
Smart Contract Code

Review And Security

Analysis Report

Customer: Wow Earn

Date: 12/01/2024

We thank Wow Earn for allowing us to conduct a Smart Contract Security Assessment. This document

outlines our methodology, limitations, and results of the security assessment.

Wow Earn aims to build a seamless connection between users and the blockchain world web3

Platform by providing healthy and sustainable blockchain application.

Platform: EVM

Language: Solidity

Tags: Vesting, reward distribution

Timeline: 11/12/2023 - 12/01/2024

Methodology: https://hackenio.cc/sc_methodology

Last Review Scope

Repository https://github.com/ullaniubility/ulla-contract

Commit ab46260719de5ca70cee6dad21336bc81b274ae9

2

https://hackenio.cc/sc_methodology
https://github.com/ullaniubility/ulla-contract

Audit Summary

10/10 8/10 76,92% 8/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.4/10
The system users should acknowledge all the risks summed up in the risks section of the report

6 3 3 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 6

Vulnerability Status

F-2023-0147 - Missing input validation for key parameters Accepted

F-2023-0154 - The totalCumulative state variable can be calculated only once Accepted

F-2023-0157 - The amount() function can return inaccurate value Accepted

F-2023-0143 - The lastTime() function can revert due to arithmetic underflow Fixed

F-2023-0153 - The start() function lacks input validation Fixed

F-2023-0155 - Lack of two-step ownership transfer Fixed

3

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/46eab878-3bf1-4bbd-bd86-62f5c9200fac
https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/6a36584b-8d03-40bc-9ee1-83bc51e3df68
https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/d7dc2555-0713-43d4-b525-c6faafa9afd2
https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/faedd0bc-e138-44c3-8423-040ca2ae4af6
https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/c5ac2129-1348-40dd-ab90-a3999689de4f
https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/be72b4ae-04d5-4429-b438-142907efb9b1

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Wow Earn

Audited By Grzegorz Trawinski

Approved By Przemyslaw Swiatowiec, Ataberk Yavuzer

Website https://www.wowearn.com/

Changelog 12/01/2024 - Final Report

4

https://www.wowearn.com/

Table to Contents

System Overview 7

Privileged Roles 7

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

F-2023-0143 - The LastTime() Function Can Revert Due To Arithmetic Underflow - Low 10

F-2023-0147 - Missing Input Validation For Key Parameters - Low 11

F-2023-0153 - The Start() Function Lacks Input Validation - Low 12

F-2023-0154 - The TotalCumulative State Variable Can Be Calculated Only Once - Low 13

F-2023-0155 - Lack Of Two-Step Ownership Transfer - Low 15

F-2023-0157 - The Amount() Function Can Return Inaccurate Value - Low 16

Observation Details 17

F-2023-0140 - State Variables Default Visibility - Info 17

F-2023-0141 - Unused Events - Info 18

F-2023-0142 - Gas Overconsumption In Deposit Mechanism - Info 19

F-2023-0144 - Redundant SafeMath Library In Use - Info 20

F-2023-0145 - The GetCurrentTime() Is Redundant Wrapper - Info 21

F-2023-0148 - Native Tokens Transfer Via The Transfer() Function - Info 22

F-2023-0149 - Lack Of Days Time Unit Usage Across Solution - Info 23

F-2023-0150 - Redundant Variable Value Assignments - Info 25

F-2023-0151 - Misleading Error Messages - Info 26

F-2023-0152 - Custom Errors In Solidity For Gas Efficiency - Info 28

F-2023-0156 - Redundant Condition Within The Register() Function - Info 29

F-2023-0170 - Constant Variables Can Be Introduced - Info 30

F-2023-0171 - Unused State Variables - Info 31

F-2023-0172 - The GetLockTime() Is Redundant Getter - Info 32

F-2023-0174 - Gas Over-Consumption In Loops - Info 33

F-2023-0175 - Redundant Input Parameter Within The CalculateDay() Function - Info 34

Disclaimers 35

Hacken Disclaimer 35

Technical Disclaimer 35

Appendix 1. Severity Definitions 36

Appendix 2. Scope 37

System Overview

The mineWOW contract is a centralised solution where privileged account can add and configure

users that will have rewards accounted over time. Rewards are accounted in the form of native

assets. Users can obtain rewards proportionally, issued over time.

