scope

Repository https://github.com/NAPLOZZ/QDO_Staking

Commit 0cac0db

2

https://hackenio.cc/sc_methodology
https://github.com/NAPLOZZ/QDO_Staking

Audit Summary

10/10 8/10 100% 8/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.4/10
The system users should acknowledge all the risks summed up in the risks section of the report

16 15 1 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 2

Medium 1

Low 4

Vulnerability Status

F-2023-0084 - Mismatch Between Documentation and Implementation Accepted

F-2023-0065 - Missing Zero Address Validation Fixed

F-2023-0067 - Redundant and Ineffective Implementation of Ownable Fixed

F-2023-0068 - Floating Pragma Fixed

F-2023-0069 - Inadequate Balance Checks in stake() and withdraw() functions Fixed

F-2023-0070 - Redundancy of stakingTokenBalance Variable Fixed

F-2023-0071 - Redundancy Of getStakingTokenBalance() Function Fixed

F-2023-0072 - Potential underflow due to ambiguity in documentation Fixed

F-2023-0076 - Lack of Phase Checks Leading to Potential Fund Lock Fixed

F-2023-0077 - Absence of Events on Critical State Changes Fixed

F-2023-0081 - Possible Underflow in stake() and withdraw() Functions Due to Reward Calculation Fixed

F-2023-0082 - Absence of Emergency Withdrawal Function Fixed

F-2023-0083 - Limitation in Reward Claiming Process Due to Combined withdraw() Function Fixed

F-2023-0085 - Redundancy and Inefficiency in Admin Check in endPool() Function Fixed

F-2024-0352 - Improper sanity check Fixed

F-2024-0376 - Owner Can Renounce Ownership Fixed

3

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/eb1ed9db-c1fc-4ca2-a4a0-85e27160133d
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/dde296f9-10f1-40ad-b37c-3950a9464830
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/6c7a22dc-e82e-4667-9c90-d14e621e7d0a
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/3e55afe9-aa90-4061-8baf-3e54ee2a87c3
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/38184a28-e5b3-460d-ab93-d566a9940bb3
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/1d453818-7d5c-49b8-8b9a-4e3fff1b3dcf
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/c3f0b534-4a17-4c3e-9294-e0cce31e4802
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/cdda853e-ef89-4b34-8eed-c1e48ebcd270
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/8b5f02fb-f7b7-4bf3-b9be-400c157fc4a8
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/5195bb59-4247-4c57-98d2-2ad544375b32
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/37aa3d92-529d-4ee3-afb0-567135ab8f82
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/e97c71e5-a2fb-4b9c-b040-e33df08cf962
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/692e9b04-566a-4865-8b55-2358ea71c8db
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/04e040b3-fb6e-4383-9efd-1103ca680889
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/73166be6-addb-41ff-bd97-31f273206fbb
https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/b63eb164-6f98-4731-bf0d-57dd84f3fa3c

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of

this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Qoodo

Audited By Eren Gonen, Vladyslav Khomenko

Approved By Grzegorz Trawinski

Website https://qoodo.io/

Changelog 07/12/2023 - Preliminary Report

08/01/2024 - Second Report

4

https://qoodo.io/

Table to Contents

System Overview 6

Executive Summary 7

Risks 8

Findings 9

Disclaimer 33

Appendix 1. Severity Definitions 34

Appendix 2. Scope 35

System Overview

Qoodo is a staking protocol with the following contracts:

Staking — Staking contract, represents a straightforward staking mechanism that enables users to stake

ERC20 tokens and progressively accumulate rewards.

Privileged roles

The admin of the Staking contract can

Set a new owner for the contract.

Set or modify the reward distribution speed.

Fund the contract for distribution of rewards with

reward Tokens.

End the staking pool, transferring remaining

tokens to the admin wallet.

6

Executive Summary

This report presents an in-depth analysis and scoring of the Customer's smart contract project. Detailed

scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 8 out of 10.

Technical description is sufficient.

The description of how to run the project is missing.

