
Smart Contract Code Review

And Security Analysis Report

Customer: Brickken

Date: 14/02/2024

We express our gratitude to the Brickken team for the collaborative engagement that enabled the execution of this

Smart Contract Security Assessment.

Brickkenis a solution that provides tools for tokenization of real-world assets, equity, debt and securities.

Language: Solidity

Tags: ERC20, Escrow, Tokenization, Factory

Timeline: 15/01/2024 � 14/02/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/Brickken/brickken-protocol

Initial Commit a4e024b68436ccfcd2d152c47e6179f09fd2d779

Final Remediation Commit c88c984faaf92c8c841fe129ba214e9bc657fec0

2

https://hackenio.cc/sc_methodology
https://github.com/Brickken/brickken-protocol

Audit Summary.

10/10 10/10 97.9% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.9/10
The system users should acknowledge all the risks summed up in the risks section of the report

15 14 1 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 6

Low 8

Vulnerability Status

F�2024�0589 � Potential Price Manipulation in getBKNPrice() Function in STOFactoryUpgradeable.sol Accepted

F�2024�0557 � Missing Check for the Return Value of ERC20 Token Transfer Fixed

F�2024�0558 � Inconsistent Use of tokenERC20Whitelist.multiplier Feature in STOEscrowUpgradeable.sol Fixed

F�2024�0559 � Incomplete Investor Check in isInvestor() Function in STOEscrowUpgradeable.sol Fixed

F�2024�0560 � Potential Misconfiguration Risk in STOEscrowUpgradeable.sol Fixed

F�2024�0561 � Inconsistent Definition of maxSupply in STOToken Contracts leads to maxSupply not being enforced Fixed

F�2024�0585 � Violation of Check-Effects-Interactions �CEI� Pattern Fixed

F�2024�0586 � Potential Blocking of STO Token Minting by Issuer in STOEscrowUpgradeable.sol Fixed

F�2024�0587 � Potential Disruption of Open Positions due to _setPaymentToken() Function in STOEscrowUpgradeable.sol Fixed

F�2024�0595 � Potential Frontrunning Vulnerability in _addDistDividend() Function in STOTokenDividendUpgradeable.sol Fixed

F�2024�0596 � Accumulation of Dividends by Blacklisted Users Fixed

F�2024�0598 � Unclaimed Dividends Affected by _changePaymentToken() Invocation in STOTokenDividendUpgradeable.sol Fixed

F�2024�0599 � Incorrect Role Assignment in initialize() Function in the STOTokenManagedUpgradeable Contract Fixed

F�2024�0610 � Missing checks for zero address Fixed

F�2024�0623 � Missing Data Validation Fixed

3

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/545e5218-8325-4338-8f91-2824b06186c7
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/6bcf5803-acf3-4c74-9347-45d2865e4c51
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/94cd80ce-f8e6-438d-9d19-daad134d9f1f
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/0e9b40ad-b8dd-4c70-abd2-4b2247b039f7
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/e80f16d1-c776-4b7c-a420-928fc4d5a7b6
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/c2d1320a-55f4-438b-81cb-36b9bb29edaf
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/a976195c-d8dd-45e8-88a7-265e5dc9da26
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/5a68830f-8c33-4f5f-9c6b-0853805c2614
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/0864c484-38c2-4e07-a562-69dc694f43e2
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/655dcc33-be1f-4fc3-8383-511edb912e91
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/c0095bc5-45c2-4a86-a8c7-b744bef2ee62
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/5e33e2a6-6992-4544-b08d-90c3ce2d3975
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/f0117328-f043-4720-ae58-9878154684cd
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/8ce91c6f-c5e6-4ae8-b148-dbc2108b5145
https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/b28c6743-ed6e-4787-94d6-6cf0cf1e6cb9

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well

as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report

shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Brickken

Audited By Niccolò Pozzolini, Kornel Światłowski

Approved By Przemyslaw Swiatowiec

Website https://www.brickken.com/

Changelog 30/01/2024 � Preliminary Report; 14/02/2024 Second Review

4

https://www.brickken.com/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 31

Disclaimers 42

Appendix 1. Severity Definitions 43

Appendix 2. Scope 44

System Overview

The Brickken system comprises a factory responsible for generating new instances of an escrow contract and a token

contract whenever new tokenization occurs.

Entities authorized to initiate new tokenizations, referred to as issuers, undergo KYC procedures conducted by Brickken.

Upon successful verification, issuers are whitelisted in the factory, enabling them to conduct tokenizations. Following

issuer whitelisting and the initiation of a new tokenization, both an escrow contract and a token are created. The escrow

contract facilitates token offerings, while the token itself incorporates additional functionalities such as dividend

distribution and confiscation, while adhering to the ERC20 standard.

Each escrow contract features a base "payment token" in which the issuer withdraws all escrowed funds from investors.

Investors can utilize the same payment token for investment or any whitelisted ERC20 tokens. The issuer has the

flexibility to modify the whitelist, and each ERC20 token eligible for investment must have a Uniswap v3 pool against the

base payment token to facilitate the system's operation. The designated "payment token" is intended to be a stablecoin,

although it can take any form as long as a valid Chainlink price feed is available.