Privileged roles

The mineWOW's owner can:

Register or re-register new user.

Distribute reward to the user.

Set essential state variables, e.g. unlock time.

Transfer ownership to another account.

7

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 8 out of 10.

Code quality

The total Code Quality score is 8 out of 10.

No development environment configuration was provided.

Few observations were reported regarding redundant code items.

Few observations were reported regarding Gas extensive usage.

Few instances of inaccurate naming of function and variables where identified.

Test coverage

Code coverage of the project is 76,92% (branch coverage).

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 6 low severity issues,

leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.4. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The mineWOW contract is heavily centralised solution. Users have no control over protocol

configuration. The rewards are distributed only to the users configured by the privileged account.

9

Findings

Vulnerability Details

F-2023-0143 - The lastTime() function can revert due to arithmetic

underflow - Low

Description: The lastTime() function attempts to return the difference between the

constant value representing day in seconds (86400) and difference

between current block.timestamp and user's startTime, However, this

function reverts with Arithmetic over/underflow error message

whenever 86401 seconds passes since user's startTime was set.

function lastTime(address addr) public view returns (uint256) {

 return 86400 - (getCurrentTime() - userInfo[addr].startTime);

 }

This vulnerability makes this particular function unusable for future usage.

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 3/5

Recommendations

Recommendation: It is recommended to review the purpose of this function and fix the

implementation so it returns valid value every time.

Remediation (revised commit: 5f11f2) : The aforementioned function does

not revert anymore.

10

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/faedd0bc-e138-44c3-8423-040ca2ae4af6

F-2023-0147 - Missing input validation for key parameters - Low

Description: The contract's constructor is missing input validation for key parameters:

intervalCount and ratioCount. Both parameters participate in the

reward accounting and distribution processes. Setting these variables to 0

can cause no reward or underestimated reward accounted. Additionally,

the both parameters lack upper bound check. Thus, it can be set to any

value, resulting in possible inaccurate reward accounting.

 constructor(uint256 _intervalCount,uint256 _ratioCount) {

 owner = payable(msg.sender);

 intervalCount = _intervalCount;

 ratioCount = _ratioCount;

 }

Status: Accepted

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: It is recommended to implement input validation for key parameters in

accordance to the solution business rules.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

11

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/46eab878-3bf1-4bbd-bd86-62f5c9200fac

F-2023-0153 - The start() function lacks input validation - Low

Description: The start() function register or re-register new user in the contract.

However, it does not implement any input validation. The addr parameter

could be verified against 0x0 address, so it would not register invalid user.

The speed parameter could be verified against 0 value. This particular

parameter is used in calculateReward() to calculate the reward, and

whenever it is set to 0, the reward is 0 as well. Additionally, the speed

parameter lacks upper bound check. Thus, it can be set to any value,

resulting in possible enormous reward accounting.

function start(address addr, uint256 speed) public returns (uint256){

 uint256 previousRewards = register(addr, speed);

 emit startLog(addr, speed, previousRewards);

 return previousRewards;

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: It is recommended to implement input validation in accordance to the

solution business rules.

Remediation (revised commit: 5f11f2) : The addr parameter has now input

validation implemented against zero address. The speed parameter can

be set to 0 value.

12

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/c5ac2129-1348-40dd-ab90-a3999689de4f

F-2023-0154 - The totalCumulative state variable can be calculated

only once - Low

Description: The sumRewardDebt() function calculates the totalCumulative state

variable basing on each registered user rewardDebt. Also, whenever this

state variable is calculated, it cannot be updated anymore. However, it

was noticed that user's rewardDebt is only updated upon calling the

getCount(), transfer(), transferOwner() functions for each user

separately, assuming that locktime was updated previously. This design

can result in situation when the totalCumulative state variable has

incorrect value calculated, as some user had not rewardDebt updated in

prior.

 function sumRewardDebt() public returns (uint256) {

 require(owner == msg.sender, "Query failed.");

 require(locktime > 0, "Query failed");

 if(totalCumulative == 0){

 for (uint256 i = 0; i < addressList.length; i++) {

 address userAddress = addressList[i];

 UserInfo memory info = userInfo[userAddress];

 totalCumulative += info.rewardDebt;

 }

 }

 return totalCumulative;

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: It is recommenced to update the totalCumulative state variable

anytime the user's totalRewardDebt variables are updated.