There is a mismatch between the documentation and the implementation.

The code is covered with NatSpec comments.

Code quality

The total Code Quality score is 8 out of 10.

The code does not follow the Solidity best practices.

Test coverage

Code coverage of the project is 100% (branch coverage)

Deployment and basic user interactions are covered with tests.

Some test cases are failing.

The project has not been adequately tested with multiple users.

Security score

Upon auditing, the code was found to contain 1 critical, 2 high, 1 medium, and 4 low severity issues,

leading to a security score of 10 out of 10. Subsequent to this evaluation, remedial actions have been

successfully implemented, leading to the resolution of all identified issues across the critical, high, and

medium severity categories, as well as 3 out of the 4 low severity issues, with one low severity issue

remaining unresolved.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the Customer's smart contract yields an overall score of 1.9. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects of

the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The admin has authority to change reward distribution speed after user staked their token

8

Findings

Vulnerability Details

F-2023-0076 - Lack of Phase Checks Leading to Potential Fund Lock -

Critical

Description: The current staking contract is missing checks if the contract was funded and

if it was terminated using the endPool() function. This lack of validation

leads to scenarios where user funds might be locked in the contract, either

temporarily or permanently.

State of Unfunded Contract

The stake() function does not check if the admin has funded the

contract. Consequently, users can stake their tokens irrespective of the

contract's funding status. In this case, a problem arises when users try to

withdraw their deposited tokens. The withdraw() function is designed

to enable users to retrieve both their rewards and deposited tokens.

However, if the admin has not funded the contract, the function will fail.

When users attempt to withdraw, the withdraw() function tries to

subtract the reward amount from rewardsTokenBalance. If the admin

has not funded the contract, rewardsTokenBalance would be zero,

leading to an underflow and contract revert. This results in a temporary

lock of the deposited funds until the admin funds the contract.

 function withdraw(uint _amount) external updateReward(msg.sender) {

 ...

 rewardsTokenBalance -= reward;

 rewards[msg.sender] = 0;

 rewardsToken.safeTransfer(msg.sender, reward);

 }

State of Contract Termination

In a scenario where the admin decides to terminate the pool, indicating

that the contract will no longer be used, users can still stake their tokens

due to a missing validation in the stake() function. Since there will not

be sufficient rewards in this case, users' deposited funds become stuck

in the contract. Whether this lock is temporary or permanent depends on

the admin's subsequent actions.

Impact:

Risk of Fund Lock: Users face the risk of their funds being temporarily or

permanently locked in the contract due to the lack of phase checks.

Operational Risk: The contract's inability to adapt to its funding and

operational state can lead to user dissatisfaction and potential

reputational damage.

9

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/8b5f02fb-f7b7-4bf3-b9be-400c157fc4a8

This lack of checks creates potential scenarios that could lead to users' funds

being locked within the contract.

Path: ./contracts/Staking.sol: endPool(), stake(), withdraw(), fund()

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Critical

Impact: 5/5

Likelihood: 5/5

Recommendations

Recommendation: Implement Funding Status Check:

To enhance the safety and reliability of the Staking contract, it is

recommended to implement a mechanism that checks both the funding

status of the contract and the sufficiency of funds to cover all potential user

rewards before allowing users to execute the stake() function.

Pause Mechanism Post-Contract Termination:

Implement a pause mechanism: Once this function is called, indicating the

termination of the contract, the stake() function should be disabled or

paused to prevent any new stakes.

Enhanced Withdrawal Functionality:

Implement emergency withdrawal functionality to allow users to safely

withdraw their staked tokens even in scenarios where the contract is paused

or terminated. This ensures that users can always retrieve their staked assets

irrespective of the contract's operational status.

Remediation(revised commit: c12e59c): The funded amount check was

added to the stake() function. The funded amount would reset if the admin

calls the endPool() function. It was no longer possible to stake any amount

after endPool() was called, or if there were no funds inside the contract.