Privileged roles

STOFactory

DEFAULT_ADMIN_ROLE � grant/revoke roles (brickken)

FACTORY_WHITELISTER_ROLE � allow whitelisting (brickken);

FACTORY_ISSUER_ROLE � whitelisted issuers (brickken by default);

FACTORY_PAUSER_ROLE � pause / unpause factory (brickken);

STOToken

DEFAULT_ADMIN_ROLE � grant/revoke roles (brickken)

TOKEN_URL_ROLE � change url (brickken,issuer);

TOKEN_DIVIDEND_DISTRIBUTOR_ROLE � distribute dividend (issuer)

TOKEN_MINTER_ROLE � mint new tokens (issuer, escrow contract)

TOKEN_MINTER_ADMIN_ROLE � add/remove minters (issuer)

TOKEN_WHITELIST_ADMIN_ROLE � change investors whitelist (issuer)

TOKEN_WHITELIST_ROLE � whether the user is whitelisted or not (issuer)

TOKEN_CONFISCATE_EXECUTOR_ROLE � execute confiscation (brickken)

TOKEN_CONFISCATE_ADMIN_ROLE � pause / unpause or disable confiscation (brickken)

STOEscrow:

DEFAULT_ADMIN_ROLE � grant/revoke roles (brickken)

ESCROW_WITHDRAW_ROLE � who can withdraw / partially withdraw to issuer (issuer)

ESCROW_NEW_OFFERING_ROLE � starts a new offering (issuer)

ESCROW_OFFERING_FINALIZER_ROLE � finalize an offering (brickken, issuer)

ESCROW_ERC20WHITELIST_ROLE � add/remove ERC20 from whitelist (brickken, issuer);

ESCROW_OFFCHAIN_REPORTER_ROLE � report offchain USD tickets for current offering (issuer)

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring criteria

can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are detailed.

Technical description is robust.

Code quality

The total Code Quality score is 10 out of 10.

The development Environment is configured.

Test coverage

Code coverage of the project is 97.9% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative test cases are included.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 6 medium, and 8 low severity issues. All issues were

fixed in the remediation phase of an audit, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.9. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The withdrawal fees in the STOEscrowUpgradeable.sol smart contract are only constrained to be less than 100%

(as indicated by the MAX_FEE_LIMIT).

8

Findings

Vulnerability Details

F-2024-0561 - Inconsistent De�nition of maxSupply in STOToken Contracts leads

to maxSupply not being enforced - Medium

Description: The STOToken contract, composed of multiple inherited contracts, has two different

definitions of maxSupply. This inconsistency can lead to confusion and the max supply

constraint not being enforced.

STOTokenCheckpointsUpgradeable, derived from OpenZeppelin's ERC20Votes,

includes the following method:

function _maxSupply() internal view virtual returns (uint224) {

return type(uint224).max;

}

This function defines an internal constraint derived from the Checkpoint structure,

which contains the uint224 balance variable.

On the other hand, STOTokenUpgradeable declares a uint256 public variable

maxSupply.

Despite the inconsistency, the two variables behave correctly throughout the function

flows. However, the maxSupply variable, despite being public, will not be easily

accessible from an external context because its default getter function is already

defined in STOTokenCheckpointsUpgradeable. As a result, when accessed

externally, STOToken.maxSupply() will always return type(uint224).max instead of

the intended STOTokenUpgradeable.maxSupply variable. This happens, for example,

in STOTokenUpgradeable._newOffering().

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenCheckpointsUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenUpgradeable.sol

Status: Fixed

Classification

Severity: Medium

Impact: 3/5

Likelihood: 3/5

Recommendations

Recommendation: To resolve this issue and improve code quality and readability, it is suggested to merge

the two maxSupply definitions into a single variable. This will ensure consistent

behavior and make the maxSupply variable consistent.

Remediation� The two maxSupply have been differentiated in a base maxSupply and a

supplyCap built on top.

9

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/c2d1320a-55f4-438b-81cb-36b9bb29edaf

F-2024-0586 - Potential Blocking of STO Token Minting by Issuer in

STOEscrowUpgradeable.sol - Medium

Description: In the STOEscrowUpgradeable.sol contract, an issuer can potentially withdraw all the

tokens while blocking investors from minting STO tokens. This can be achieved by using

solely _partialWithdraw() instead of _withdraw(), since _partialWithdraw()

does not change the issuance status to WITHDRAWN. If the issuance status is not set to

WITHDRAWN, investors won't be able to claim their tokens through the function

_redeemToken(), as it checks that the issuance status is WITHDRAWN.

Affected withdrawal functions:

/// @dev Internal method to partially withdraw payment token if issuance is succe

sfull

/// @param amountToWithdraw Amount of payment token to withdraw

/// @param withdrawTo address to which the issuer wants to send the withdrawn amo

unt of paymentToken

function _partialWithdraw(uint256 amountToWithdraw, address withdrawTo) internal

{

uint256 issuanceIndexCached = issuanceIndex;

uint256 partialWithdrawn = issuances[issuanceIndexCached].partialWithdraw;

uint256 paymentTokensCollected = issuances[issuanceIndexCached].paymentTokensColl

ected;

uint256 available = paymentTokensCollected - partialWithdrawn;

uint256 finalAmount;

if(available == 0 || amountToWithdraw == 0) return;

if(amountToWithdraw > available) {

finalAmount = available; // REPORT - this branch can be exploited to avoid the WI

THDRAWN status

} else {

finalAmount = amountToWithdraw;

}

issuances[issuanceIndexCached].partialWithdraw = partialWithdrawn + finalAmount;

// Withdraw

uint256 fee = finalAmount.mulDiv(

withdrawalFee,

MAX_FEE_LIMIT,

MathUpgradeable.Rounding.Up

);

SafeERC20Upgradeable.safeTransfer(paymentToken, treasuryAddress, fee);