13

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/6a36584b-8d03-40bc-9ee1-83bc51e3df68

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

14

F-2023-0155 - Lack of two-step ownership transfer - Low

Description: The contract implements single-step ownership transfer functionality.

Thus, accidental transfer of ownership to unverified and incorrect address

may result in loss of ownership. In such a case, access to every function

protected by the owner constraint check will be permanently lost.

 function transferOwnership(address newOwner) public virtual {

 require(owner == msg.sender, "Insufficient permissions.");

 require(newOwner != address(0), "Invalid address.");

 address oldOwner = owner;

 owner = newOwner;

 emit OwnershipTransferred(oldOwner, newOwner);

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Classification

Severity: Low

Impact: 3/5

Likelihood: 2/5

Recommendations

Recommendation: It is recommended to implement a two-step ownership transfer pattern

within the solution, such as proposed in OpenZepplin’s Ownable2Step.

Remediation (revised commit: 5f11f2) : The transferOwnership()

function is now removed from the code base.

15

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/be72b4ae-04d5-4429-b438-142907efb9b1

F-2023-0157 - The amount() function can return inaccurate value -

Low

Description: The amount() function appears to be returning the accounted reward for

particular user. To calculate reward it takes current time as input

parameter. However, it does not take into account that locktime could

be already set. Thus, for some period, until particular user updates the

totalRewardDebt variable, this function can return inaccurate value.

 function amount(address addr) public view returns (uint256) {

 if (userInfo[addr].totalRewardDebt == 0) {

 uint256 count = calculateReward(addr, getCurrentTime());

 return userInfo[addr].rewardDebt + count;

 } else {

 return userInfo[addr].totalRewardDebt;

 }

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Classification

Severity: Low

Recommendations

Recommendation: It is recommended to fix the function implementation so it returns

accurate value every time.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

16

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/d7dc2555-0713-43d4-b525-c6faafa9afd2

Observation Details

F-2023-0140 - State variables default visibility - Info

Description: It was identified that multiple variables lack of visibility declared. Declaring

state variables visibility explicitly support engineers to catch incorrect

assumptions about variables accesses. Default variable visibility in such

case is internal.

address owner;

uint baseQuota = 83333333;

uint locktime;

uint baseSpeed = 100000;

uint256 totalCumulative;

uint256 intervalCount;

uint256 ratioCount;

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Recommendations

Recommendation: It is recommended to explicitly declare each variable as public,

internal, or private.

Remediation (revised commit: 5f11f2) : All variables now have visibility

declared.

17

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/3739f563-5814-4009-805a-92819689f0ba

F-2023-0141 - Unused events - Info

Description: It was identified that multiple events are declared but not utilized in any of

the solution's functionality. Having unused event declarations consumes

additional Gas during the deployment.

event LogData(string message, uint256 data);

event countEvent(uint256 value);

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to remove unused events.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

18

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/6e0dcea8-6722-42da-aed2-aba9295b9ca1

F-2023-0142 - Gas overconsumption in deposit mechanism - Info

Description: The solution uses balances array to track native tokens deposited. This

array has only one record for current's contract address

(address(this)). Such approach uses additional storage slots and

consumes additional Gas. Such processing is being done within the

deposit()function. Additionally, the balances array is not updated upon

transferring tokens to the users.

mapping(address => uint256) public balances;

 function deposit() external payable {

 balances[address(this)] += msg.value;

 }

Status: Accepted

Recommendations

Recommendation: It is recommended to remove balances array, instead the contract's

balance can be checked natively. Also, it is recommended to remove the

deposit() function, and instead implement the native receive()

function to enable native tokens processing.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

19

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/d361e860-b53f-4f50-8913-fe49490575fc

F-2023-0144 - Redundant SafeMath library in use - Info

Description: Prior to Solidity version 0.8.0, arithmetic overflows were not handled

natively by the language, and developers were encouraged to use the

SafeMath library as a safeguard against such errors.