10

F-2023-0072 - Potential underflow due to ambiguity in documentation

- High

Description: The endPool() function in the Staking contract aims to close the staking

pool and transfer any remaining reward tokens to the admin's wallet.

However, the calculation involves subtraction of balances of potentially

unrelated ERC20 tokens. It is not clear from the code or documentation

whether tokens for staking and rewards are two different tokens or the same

token.

The issue arises when subtracting _totalSupply, the total amount of staked

tokens, from the balance of reward tokens

(rewardsToken.balanceOf(address(this))).

In the Ethereum blockchain, ERC20 tokens can have varying decimals, such

as USDT and others. For instance, consider a scenario where the

rewardsToken has a decimal of 6, and the stakingToken has a decimal of

18. If the admin deposits 10,000 reward tokens into the contract using the

fund() function, the contract's reward token balance would increase to 1E10

(10,000,000,000), given the reward token's decimal is 6.

Should a user stake 1 staking token, _totalSupply would rise to 1E18

(1,000,000,000,000,000,000). The subtraction in the endPool()

function:

function endPool() public {

 ...

 rewardsToken.safeTransfer(

 msg.sender,

 rewardsToken.balanceOf(address(this)) - _totalSupply

);

 }

would then cause an underflow error, as _totalSupply exceeds

rewardsToken.balanceOf(address(this)). This discrepancy can result

in the reward funds being locked in the contract, especially if the admin

needs to cancel the pool in emergency situations.

Path: ./contracts/Staking.sol: endPool()

Found In: 0cac0db

Status: Fixed

Classification

Severity: High

11

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/cdda853e-ef89-4b34-8eed-c1e48ebcd270

Impact: 5/5

Likelihood: 1/5

Recommendations

Recommendation: Modify the endPool() function to correctly handle the transfer of remaining

reward tokens. Instead of subtracting _totalSupply from

rewardsToken.balanceOf(address(this)), consider implementing a

more reliable method to calculate the amount of reward tokens that can be

safely transferred to the admin.

Remediation(revised commit: c12e59c): The reward token and stake token

will be set to the same address. The documentation was updated

accordingly.

12

F-2023-0081 - Possible Underflow in stake() and withdraw() Functions

Due to Reward Calculation - High

Description: The stake() and withdraw() functions in the contract are modified by

updateReward(), which updates the contract's state variables and the

variables associated with msg.sender before executing the function. The

updateReward() modifier internally calls the earned() function, which

calculates the rewards for a given account. This calculation involves a call to

rewardPerToken() function The rewardPerToken() function is designed

to return zero under specific conditions, such as when _totalSupply equals

zero, indicating no tokens are deposited in the contract.

This design can lead to issues in certain scenarios. For instance, consider a

situation where the staking contract is active and correctly funded. Suppose

a user executes the stake() function, which increases _totalSupply. If

this user is the only one in the pool and decides to withdraw their entire

deposited amount an hour later, the withdraw function will transfer the user's

current rewards and update the userRewardPerTokenPaid[account]

variable. In this scenario, the user successfully withdraws their entire amount.

However, since they were the only person in the pool and withdrew

everything, _totalSupply drops to zero. If the user attempts to execute the

stake() function again, the updateReward modifier, which eventually calls

the earned() function, will be triggered. This function will revert due to the

subtraction:

rewardPerToken() - userRewardPerTokenPaid[account]

Actual code:

function earned(address account) public view returns (uint) {

 return

 ((_balances[account] *

 (rewardPerToken() - userRewardPerTokenPaid[account])) / 1e18) +

 rewards[account];

}

Since the userRewardPerTokenPaid[account] variable has increased due

to the successful reward claim, and _totalSupply has decreased to zero

(because the user withdrew all their tokens), rewardPerToken() will return

zero. This is due to its conditional statement:

function rewardPerToken() public view returns (uint) {

 if (_totalSupply == 0) {

 return 0;

 }

 ...