SafeERC20Upgradeable.safeTransfer(paymentToken, withdrawTo, finalAmount - fee);

emit Withdrawn(issuer, issuanceIndexCached, fee, finalAmount - fee);

}

/// @dev Internal method to withdraw the payment token funds after a successfull

issuance

/// @dev Brickken is getting a successfull fee

function _withdraw(address withdrawTo) internal {

uint256 issuanceIndexCached = issuanceIndex;

if (isWithdrawn(issuanceIndexCached)) revert Errors.IssuanceWasWithdrawn(issuer);

uint256 amount = issuances[issuanceIndexCached].paymentTokensCollected - issuance

s[issuanceIndexCached].partialWithdraw;

if(amount > 0) {

_partialWithdraw(amount, withdrawTo);

}

issuances[issuanceIndexCached].status = IssuanceStatuses.WITHDRAWN;

}

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

Status: Fixed

Classification

Severity: Medium

Impact: 4/5

10

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/5a68830f-8c33-4f5f-9c6b-0853805c2614

Likelihood: 2/5

Recommendations

Recommendation: It is not possible to solve the issue by changing the function _partialWithdraw()

because it allows for withdrawals while the issuance is ongoing. Therefore, the

recommended solution is to modify the condition in _redeemToken().

In order to solve the issue, the function _redeemToken() should change the condition of

the line if (!isWithdrawn(index)) revert

Errors.IssuanceNotWithdrawn(issuer);.

Here's the recommended change:

_checkIssuanceCompleteness(caller, index);

if (!isWithdrawn(index) && (issuances[index].paymentTokensCollected != issuances[

index].partialWithdraw))

revert Errors.IssuanceNotWithdrawn(issuer);

This change would allow the check to pass if the issuance status is not WITHDRAWN, but

all tokens have been withdrawn (i.e., issuances[index].paymentTokensCollected

== issuances[index].partialWithdraw). On top of that it is required to add

_checkIssuanceCompleteness() to make sure that the issuance has been finished -

this was previously verified by the WITHDRAWN status.

These changes would prevent the issuer from blocking investors from minting their STO

tokens.

Remediation� The client changed the if branch to allow for token redemptions in the

problematic case highlighted in this issue.

11

F-2024-0587 - Potential Disruption of Open Positions due to _setPaymentToken()

Function in STOEscrowUpgradeable.sol - Medium

Description: The _setPaymentToken() function in STOEscrowUpgradeable.sol can disrupt open

positions. If this function is called during an ongoing issuance which later would

rollback, users would receive a different token possibly worth a different value. This

function should only be called in between issuances.

Here is the current implementation:

/// @dev Internal method to change the payment token, its oracle and the twap win

dow

function _setPaymentToken(address _newPaymentToken, address _newPaymentTokenOracl

e, uint256 _twapInterval) internal {

ERC20Token storage tokenStructNew = tokenERC20Whitelist[_newPaymentToken];

tokenERC20Whitelist[address(paymentToken)].status = false;

tokenStructNew.status = true;

tokenStructNew.multiplier = 1 ether;

paymentTokenOracle = IChainlinkPriceFeed(_newPaymentTokenOracle);

paymentToken = IERC20MetadataUpgradeable(_newPaymentToken);

twapInterval = _twapInterval;

}

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

Status: Fixed

Classification

Severity: Medium

Impact: 4/5

Likelihood: 2/5

Recommendations

Recommendation: To prevent this issue, the function should include a check to verify that no issuance is

ongoing. Here's the recommended change:

function _setPaymentToken(address _newPaymentToken, address _newPaymentTokenOracl

e, uint256 _twapInterval) internal {

// Check to ensure no issuance is ongoing

if (

(issuanceIndex != 0) &&

!(isWithdrawn(issuanceIndex) || isRollback(issuanceIndex))

) revert Errors.IssuanceNotFinalized(issuer);

// Rest of the function...

}

This change would ensure that _setPaymentToken() can only be called when no

issuance is ongoing, preventing potential disruptions to open positions.

Remediation� The proposed fix has been implemented.

12

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/0864c484-38c2-4e07-a562-69dc694f43e2

F-2024-0595 - Potential Frontrunning Vulnerability in _addDistDividend()

Function in STOTokenDividendUpgradeable.sol - Medium

Description: The _addDistDividend() function in STOTokenDividendUpgradeable.sol is

susceptible to a frontrunning attack. A malicious user monitoring the mempool for the

_addDistDividend() transaction can buy a large amount of STOTokens in the same

block. This tactic allows the newly acquired STOTokens to be included in the current

dividend distribution, despite not being a conventional frontrunning attack. The

simplicity of this exploit lies in the fact that the purchase of STOTokens merely needs to

occur in the same block as the _addDistDividend() transaction, significantly

lowering the barrier for conducting such an attack.

Assets:
contracts/sto/UpgradeableTemplate/token/STOTokenDividendUpgradeable.sol

Status: Fixed

Classification

Severity: Medium

Impact: 4/5

Likelihood: 2/5

Recommendations

Recommendation: To fix this issue,

dividendDistributions[numberOfDistributions].blockNumber should be set

to (block.number - 1) inside _addDistDividend(). Here's the recommended

change:

dividendDistributions[numberOfDistributions].blockNumber = block.number - 1;

This change would ensure that STOTokens bought in the same block as the

_addDistDividend() transaction do not count towards the current dividend

distribution, mitigating the potential frontrunning attack.

Remediation� The proposed fix has been implemented.