However, with the release of Solidity version 0.8.0, the language

introduced new arithmetic overflow and underflow protection features

that made the SafeMath library redundant if using Solc versions above

0.8.0.

Currently, the solution uses Solc version of 0.8.7.

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Recommendations

Recommendation: It is recommended to remove the usage the SafeMath library for

arithmetic operations, and Instead, leverage the native arithmetic overflow

and underflow protection features.

Remediation (revised commit: 5f11f2) : The SafeMath library and its

usage is now removed.

20

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/aef45279-c042-4b92-9265-1234261f2a91

F-2023-0145 - The getCurrentTime() is redundant wrapper - Info

Description: The getCurrentTime() function appears to be redundant wrapper on

block.timestamp global variable. Such global variable is always

accessible and it does not require any additional getters. Current

implementation leads to extensive Gas usage during both deployment and

usage.

 function getCurrentTime() public view returns (uint256 blockTime) {

 return block.timestamp;

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to remove redundant wrapper and use global variable

instead.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

21

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/2bf031e9-b93c-4cee-a1df-eee564fffa78

F-2023-0148 - Native tokens transfer via the transfer() function -

Info

Description: The mineWOW's transfer() and transferOwner() functions use built-

in transfer() function for transferring native tokens.

The transfer() function was commonly used in earlier versions of

Solidity for its simplicity and automatic reentrancy protection. However, it

was identified as potentially problematic due to its fixed gas limit of 2300.

The usage of transfer() function can lead to unintended function call

revert when the receiving contract's receive() or fallback()

functions require more than 2300 Gas for processing.

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to use built-in call() function instead of transfer()

to transfer native assets. This method does not impose a gas limit, it

provides greater flexibility and compatibility with contracts having more

complex business logic upon receiving the native tokens. When working

with then call() function ensure that its execution is successful by

checking the returned boolean value. It is also recommended to fallow the

Check-Effects-Interactions (CEI) pattern in every case to prevent

reentrancy issues.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

22

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/7d805ba2-682b-40a8-9847-1e35bfcc6b17

F-2023-0149 - Lack of days time unit usage across solution - Info

Description: Within the solution multiple instances of literal value representing seconds

in day (86400) were identified. Also, within the

calculateReward()function seconds in day in seconds are being

calculated each function call (24 * 60 * 60). In Solidity language there

is a suffix keyword that represents seconds in day unit time: days. As a

result, current implementation leads to extensive Gas consumption.

function transferOwner() public {

[...]

 uint256 day = calculateDay(getCurrentTime(), locktime, 86400);

[...]

 }

function getCount(address payable from) public returns (uint256) {

[...]

 uint256 dayTime = calculateDay(getCurrentTime(), locktime, 86400);

[...]

 }

function getExtractCount(address from) public view returns (uint256) {

[...]

 uint256 dayTime = calculateDay(getCurrentTime(), locktime, 86400);

[...]

 }

function lastTime(address addr) public view returns (uint256) {

 return 86400 - (getCurrentTime() - userInfo[addr].startTime);

 }

 function calculateReward(

 address addr,

 uint256 time

) public view returns (uint256) {

 UserInfo memory newUser = userInfo[addr];

 uint256 count = 0;

 if (newUser.startTime > 0 && time > newUser.startTime) {

 uint256 timePassed = time - newUser.startTime;

 if (time - newUser.startTime > 24 * 60 * 60)

 timePassed = 24 * 60 * 60;

 count = timePassed.mul(newUser.speed).mul(baseQuota);

 } else {

 count = 0;

23

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/0d16171e-6007-451d-826d-78f7f3a94653

 }

 return count;

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to use days time unit in every aforementioned

instance.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

24

F-2023-0150 - Redundant variable value assignments - Info

Description: Within the calculateReward()function the count variable is assigned

twice to 0. In both cases it is redundant as by default variable of such type

is assigned to 0. Thus, such approach leads to extensive Gas

consumption.