}

13

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/37aa3d92-529d-4ee3-afb0-567135ab8f82

Furthermore, there's another scenario where this calculation could result in an

underflow for some users. If the admin reduces the rewardRate to a value

lower than the current rate via setNew() function, and some users have

already claimed their rewards, the rewardPerToken() function will return a

value lower than userRewardPerTokenPaid[account]. Consequently, if

these users attempt to execute withdraw() function, it will revert with an

underflow error.

Therefore, the subtraction mentioned above can lead to an underflow in

specific scenarios, temporarily blocking the stake function and potentially

hindering withdrawals as well.

Path: ./contracts/Staking.sol: stake(), withdraw(), updateReward(), earned(),

rewardPerToken(), setNew()

Found In: 0cac0db

Status: Fixed

Classification

Severity: High

Impact: 4/5

Likelihood: 4/5

Recommendations

Recommendation: Modify the earned() and rewardPerToken() functions to handle scenarios

where _totalSupply is zero or rewardRate is reduced, preventing

arithmetic underflow.

Remediation(revised commit: c12e59c): If the rewardPerToken()

function returns zero, the earned() function will immediately return zero,

making underflow no longer possible.

Evidences

Forge Test

Reproduce:
POC Steps:

Initial Staking and Withdrawal:

A user stakes tokens, increasing _totalSupply.

Later, the user withdraws their entire stake, leading to _totalSupply

being reduced to zero.

Reward Calculation Post-Withdrawal:

14

Upon withdrawal, the user's userRewardPerTokenPaid[account] is

updated with their claimed reward amount.

If the user attempts to stake again, the updateReward() modifier is

invoked, which calls earned().

Inside earned(), the operation rewardPerToken() -

userRewardPerTokenPaid[account] is performed.

Underflow in Reward Calculation:

Since rewardPerToken() returns zero (due to _totalSupply being zero),

and userRewardPerTokenPaid[account] is a positive value (from the

previous reward claim), this subtraction results in an underflow.

Temporary Blockage of stake():

The underflow in the earned() function causes a revert, temporarily

preventing the user from staking again.

POC Code:

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../contracts/Staking.sol";

import "../contracts/Qoodo.sol";

import "../contracts/MockERC20.sol";

import "ds-test/test.sol";

import "forge-std/console.sol";

contract EarnedDOSPOC is Test {

 Staking public staking;

 MockERC20 public stakingToken;

 MockERC20 public rewardToken;

 address public alice;

 uint256 constant FUND_AMOUNT = 1E18;

 uint256 constant USER_DEPOSIT_AMOUNT = 1E18;

 uint256 constant ONE_HOUR = 3600;

 function setUp() public {

 stakingToken = new MockERC20(18);

 rewardToken = new MockERC20

See more

Results:
[FAIL. Reason: panic: arithmetic underflow or overflow

(0x11)] testEarnedDOS() (gas: 386907)

Logs:

Alice Reward: 3600

15

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/37aa3d92-529d-4ee3-afb0-567135ab8f82

Alice Staked: 1000000000000000000

Reward Per Token: 3600

Stored Reward Per Token: 0

Last Update Time: 0

Total Deposit: 0

Reward Per Token: 0

User Reward Per Token Paid: 3600

Files: EarnedDOSPOC.t.sol

MockERC20.sol

16

F-2024-0352 - Improper sanity check - Medium

Description: When user unstakes, the contract needs to make sure that user:

only gets only as much as they staked

gets rewards according to their stake but only as much as there is

undistributed rewards

Current implementation of the contract also checks the balance of the user

and only allows them to withdraw as much as they already have.

require(stakingToken.balanceOf(address(msg.sender)) >=

_amount, 'Cannot withdraw more than the balance');

This means if user stakes all their tokens, they wouldn't be able to withdraw

anything unless they acquire some tokens elsewhere.

Path: ./contracts/Staking.sol

Found in: a0597db

Assets:
Staking.sol [https://github.com/hknio/QDO_Staking-

7318c880426a78dd17d14ce273e]

Status: Fixed

Classification

Severity: Medium

Impact: 2/5

Likelihood: 3/5

Recommendations

Recommendation: Remove the following line:

require(stakingToken.balanceOf(address(msg.sender)) >=

_amount, 'Cannot withdraw more than the balance');

Remediation(revised commit: 3ae5704): The mentioned line was removed.