13

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/655dcc33-be1f-4fc3-8383-511edb912e91

F-2024-0598 - Unclaimed Dividends A�ected by _changePaymentToken()

Invocation in STOTokenDividendUpgradeable.sol - Medium

Description: STOTokens holders accrue dividends possibly spanning multiple distributions, which can

be claimed at any time. The _changePaymentToken() function in

STOTokenDividendUpgradeable.sol can potentially affect unclaimed dividends from

past distributions. When this function is invoked, users would receive a different token

possibly worth a different value for their unclaimed dividends.

Assets:
contracts/sto/UpgradeableTemplate/token/STOTokenDividendUpgradeable.sol

Status: Fixed

Classification

Severity: Medium

Impact: 3/5

Likelihood: 3/5

Recommendations

Recommendation: If this functionality has to be kept, to fix the issue a new field address paymentToken

need to be added to the struct DividendDistribution, and when starting a new

cycle (i.e., when _addDistDividend() gets called by the issuer) the current

paymentToken must be saved in

dividendDistributions[numberOfDistributions].paymentToken and

referenced from there when claiming dividends.

By doing so, when users claim their dividends from a past distribution cycle, they will

receive the token specified when that distribution cycle started. This would ensure that

the value of the dividends remains consistent with the value at the time of the

distribution.

Resolution� The proposed fix has been implemented alongside a pagination feature for

the dividends claiming process.

14

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/5e33e2a6-6992-4544-b08d-90c3ce2d3975

F-2024-0599 - Incorrect Role Assignment in initialize() Function in the

STOTokenManagedUpgradeable Contract - Medium

Description: The initialize() function in STOTokenManagedUpgradeable.sol is not assigning

roles correctly. When assigning roles to the issuer, it uses the storage issuer variable

which is empty, instead of the intended parameter newIssuer.

The situation can still be recovered by the protocol owners, who can use their

DEFAULT_ADMIN_ROLE to properly assign the roles to the issuer, but it would heavily

affect the operations efficiency and the user experience.

Status: Fixed

Classification

Severity: Medium

Impact: 2/5

Likelihood: 5/5

Recommendations

Recommendation: To fix this issue, the newIssuer parameter should be used instead of the issuer

variable when assigning roles.

Remediation� The newIssuer parameter has been used for role assignment.

15

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/f0117328-f043-4720-ae58-9878154684cd

F-2024-0557 - Missing Check for the Return Value of ERC20 Token Transfer - Low

Description: In the buyToken() function of the STOEscrowUpgradeable.sol file, when a user

deposits an excessive amount of paymentToken, he gets refunded, but the return value

of the transfer() operation is not checked.

paymentTokenCached.transfer(caller, actualAmount - maxAmount);

The transfer() return value determines the success of the operation. Whenever the

transfer() function fails, the overall buyToken() function call finishes without revert.

Thus, it provides a false sense of successful operation. Various tokens may not follow

the ERC20 standard and in case of transfer failure, they might revert or not return any

value at all.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To mitigate this risk, it is recommended to use the SafeERC20 library for ERC20 tokens

operations, which handles these edge cases and ensures that transfers fail gracefully.

Remediation� The proposed fix has been implemented.

16

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/6bcf5803-acf3-4c74-9347-45d2865e4c51

F-2024-0558 - Inconsistent Use of tokenERC20Whitelist.multiplier Feature in

STOEscrowUpgradeable.sol - Low

Description: The tokenERC20Whitelist.multiplier feature in the

STOEscrowUpgradeable.sol file is not consistently used across different functions,

leading to potential confusion and inconsistent expectations for users.

In the buyToken() function, the multiplier feature is not used at all. However, it is

used in the PriceAndSwapManager.getEstimationSTOToken() function. This

inconsistency can lead to different outcomes than what users might expect.

Furthermore, in the _setPaymentToken() function of STOEscrowUpgradeable, the

multiplier is defaulted to 1e18, suggesting that the feature might be intended for

removal.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To resolve this issue, the multiplier feature should either be correctly implemented

across all relevant functions or removed entirely to avoid confusion and ensure

consistent behavior.

Remediation� The multiplier feature has been removed.

17

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/94cd80ce-f8e6-438d-9d19-daad134d9f1f

F-2024-0560 - Potential Miscon�guration Risk in STOEscrowUpgradeable.sol -

Low

Description: The getUSDPriceOfPaymentToken() method in STOEscrowUpgradeable.sol

retrieves the USD price of the paymentToken using its paymentTokenOracle with 18

decimals of precision. The paymentTokenOracle is allowed to be address(0) to

indicate that the paymentToken should not be priced. This is necessary for utility to

equity conversion, as explained in the comments of the

PriceAndSwapManager.getUSDPriceOfPaymentToken() function.

However, since paymentTokenOracle is allowed to be address(0), it is not validated

when provided to STOEscrowUpgradeable.__STOEscrowUpgradeable_init(). This

is particularly dangerous and opens the possibility of misconfiguration, which could lead

to severe mispricing of the payment token during protocol operations.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

contracts/sto/helpers/PriceAndSwapManager.sol

Status: Fixed

Classification

Severity: Low

Impact: 3/5

Likelihood: 2/5

Recommendations

Recommendation: To minimize the chances of misconfigurations, the need for paymentTokenOracle to

be address(0) should be explicitly defined. This could be achieved by introducing an

additional boolean input variable, paymentTokenOracleUnused, in the

__STOEscrowUpgradeable_init() function. This variable would indicate that

paymentTokenOracle is not meant to be used and can be left unvalidated.

Remediation� The proposed fix has been implemented.

18

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/e80f16d1-c776-4b7c-a420-928fc4d5a7b6

F-2024-0585 - Violation of Check-E�ects-Interactions (CEI) Pa�ern - Low

Description: State variables are updated after the external calls to the token contract.