function calculateReward(

 address addr,

 uint256 time

) public view returns (uint256) {

 UserInfo memory newUser = userInfo[addr];

 uint256 count = 0;

 if (newUser.startTime > 0 && time > newUser.startTime) {

 uint256 timePassed = time - newUser.startTime;

 if (time - newUser.startTime > 24 * 60 * 60)

 timePassed = 24 * 60 * 60;

 count = timePassed.mul(newUser.speed).mul(baseQuota);

 } else {

 count = 0;

 }

 return count;

 }

Status: Fixed

Recommendations

Recommendation: It is recommended to remove the assignments to default value.

Remediation (revised commit: 5f11f2) : The second assignment to default

value is now removed.

25

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/9dea9721-16ff-4c51-b105-1e3db15f7c6f

F-2023-0151 - Misleading error messages - Info

Description: It was identified that error messages presented by the solution whenever

assertion fails can be considered misleading. E.g. only within the

transferOwnership()function the access control assertion reverts with

Insufficient permissions. error message. In every other case it is a

failed message. In other case, the same error message (transfer

failed.) is provided for two distinct assertions. Such approach can be

misleading for end users and it can increase time required for possible

troubleshooting during emergency event.

 function transfer(address from) public {

 require(owner == msg.sender, "transfer failed.");

 require(locktime > 0, "transfer failed");

[...]

 }

 function transferOwner() public {

 require(locktime > 0, "transfer failed");

[...]

 }

 function unlock() public {

 require(owner == msg.sender, "Mining failed.");

 require(locktime == 0, "Mining has ended.");

 locktime = getCurrentTime();

 }

 function register(address addr, uint256 speed) private returns (uint256) {

 require(owner == msg.sender, "Mining failed.");

 uint256 time = getCurrentTime();

 require(locktime == 0, "Mining has ended.");

[...]

 }

 function sumRewardDebt() public returns (uint256) {

 require(owner == msg.sender, "Query failed.");

 require(locktime > 0, "Query failed");

[...]

 }

 function transferOwnership(address newOwner) public virtual {

 require(owner == msg.sender, "Insufficient permissions.");

 require(newOwner != address(0), "Invalid address.");

26

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/f1b44bc7-84c2-40ba-a800-eda88fba5d0c

[...]

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to refactor strings in assertions to provide accurate

and meaningful errors messages.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

27

F-2023-0152 - Custom Errors in Solidity for Gas Efficiency - Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature

known as custom errors. These custom errors provide a way for engineers

to define more descriptive and semantically meaningful error conditions

without relying on string messages. Prior to this version, engineers often

used the require statement with string error messages to handle

specific conditions or validations. However, every unique string used as a

revert reason consumes additional gas, making transactions more

expensive.

Custom errors, on the other hand, are identified by their name and the

types of their parameters only, and they do not have the overhead of

string storage. This means that, when using custom errors instead of

require statements with string messages, the gas consumption can be

significantly reduced, leading to more gas-efficient contracts.

The solution uses Solc version of 0.8.7.

Example require statement with string error message:

 function unlock() public {

 require(owner == msg.sender, "Mining failed.");

 require(locktime == 0, "Mining has ended.");

 locktime = getCurrentTime();

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to use custom errors instead of revert strings to reduce

gas costs, especially during contract deployment. Custom errors can be

defined using the error keyword and can include dynamic information.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

28

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/2ef09c10-5153-4286-b914-da7dac5b102e

F-2023-0156 - Redundant condition within the register() function -

Info

Description: Within the register()function there is a condition check that is

redundant (speed >= 0). The speed variable is a value in a range

between 0 and maximum value for uint256 type, so this condition is

always satisfied. Thus, such implementation leads to extensive Gas

consumption.

function register(address addr, uint256 speed) private returns (uint256) {

[...]

 if (speed >= 0) userInfo[addr].speed = speed;

 return reward;

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to remove redundant condition check.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

29

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/62ce211f-ee33-4a2f-86f0-5f1f36a98620

F-2023-0170 - Constant variables can be introduced - Info

Description: Within the solution, the baseQuota and baseSpeed variables appear to

have constant values, however they are not declared as constant.