The withdraw() function will not revert under the previously described

specific conditions anymore.

17

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/73166be6-addb-41ff-bd97-31f273206fbb

F-2023-0069 - Inadequate Balance Checks in stake() and withdraw()

functions - Low

Description: The Staking contract, lacks adequate balance checks in its stake() and

withdraw() functions. This lack of proper checks leads to inappropriate

revert messages and potential confusion for users.

Inadequate Balance Validation in stake():

The stake() function in the Staking contract lacks a preliminary check to

verify if the user has a sufficient token balance before executing the

safeTransferFrom() call. While safeTransferFrom() inherently reverts if

the balance is insufficient, the absence of an explicit check upfront can lead

to less descriptive revert messages. This could potentially confuse users

about the reason for the transaction failure. Introducing an initial balance

validation could provide a clearer, custom error message and potentially save

gas by avoiding execution of subsequent operations if the transaction is

destined to fail.

Insufficient Balance Checks in withdraw():

The withdraw() function lacks a validation to ensure that the user's balance

is sufficient to cover the withdrawal amount. If a user who has never staked

tokens (balance = 0) attempts to withdraw, the contract will revert due to an

underflow error instead of insufficient balance during the subtraction

_balances[msg.sender] -= _amount This could be misleading and

confusing, as it does not clearly indicate an insufficient balance.

Additionally, the withdraw() function does not validate if the provided

withdrawal amount is less than or equal to _totalSupply,

stakingTokenBalance, and rewardsTokenBalance. If the amount

exceeding these values leads to a revert due to underflow, resulting in

unclear error messages for users.

Such issues may result in users receiving error messages that do not

accurately describe the problem, like insufficient balance. These unclear

revert messages and underflow errors can be particularly baffling for users

not well-versed in the contract's inner workings.

Path: ./contracts/Staking.sol: stake(), withdraw()

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Low

Impact: 1/5

18

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/38184a28-e5b3-460d-ab93-d566a9940bb3

Likelihood: 1/5

Recommendations

Recommendation: Implement Pre-Transfer Checks in stake():

Add a balance check to ensure the user has enough tokens to stake

before executing the transfer. This prevents state changes in case of

insufficient funds.

Balance Validation in withdraw():

Introduce checks to confirm that the user's staking balance covers the

withdrawal amount and that the withdrawal amount does not exceed the

stakingTokenBalance, _balances[msg.sender], _totalSupply,

rewardsTokenBalance . Provide clear and informative revert messages

for insufficient balance scenarios.

Remediation(revised commit: 3ae5704): The necessary checks was added

to the stake() and withdraw() functions. The structure of the withdraw()

function was changed; if there is not a necessary reward amount, users will

be able to withdraw their initial amount without any revert.

19

F-2023-0083 - Limitation in Reward Claiming Process Due to Combined

withdraw() Function - Low

Description: In the Staking contract, the withdraw() function is designed to handle both

the withdrawal of staked tokens and the claiming of reward tokens. However,

this combined functionality presents a limitation for users who wish to claim

their reward tokens without withdrawing their staked tokens. The function

includes a condition

require(_amount > 0, "Cannot withdraw 0");

Actual code:

 function withdraw(uint _amount) external updateReward(msg.sender) {

 require(_amount > 0, "Cannot withdraw 0");

 _totalSupply -= _amount;

 stakingTokenBalance -= _amount;

 _balances[msg.sender] -= _amount;

 stakingToken.safeTransfer(msg.sender, _amount);

 uint reward = rewards[msg.sender];

 rewardsTokenBalance -= reward;

 rewards[msg.sender] = 0;

 rewardsToken.safeTransfer(msg.sender, reward);

 }

which implies that users are required to withdraw a minimum of one staked

token to claim their rewards. This design choice not only restricts user

flexibility but also potentially increases gas costs due to the necessity of two

token transfers (staking token and reward token) within the same transaction.