As explained in Solidity Security Considerations, it is best practice to follow the checks-

effects-interactions pattern when interacting with external contracts to avoid

reentrancy-related issues.

The _redeemToken() function in STOEscrowUpgradeable.sol does not respect

the Check-Effects-Interactions �CEI� pattern. The effect investors[index]

[caller].redeemed = true; should occur before the interaction

stoRelatedToken.mint(caller, amountInSTO);.

The _claimDividends() function in STOTokenDividendUpgradeable.sol does

not respect the Check-Effects-Interactions �CEI� pattern. The effect

lastClaimedBlock[currentClaimer] = block.number; should occur before

the interaction SafeERC20Upgradeable.safeTransfer().

The _addDistDividend() function in STOTokenDividendUpgradeable.sol

does not respect the Check-Effects-Interactions �CEI� pattern. The effect

dividendDistributions[numberOfDistributions].totalAmount =

_totalAmount;

dividendDistributions[numberOfDistributions].blockNumber =

block.number; numberOfDistributions++; should occur before the

interaction SafeERC20Upgradeable.safeTransferFrom().

The _changeWhitelist() function in STOEscrowUpgradeable.sol does not

respect the Check-Effects-Interactions �CEI� pattern. The effect

tokenERC20Whitelist[token].status = statuses[i];

tokenERC20Whitelist[token].multiplier = multipliers[i];

tokenERC20Whitelist[token].fees = fees[i]; should occur before the

interaction SafeERC20Upgradeable.safeIncreaseAllowance().

The _withdraw() function in STOEscrowUpgradeable.sol does not respect the

Check-Effects-Interactions �CEI� pattern. The effect

issuances[issuanceIndexCached].status =

IssuanceStatuses.WITHDRAWN; should occur before the interaction

SafeERC20Upgradeable.safeTransfer() executed inside

_partialWithdraw().

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenDividendUpgradeable.sol

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

19

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/a976195c-d8dd-45e8-88a7-265e5dc9da26
https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern

Recommendation: Moving the Effect before the Interaction would make the function adhere to the CEI

pattern, which is a best practice in smart contract development to prevent reentrancy

attacks. However, since the interaction is with a contract within the protocol, the risk of

such attacks is low in this case. Nonetheless, following the CEI pattern is a good habit

to maintain code quality and security.

Remediation� CEI pattern have been enforced.

20

F-2024-0589 - Potential Price Manipulation in getBKNPrice() Function in

STOFactoryUpgradeable.sol - Low

Description: The getBKNPrice() function in STOFactoryUpgradeable.sol derives the price from

on-chain pool reserves. This price is used to debit issuance fees to issuers. However,

this approach is susceptible to manipulation. Issuers can sandwich the issuance

emission transaction, manipulating the pool reserves to pay a lower issuance fee.

Here's the current implementation:

(uint112 reserveBKN, uint112 reserveUSDT, uint32 blockTimestampLast) = IUniswapV2

Pair(bknOracle).getReserves();

uint256 intermediatePrice = uint256(reserveUSDT).mulDiv(1e18, uint256(reserveBKN)

, MathUpgradeable.Rounding.Up);

Assets:
contracts/sto/UpgradeableTemplate/factory/STOFactory.sol

Status: Accepted

Classification

Severity: Low

Impact: 3/5

Likelihood: 2/5

Recommendations

Recommendation: To mitigate this issue, a Time-Weighted Average Price �TWAP� should be adopted until a

proper BKN oracle is implemented. This would provide a more accurate and harder to

manipulate measure of the price over a certain period, reducing the risk of this kind of

attack.

Remediation� The migration to a Uniswap v3 pool is planned for the next months.

21

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/545e5218-8325-4338-8f91-2824b06186c7

F-2024-0596 - Accumulation of Dividends by Blacklisted Users - Low

Description: In STOToken contracts, blacklisted users will continue accruing dividends which will be

locked in the STOToken contract since they won't be able to redeem them. In order to

fix the situation, the STOTokens of the blacklisted need to get confiscated.

If confiscation is on, it is suggested to automatically confiscate STOTokens when

blacklisting users. It's worth noting that because of the check inside

STOTokenManagedUpgradeable._beforeTokenTransfer(), it is impossible to

confiscate tokens from a blacklisted user.

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To address this issue, it is either suggested to implement an auto-confiscate feature for

blacklisted users, or to allow the confiscation for blacklisted users. This would prevent

blacklisted users from continuing to accrue dividends, which could potentially be a

significant amount if not addressed.

Remediation� The confiscateOnBlacklist feature has been implemented.

22

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/c0095bc5-45c2-4a86-a8c7-b744bef2ee62

F-2024-0610 - Missing checks for zero address - Low

Description: In Solidity, the Ethereum address 0x00

is known as the "zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an invalid or non-

existent address. The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero address, leading

to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address without any

checks, which essentially burns those tokens as they become irretrievable. While

sometimes this is intentional, without proper control or checks, accidental transfers

could occur.

Validation should be added in:

STOEscrowManagedUpgradeable: initialize(_admin),

STOFactoryUpgradeable: constructor(), _changeConfig(),

BeaconProxy: constructor(),

STOTokenManagedUpgradeable: initialize(_admin)

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowManagedUpgradeable.sol

contracts/sto/UpgradeableTemplate/factory/STOFactory.sol

contracts/sto/UpgradeableTemplate/token/STOTokenManagedUpgradeable.sol

contracts/sto/helpers/BeaconProxy.sol

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: It is strongly recommended to implement checks to prevent the zero address from being

set during the initialization of contracts. This can be achieved by adding require

statements that ensure address parameters are not the zero address.