Constant variables does not occupy storage slots, instead they increase

the executable size. Thus, having constant variables may save some Gas.

 uint baseQuota = 83333333;

 uint baseSpeed = 100000;

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Recommendations

Recommendation: It is recommended to declare aforementioned variables as constant.

Remediation (revised commit: 5f11f2) : The aforementioned variables are

now declared as constant.

30

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/ca7055a9-325b-4de2-8061-8f9e53eb1265

F-2023-0171 - Unused State Variables - Info

Description: It was identified that solution has single state variable declared, but never

used: baseSpeed. Such implementation increases Gas consumption

during deployment and it occupies additional storage slot.

uint baseSpeed = 100000;

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Recommendations

Recommendation: It is recommended to remove unused state variable.

Remediation (revised commit: 5f11f2) : The unused state variable is now

removed.

31

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/4867c434-2b3a-4eed-be8d-c95d3ba5bf4c

F-2023-0172 - The getLockTime() is redundant getter - Info

Description: The getLockTime() function appears to be redundant getter for the

locktime state variable. Setting accurate state variable access makes

getters redundant. Current implementation leads to extensive Gas usage

during both deployment and usage.

 function getLockTime() public view returns (uint256) {

 return locktime;

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Accepted

Recommendations

Recommendation: It is recommended to remove redundant getter and use global variable

instead.

Remediation (revised commit: n/a) : The Client's team acknowledged this

finding.

32

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/c42d11a8-b217-4e9b-89ff-35019bf7e47a

F-2023-0174 - Gas over-consumption in loops - Info

Description: Within the sumRewardDebt() function In the loop the counter variable is

incremented using i++ instead of ++i. It is a known fact that using ++i
within unchecked clause costs less Gas per iteration inside the loops.

function sumRewardDebt() public returns (uint256) {

[...]

 if(totalCumulative == 0){

 for (uint256 i = 0; i < addressList.length; i++) {

[...]

 }

 }

[...]

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Recommendations

Recommendation: It is recommended to use ++i with unchecked clause instead of i++
inside the loops.

Remediation (revised commit: 5f11f2) : The ++i operator is now used

inside the loops.

33

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/22edccee-5d06-4c82-b105-9cae740f796f

F-2023-0175 - Redundant input parameter within the calculateDay()

function - Info

Description: The secondsPerDay input variable within the calculateDay()function

can be considered redundant, as second per day is a constant value of

86400. Thus, such implementation leads to extensive Gas consumption.

 function calculateDay(

 uint256 timestamp,

 uint256 startTimestamp,

 uint256 secondsPerDay

) internal pure returns (uint256) {

 // require(timestamp >= startTimestamp, "calculateDay failed.");

 uint256 day = (timestamp - startTimestamp) / secondsPerDay;

 if ((timestamp - startTimestamp) % secondsPerDay > 0) {

 day += 1;

 }

 return day;

 }

Assets:
mineWOW.sol [https://github.com/ullaniubility/ulla-contract]

Status: Fixed

Recommendations

Recommendation: It is recommended to remove redundant input variable and use days time

unit instead.

Remediation (revised commit: 5f11f2) : The redundant input variable is

now removed.

34

https://portal.hacken.io/App/Projects/Details/5ed61517-8599-4ff4-a890-080e29554e94/Finding/8cd142f3-706f-472c-ad9b-d8584a58afcb

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

35

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

36

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/ullaniubility/ulla-contract

Commit ab46260719de5ca70cee6dad21336bc81b274ae9

Whitepaper Not provided.

Requirements Not provided.

Technical Requirements Not provided.

Contracts in Scope

./src/mineWOW.sol

The scope provided for remediation phase is as follow:

Scope Details

Repository https://github.com/ullaniubility/ulla-contract

Commit 948570380834c8450924584aba6998874a17d0cc

Whitepaper Not provided.

Requirements Not provided.

Technical Requirements Not provided.

Contracts in Scope

./src/mineWOW.sol

37

https://github.com/ullaniubility/ulla-contract
https://github.com/ullaniubility/ulla-contract