Path: ./contracts/Staking.sol: withdraw()

Found In: 0cac0db

Status: Fixed

Classification

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: Consider either splitting the withdraw() function into two distinct functions

– one for withdrawing staked tokens and another for claiming reward tokens –

20

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/692e9b04-566a-4865-8b55-2358ea71c8db

or alternatively, modifying the existing withdraw() function to allow users to

claim rewards without having to withdraw their staked tokens.

Remediation(revised commit: 3ae5704): The structure of the withdraw()

function was changed; if there is not enough reward amount in the contracts,

users will be able to withdraw their initial amount.

21

F-2023-0084 - Mismatch Between Documentation and Implementation

- Low

Description: The documentation for the Staking contract specifies that the endPool()

function is designed to terminate the staking pool, transfer the remaining

tokens to the admin, and self-destruct the contract. However, upon reviewing

the actual implementation of the endPool() function, it is evident that there

is no self-destruct functionality present. This discrepancy between the

documentation and the contract's code leads to confusion and potential

misunderstandings about the contract's behavior and capabilities.

Path: ./contracts/Staking.sol: endPool()

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Accepted

Classification

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: Update the documentation to accurately reflect the current implementation of

the endPool() function.

Remediation: Since the initial review, no changes related to self-destruct in

the documentation was observed.

22

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/eb1ed9db-c1fc-4ca2-a4a0-85e27160133d

F-2024-0376 - Owner Can Renounce Ownership - Low

Description: The project's contract utilizes OpenZeppelin's Ownable, which includes the

renounceOwnership function. This function allows the current owner to

permanently transfer ownership of the contract to the zero address,

effectively leaving the contract without an owner. While this feature can be

useful in certain scenarios where decentralization and immutability are

desired, it also poses significant risks. If ownership is renounced

unintentionally or without due consideration, it can lead to the loss of control

over certain critical functionalities like fund that are restricted to the owner.

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: Override renounceOwnership and disable its functionality.

Remediation(revised commit: 3ae5704): The function was overridden; a

revert statement was implemented.

23

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/b63eb164-6f98-4731-bf0d-57dd84f3fa3c

F-2023-0065 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the “zero

address”. This address has significance because it is the default value for

uninitialized address variables and is often used to represent an invalid or

non-existent address.

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, consider a contract that includes a function to change its owner.

This function is crucial, as it determines who has administrative access.

However, if this function lacks proper validation checks, it might inadvertently

permit the setting of the owner to the zero address. Consequently, the

administrative functions will become unusable.

There constructor() and setNewOwner() functions is not protected

against use of zero address.

Path: ./contracts/Staking.sol: constructor(), setNewOwner()

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters are

not the zero address.

Remediation(revised commit: c12e59c): Zero address validation was

implemented.

24

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/dde296f9-10f1-40ad-b37c-3950a9464830

F-2023-0067 - Redundant and Ineffective Implementation of Ownable -

Info

Description: The Staking contract, designed for ERC20 token staking and reward

distribution, imports the Ownable.sol from the OpenZeppelin library but does

not inherit or implement its functionality. Instead, the contract defines an

admin variable and utilizes a custom onlyOwner() modifier for

administrative functions like setNewOwner() and setNew(). This approach

leads to a redundancy in importing Ownable.sol, as it is features are not

utilized.

Path: ./contracts/Staking.sol

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Custom ownership management implementations may pose risks if not

meticulously crafted, particularly when compared to the proven Ownable or

Ownable2Step pattern. It's advisable to refactor the contract to inherit from

Ownable or Ownable2Step, making use of its established ownership

management functions. This approach guarantees a more robust and secure

ownership feature.

Remediation(revised commit: 3ae5704): The Ownable pattern was

implemented, and the mentioned redundant functions and variables was

removed.