Remediation� The proposed validations have been implemented.

Evidences

Severity Formula Standart

Reproduce:
Likelihood �1�5�� 2

Impact �1�5�� 2

Exploitability �1�2�� 1

Complexity �0�2�� 0

Final Score: 2.0 (Low)

23

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/8ce91c6f-c5e6-4ae8-b148-dbc2108b5145

F-2024-0623 - Missing Data Validation - Low

Description: Several places of missing data validation were identified:

The _setPaymentToken() function in STOEscrowUpgradeable.sol is not

validating the new values. The parameters _newPaymentToken and

_newPaymentTokenOracle should be checked against zero. The parameter

newTwapInterval must also be checked to be within type(uint32).max

because of its usage in PriceAndSwapManager.getPriceInPaymentToken.

The changeBKNPriceValidityPeriod() function in

STOFactoryManagedUpgradeable.sol does not validate the newPeriod

parameter. If newPeriod is set to zero, it could potentially cause a Denial of Service

�DoS� on the protocol.

The changeConfig() function in STOFactoryManagedUpgradeable.sol does

not validate its inputs. This is particularly dangerous because this function updates

many parameters and does not allow for a partial update, opening the risk of

misconfiguration.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

contracts/sto/UpgradeableTemplate/factory/STOFactoryManaged.sol

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: It is suggested to carefully validate the input parameters when updating storage

variables.

Remediation� The suggested validations have been implemented.

24

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/b28c6743-ed6e-4787-94d6-6cf0cf1e6cb9

F-2024-0559 - Incomplete Investor Check in isInvestor() Function in

STOEscrowUpgradeable.sol - Info

Description: The isInvestor() function in STOEscrowUpgradeable.sol is designed to validate if

a user is an investor in a specific issuance. It checks if the user has a non-zero amount

of STO tokens and payment tokens, and if they have not yet redeemed their STO

tokens.

However, the function does not check if the user has been refunded, which occurs if the

issuance is not successful. This means that a user who has been refunded could still be

considered an investor according to this function, which is not accurate.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

Status: Fixed

Classification

Severity: Info

Impact: 1/5

Likelihood: 2/5

Recommendations

Recommendation: To resolve this issue, it is recommended to modify the aforementioned function, so it

also checks if the user has not been refunded.

Remediation� The proposed fix has been implemented.

25

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/0e9b40ad-b8dd-4c70-abd2-4b2247b039f7

Observation Details

F-2024-0556 - Lack of Named Mappings Feature - Info

Description: The investors mapping in the STOEscrowUpgradeable.sol file is currently using an

indexed mapping structure. As of Solidity version 0.8.18, named parameters can be used

in mappings for better readability and understanding of the code. The current code also

includes an explanatory comment above the mapping declaration, which could be

removed if named parameters are used.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

Status: Fixed

Recommendations

Recommendation: It is recommended to refactor the code to include a named mapping feature. Here is an

example how the code could be refactored:

/// @dev Issuance Index ---> Address of investor ---> Investor struct

mapping(uint256 => mapping(address => Investor)) public investors;

mapping(uint256 issuanceIndex => mapping(address investorAddress => Investor inve

stor)) public investors;

Remediation� The proposed fix has been implemented.

26

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/67c5501e-fae2-4154-acbc-49fc16dc08ca

F-2024-0584 - Unnecessary else if Condition in _�nalizeIssuance() Function in

STOEscrowUpgradeable.sol - Info

Description: In the _finalizeIssuance() function of STOEscrowUpgradeable.sol, there is an

unnecessary else if condition that checks the result of

isSuccess(issuanceIndexCached). Since isSuccess() returns a boolean, the

else if branch could be simplified to just else, which would save gas.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

Status: Fixed

Recommendations

Recommendation: Here's the current implementation:

if (isSuccess(issuanceIndexCached)) {

_withdraw(withdrawTo);

} else if (!isSuccess(issuanceIndexCached)) { // Unnecessary 'else if'

_rollBack();

}

And here's the recommended change:

if (isSuccess(issuanceIndexCached)) {

_withdraw(withdrawTo);

} else { // Simplified to 'else'

_rollBack();

}

This change would make the code more efficient by saving gas and also improve

readability by simplifying the control flow.

Remediation� The proposed fix has been implemented.

27

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/f1b300b0-c21c-47e3-8494-dd897431d06b

F-2024-0588 - Unnecessary Storage Read in getFeesInBkn() Function in

STOFactoryUpgradeable.sol - Info

Description: In the getFeesInBkn() function in STOFactoryUpgradeable.sol, the storage

variable priceInBKN is read regardless of whether it's going to be used or not. This

could lead to unnecessary gas consumption.

Assets:
contracts/sto/UpgradeableTemplate/factory/STOFactory.sol

Status: Fixed

Recommendations

Recommendation: Here's the current implementation:

amountToPay = priceInBKN;

if (priceInUSD > 0) {

// ...

}

And here's the recommended change:

if (priceInUSD > 0) {

// ...

} else {

amountToPay = priceInBKN; // Moved inside else block

}

This change would ensure that priceInBKN is only read when priceInUSD is 0, saving

gas by avoiding unnecessary storage reads.

Remediation� The proposed fix has been implemented.

28

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/cd337b49-40be-44fa-9372-22670df895ad

F-2024-0592 - Use of Number Literals Instead of Constants in initialize() Function

in STOFactoryManagedUpgradeable.sol - Info

Description: In the initialize() function in STOFactoryManagedUpgradeable.sol, the

variables priceInBKN and priceInUSD are assigned through number literals. This

reduces the code readability.