25

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/6c7a22dc-e82e-4667-9c90-d14e621e7d0a

F-2023-0068 - Floating Pragma - Info

Description: A floating pragma in Solidity refers to the practice of using a pragma

statement that does not specify a fixed compiler version but instead allows

the contract to be compiled with any compatible compiler version. This issue

arises when pragma statements like pragma solidity ^0.8.0 are used without

a specific version number, allowing the contract to be compiled with the

latest available compiler version. This can lead to various compatibility and

stability issues.

Version Compatibility: Using a floating pragma makes the contract

susceptible to potential breaking changes or unexpected behavior introduced

in newer compiler versions. Contracts that rely on specific compiler features

or behaviors may break when compiled with a different version.

Interoperability Issues: Contracts compiled with different compiler versions

may have compatibility issues when interacting with each other or with

external services. This can hinder the interoperability of the contract within

the Ethereum ecosystem.

The project uses floating pragma ^0.8.20.

Path: ./contracts/Qoodo.sol,

 ./contracts/Staking.sol

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: It is recommended to use a fixed pragma statement that specifies a known,

well-tested compiler version. This helps ensure the stability, security, and

predictability of the smart contract throughout its lifecycle.

Remediation(revised commit: c12e59c): The Solidity version is set to

version 0.8.20

26

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/3e55afe9-aa90-4061-8baf-3e54ee2a87c3

F-2023-0070 - Redundancy of stakingTokenBalance Variable - Info

Description: In the Staking contract, there are two variables, stakingTokenBalance and

_totalSupply, that are updated simultaneously in the stake() and

withdraw() functions. Both variables essentially track the same quantity –

the total amount of staking tokens in the contract. This redundancy leads to

unnecessary complexity, gas consumption and potential confusion, as both

variables are accessible externally and provide the same information.

Path: ./contracts/Staking.sol

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Consider removing the stakingTokenBalance variable and rely solely on

_totalSupply for tracking the total staked tokens.

Remediation(revised commit: c12e59c): The variable was removed.

27

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/1d453818-7d5c-49b8-8b9a-4e3fff1b3dcf

F-2023-0071 - Redundancy Of getStakingTokenBalance() Function -

Info

Description: The stakingTokenBalance variable defined as public and also there is a

getStakingTokenBalance() getter function created in order to access to

this public variable. In Solidity, when a state variable is declared as public, the

compiler automatically creates a getter function for it. This feature provides

external access to the variable's value without the need for manually defined

getter functions. Despite this, the contract includes explicitly defined

getStakingTokenBalance() function to access this

stakingTokenBalance public variable. This redundancy results in duplicate

functions, which unnecessarily increase the contract's size and deployment

cost.

Path: ./contracts/Staking.sol: getStakingTokenBalance()

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Consider removing the redundant function to streamline the code and

improve efficiency.

Remediation(revised commit: c12e59c): The redundant function was

removed.

28

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/c3f0b534-4a17-4c3e-9294-e0cce31e4802
https://docs.soliditylang.org/en/v0.8.23/contracts.html#getter-functions

F-2023-0077 - Absence of Events on Critical State Changes - Info

Description: The functions does not emit events on change of important values. The

events not emitted for the following functions:

setNewOwner()

setNew()

In Solidity, events are crucial for logging significant state changes, especially

for functions that alter critical contract parameters or ownership. The

absence of such events in these functions leads to a lack of traceability,

which is essential for effective contract monitoring.

Path: contracts/Staking.sol: setNewOwner(), setNew()

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Introduce events and emit in the setNewOwner() and setNew() functions to

log changes in ownership and reward distribution speed, respectively.

Remediation(revised commit: 3ae5704): The setNewOwner() function was

removed. An event was implemented in the setNew() function.

29

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/5195bb59-4247-4c57-98d2-2ad544375b32

F-2023-0082 - Absence of Emergency Withdrawal Function - Info

Description: The Staking contract currently lacks an emergency withdrawal function,

which is a significant oversight in terms of user fund security and contract

flexibility. An emergency withdrawal function is essential to allow users to

retrieve their staked funds in situations where normal contract operations are

disrupted. This could include scenarios where the contract is prematurely

ended by the admin, becomes underfunded, or encounters other operational

issues that prevent users from withdrawing their funds along with their

rewards.

Path: contracts/Staking.sol

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Implement an Emergency Withdrawal Function:

Introduce a function that allows users to withdraw their staked funds

without claiming rewards in emergency situations. This function should

be accessible when the contract is in a non-operational state or when

normal withdrawal mechanisms fail.

Define Emergency Conditions:

Clearly specify the conditions under which the emergency withdrawal

function can be activated, such as contract termination by the admin or

insufficient reward funds.

Remediation(revised commit: 3ae5704): The structure of the withdraw()

function was changed. Users will be able to withdraw their initial amount in

the event that endPool() is called or if the contract does not have enough

funds to cover user funds. Under these circumstances, an emergency

function is not required.

30

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/e97c71e5-a2fb-4b9c-b040-e33df08cf962

F-2023-0085 - Redundancy and Inefficiency in Admin Check in

endPool() Function - Info

Description: In the Staking contract, the endPool() function manually checks if the caller

is the admin using a require statement;

function endPool() public {

 // Check if the caller is the admin

 require(msg.sender == admin, "You are not the admin");

…

);

 }

However, the contract already includes an onlyOwner() modifier designed

for this purpose. The manual implementation of the admin check in

endPool() is redundant and less efficient compared to using the existing

onlyOwner() modifier. This redundancy not only increases the contract size

but also affects code readability and maintainability.

Path: contracts/Staking.sol: endPool(), onlyOwner()

Found In: 0cac0db

Assets:
Staking.sol [https://github.com/NAPLOZZ/QDO_Staking]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Replace the manual admin check in the endPool() function with the

onlyOwner() modifier to leverage its existing functionality and reduce

redundancy.

Remediation(revised commit: 3ae5704): The onlyOwner() modifier was

implemented.

31

https://portal.hacken.io/App/Projects/Details/437905c9-6a86-4d76-b4d8-2f32a33a2e04/Finding/04e040b3-fb6e-4383-9efd-1103ca680889

Observation Details

32

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of

the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and

functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of

the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility and

safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note

that you should not rely on this report only — we recommend proceeding with several independent audits

and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to hacks.

Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

33

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that considers the potential impact

of any vulnerabilities and the likelihood of them being exploited. The matrix of impact and likelihood is a

commonly used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it were to be exploited. For

smart contracts, this could include the loss of funds or assets, unauthorized access or control, or

reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the likelihood of an attack

occurring, the level of skill or resources required to exploit the vulnerability, and the presence of any

mitigating controls that could reduce the likelihood of exploitation.

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user

funds or contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot

lead to asset loss. Contradictions and requirements violations. Major deviations from best

practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality

score.

34

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details - Initial

Repository https://github.com/NAPLOZZ/QDO_Staking

Commit 0cac0dbf7270674ad0ec193b028351ef05eb5123

Whitepaper https://docs.qoodo.io/

Requirements Confidential

Technical Requirements Confidential

Scope Details - Second

Repository https://github.com/NAPLOZZ/QDO_Staking

Commit c12e59c03dd5b31ea8ecddcf6ffecedf4b2c6118

Whitepaper https://docs.qoodo.io/

Requirements Confidential

Technical Requirements Confidential

Scope Details - Third

Repository https://github.com/NAPLOZZ/QDO_Staking

Commit 3ae5704cde07ce295cec474528d9339c0e8bdbf4

Whitepaper https://docs.qoodo.io/

Requirements Confidential

Technical Requirements Confidential

Contracts in Scope

./contracts/Staking.sol

35

https://github.com/NAPLOZZ/QDO_Staking
https://docs.qoodo.io/
https://github.com/NAPLOZZ/QDO_Staking
https://docs.qoodo.io/
https://github.com/NAPLOZZ/QDO_Staking
https://docs.qoodo.io/