Here's the current implementation:

priceInBKN = uint256(31250e18);

priceInUSD = uint256(5000e18);

Assets:
contracts/sto/UpgradeableTemplate/factory/STOFactoryManaged.sol

Status: Fixed

Recommendations

Recommendation: For better code readability and to reduce gas consumption, these values should be

defined as constants. Here's the recommended change:

uint256 constant PRICE_IN_BKN = 31250e18;

uint256 constant PRICE_IN_USD = 5000e18;

priceInBKN = PRICE_IN_BKN;

priceInUSD = PRICE_IN_USD;

To further save GAS on operations, the variables priceInBKN and priceInUSD can be

removed in favor of PRICE_IN_BKN and PRICE_IN_USD, since they would contain the

same values.

Remediation� The proposed fix has been implemented.

29

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/e028113b-b6e7-4042-8436-5d39d212213a

F-2024-0593 - Redundant Invocation of _moveBalances() in _startTracking()

Function in STOTokenCheckpointsUpgradeable.sol - Info

Description: In the _startTracking() function in STOTokenCheckpointsUpgradeable.sol, the

invocation of _moveBalances() is redundant. This function is only called right before

the first transfer to a user, so the user's balance will always be zero at this point.

Here's the current implementation:

function _startTracking(address account) internal virtual {

address currentTracking = trackings(account);

if(currentTracking != address(0)) return;

uint256 currentTrackingBalance = balanceOf(account);

_trackings[account] = account;

emit TrackingChanged(account, currentTracking, account);

_moveBalances(currentTracking, account, currentTrackingBalance);

}

Assets:
contracts/sto/UpgradeableTemplate/token/STOTokenCheckpointsUpgradeable.sol

Status: Fixed

Recommendations

Recommendation: Since currentTrackingBalance will always be zero, the _moveBalances() function

does not need to be called. Removing the redundant _moveBalances() invocation is

recommended to simplify the code and save gas.

Remediation� The proposed fix has been implemented.

30

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/c46942d7-3684-4936-ba83-eb172639f11a

F-2024-0594 - Unnecessary Storage Read in getMaxAmountToClaim() Function

in STOTokenDividendUpgradeable.sol - Info

Description: In the getMaxAmountToClaim() function in STOTokenDividendUpgradeable.sol,

the variable dividendDistributions[i].blockNumber is loaded into memory as

blockNumber, but it is not used to compute pastBalance. Instead, it is read from

storage again, which would lead to unnecessary gas consumption.

Assets:
contracts/sto/UpgradeableTemplate/token/STOTokenDividendUpgradeable.sol

Status: Fixed

Recommendations

Recommendation: Here's the current implementation:

uint256 blockNumber = dividendDistributions[i].blockNumber;

uint256 pastBalance = getPastBalance(_claimer, dividendDistributions[i].blockNumb

er);

And here's the recommended change:

uint256 blockNumber = dividendDistributions[i].blockNumber;

uint256 pastBalance = getPastBalance(_claimer, blockNumber);

This change would ensure that blockNumber is used to compute pastBalance, saving

gas by avoiding unnecessary storage reads.

Remediation� The proposed fix has been implemented.

31

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/481fa116-2bbd-496c-8689-7a5ddb4559bc

F-2024-0609 - Improve Readability Of Address Tracking - Info

Description: The current implementation utilizes the _trackings mapping structure as follows:

address => address. In instances where an address is tracked, the key and value are

identical; conversely, when an address is not being tracked, the value associated with

the key is address 0x0.

To enhance code readability, it is recommended to consider utilizing the bool data type

as the value in the mapping.

Assets:
contracts/sto/UpgradeableTemplate/token/STOTokenCheckpointsUpgradeable.sol

Status: Fixed

Recommendations

Recommendation: To improve code clarity and readability, it is advised to refactor the _trackings

mapping by using bool as the value type. This modification will make the tracking logic

more intuitive and straightforward, contributing to a more easily understandable

codebase.

Remediation� The proposed fix has been implemented.

32

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/b7e42629-9d70-4dd3-a196-bd841986b638

F-2024-0622 - IPriceAndSwapManager Contract Located In the Incorrect Folder -

Info

Description: Well-structured and organized files enhance the readability of the entire project.

The IPriceAndSwapManager contract is labeled as an interface and is located

inside the "helpers" directory. The project includes a designated directory for

interface contracts called "interfaces."

Assets:
contracts/sto/helpers/PriceAndSwapManager.sol

Status: Fixed

Recommendations

Recommendation: It is recommended to move IPriceAndSwapManager interface to “interfaces” directory.

Remediation� The IPriceAndSwapManager has been moved to the ‘interfaces’ folder.

33

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/235680bd-ff4d-4fe2-8467-22acef2e46cc

F-2024-0624 - Commented code parts and TODO comments - Info

Description: Several instances of commented code parts and TODO comments were observed:

Within the STOEscrowUpgradeable contract, commented sections of code are

present within the __STOEscrowUpgradeable_init() function.

Within the STOFactoryUpgradeable contract, TODO comment is present within

the getBKNPrice() function.

Within the STOFactoryUpgradeable contract, TODO comment is present within

the _chargeFee() function.

Within the STOTokenManagedUpgradeable contract, commented sections of code

are present within the initialize() function.

Within the STOTokenDividendUpgradeable contract, commented sections of

code are present within the __STOTokenDividend_init() function.

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

contracts/sto/UpgradeableTemplate/factory/STOFactory.sol

contracts/sto/UpgradeableTemplate/token/STOTokenDividendUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenManagedUpgradeable.sol

Status: Fixed

Recommendations

Recommendation: It is recommended to remove commented parts of the code and resolve TODO

comments.

Remediation� The commented-out code lines have been removed.

34

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/4540c4b5-46af-48a1-8971-be42a43fa8e6

F-2024-0625 - Increments can be `unchecked` in for-loops - Info

Description: In Solidity version 0.8 and above, arithmetic operations automatically include checks for

underflows and overflows. Although these checks are useful for preventing calculation

errors, they consume additional gas, leading to higher transaction costs.

In scenarios where underflows and overflows are not possible, the additional checks

introduced by Solidity 0.8 can be bypassed to save gas. This can be done by placing the

increment operation inside an unchecked{} block. This block enables developers to

perform arithmetic operations without the automatic underflow and overflow checks,

thus conserving gas when they are not needed.

Function where unchecked can be used:

STOFactoryManagedUpgradeable: initialize(), changeWhitelist(),

STOFactoryUpgradeable: _changeConfig(), _newTokenization(),

PriceAndSwapManager: resetAllowances(),

STOTokenConfiscateUpgradeable: _confiscate()

Assets:
contracts/sto/UpgradeableTemplate/factory/STOFactory.sol

contracts/sto/UpgradeableTemplate/factory/STOFactoryManaged.sol

contracts/sto/UpgradeableTemplate/token/STOTokenConfiscateUpgradeable.sol

contracts/sto/helpers/PriceAndSwapManager.sol

Status: Fixed

Recommendations

Recommendation: To improve gas efficiency, consider placing the post-iteration increment operation at the

end of the loop inside an unchecked{} code block. This avoids the standard overflow

checks, thereby conserving gas. Ensure that this technique is only employed in cases

where an overflow is not possible.

Remediation� The proposed fix has been implemented.

35

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/d113164e-bf6e-40bd-a545-a9f150318c17

F-2024-0627 - Out-Of-Bounds Array Access - Info

Description: Out-of-bounds array access occurs when a smart contract attempts to read from or

write to an index that is beyond the bounds of the array's declared size. This can be due

to improper input validation. When an out-of-bounds array access happens, it can

disrupt the contract's intended functionality, reverting the transaction.

In each identified case, arrays are utilized in for loops based on the length of the first

array, without proper validation to ensure that other arrays used inside these loops

share the same length.

 The affected functions lacking this crucial validation are:

STOEscrowUpgradeable: _changeWhitelist(),

STOFactory: _changeConfig(),

STOTokenConfiscateUpgradeable: _confiscate(),

STOFactoryManagedUpgradeable: initialize().

Assets:
contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

contracts/sto/UpgradeableTemplate/factory/STOFactory.sol

contracts/sto/UpgradeableTemplate/token/STOTokenConfiscateUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenManagedUpgradeable.sol

Status: Fixed

Recommendations

Recommendation: It is recommended to incorporate proper validation for the length of arrays passed to

these functions. This validation will help ensure that arrays used in for loops have

consistent lengths, preventing potential disruptions to the contract's intended

functionality and avoiding transaction reversion.

Remediation� Array lengths are now validated.

36

https://portal.hacken.io/App/Projects/Details/fa73ce4b-157d-4877-abbc-c098bfc1bf3c/Finding/b2e8ae00-4866-4e5c-abae-76ae6f98698b

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing of

this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation, deployment, and functionality (performing the

intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The

report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do not consider this

report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other

contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that you

should not rely on this report only — we recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated

versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and

other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

37

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact, Exploitability

and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited scope,

but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to asset

loss. Contradictions and requirements violations. Major deviations from best practices are also in this

category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a significant

impact on code execution, do not affect security score but can affect code quality score.

38

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/Brickken/brickken-protocol

Commit a4e024b68436ccfcd2d152c47e6179f09fd2d779

Whitepaper Not provided

Requirements https://github.com/Brickken/brickken-protocol/assets

Technical Requirements https://github.com/Brickken/brickken-protocol/assets

Contracts in Scope

contracts/sto/UpgradeableBeacon/UpgradeableBeaconEscrow.sol

contracts/sto/UpgradeableBeacon/UpgradeableBeaconToken.sol

contracts/sto/UpgradeableTemplate/escrow/STOEscrowManagedUpgradeable.sol

contracts/sto/UpgradeableTemplate/escrow/STOEscrowUpgradeable.sol

contracts/sto/UpgradeableTemplate/factory/STOFactory.sol

contracts/sto/UpgradeableTemplate/factory/STOFactoryManaged.sol

contracts/sto/UpgradeableTemplate/token/STOTokenCheckpointsUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenConfiscateUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenDividendUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenManagedUpgradeable.sol

contracts/sto/UpgradeableTemplate/token/STOTokenUpgradeable.sol

contracts/sto/helpers/BeaconProxy.sol

contracts/sto/helpers/Errors.sol

contracts/sto/helpers/PriceAndSwapManager.sol

contracts/sto/helpers/Roles.sol

contracts/sto/helpers/UniswapLibraries.sol

contracts/sto/interfaces/ChainlinkInterfaces.sol

contracts/sto/interfaces/ISTOToken.sol

contracts/sto/interfaces/UniswapInterfaces.sol

39

https://github.com/Brickken/brickken-protocol
https://github.com/Brickken/brickken-protocol/assets,
https://github.com/Brickken/brickken-protocol/assets,

