
Smart Contract Code Review

And Security Analysis Report

Customer: OpenEden

Date: 09/02/2024



We express our gratitude to the OpenEden team for the collaborative engagement that enabled the execution of this

Smart Contract Security Assessment.

Openeden, is an project that manages the TBILL stable ERC20 tokens. Users can deposit USDC to mint TBILL tokens,

entitling them to redeem assets in proportion to their TBILL holdings

Platform: EVM

Language: Solidity

Tags: ERC20 stable coin.

Timeline: 31/01/2024 � 09/02/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/OpenEdenHQ/openeden.vault.v2.audit/

Commit d09f86cb9827242dc6e76033a60c7a464aebe27d

2

https://hackenio.cc/sc_methodology
https://github.com/OpenEdenHQ/openeden.vault.v2.audit/


Audit Summary

10/10 10/10 89.42% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.6/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 1 1 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 1

Vulnerability Status

F�2024�0760 � The Contract Has The Function Which Allows To Withdraw Tokens Including The `underlying` Accepted

F�2024�0719 � Authorization Using tx.origin Fixed

3

https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/2bef7d43-abf9-4885-adfa-15d7d126252c
https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/e84e4a37-5de1-4d1b-84ca-f788c716fa40


This report may contain confidential information about IT systems and the intellectual property of the Customer, as

well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report

shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for OpenEden

Audited By Maksym Fedorenko

Approved By Grzegorz Trawinski

Website https://openeden.com/

Changelog 05/02/2024 � Preliminary Report; 09/02/2024 � Second Report

4

https://openeden.com/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 14

Disclaimers 19

Appendix 1. Severity Definitions 20

Appendix 2. Scope 21



System Overview

Openeden, is an project that manages the TBILL stable ERC20 tokens. Users can deposit USDC to mint TBILL tokens,

entitling them to redeem assets in proportion to their TBILL holdings. TBILL tokens are stored in whitelisted wallets,

and the project's code governs deposit, withdrawal, and management functions, ensuring proper asset handling. It is

built with the following contracts:

Controller � The Controller contract provides mechanisms for pausing and unpausing specific operations

(deposit and withdraw) in a system.

FeeManager � The FeeManager contract provides mechanisms to manage various fee-related parameters in a

system. This includes settings for transaction fees, deposit and withdrawal limits, management fee rates, and

special considerations for weekends.

OpenEdenVaultV3Impl - is an upgradeable vault contract designed for managing deposits and withdrawals,

charging fees, integrating with KYC systems, and operating under specific time-based rules.

TBillPriceOracle � Oracle contract provides a way to manage and update TBill prices with constraints on how

much the price can deviate from previous values.

Timelock � Imports TimelockController from Openzeppelin.

OEPausable � The contract is designed to introduce “pausing” functionality into a contract by inheritance. This

pausing mechanism can be utilized for emergency scenarios or other use cases to temporarily halt certain

operations of a contract.

Privileged roles

The DEFAULT_ADMIN_ROLE of the Controller contract can:

Pause and unpause deposits and withdrawals

The OPERATOR_ROLE of the Controller contract can:

Pause and unpause deposits and withdrawals

The Owner of the FeeManager contract can:

The owner can set various fee-related parameters like transaction fees, deposit and withdrawal limits, etc.

The owner inherits the capabilities provided by the OpenZeppelin's Ownable contract, such as the ability to

transfer ownership or renounce ownership.

The Owner of the OpenEdenVaultV3Impl can:

Set the treasury for the vault.

Set the treasury specific to 'q' (qTreasury).

Toggle whether the USDC/USD price is fixed.

Set various addresses, such as FeeManager, KycManager,

Operator, USDC Price Feed, TBill Price Feed, and Controller.

Authorize contract upgrades.

Upgrade the contract.

The Operator of the OpenEdenVaultV3Impl can:

Initiate off-ramp operations to transfer underlying assets to designated treasuries.

Process the withdrawal queue.

Update the epoch and set whether it is a weekend.

Claim the service fee.

The DEFAULT_ADMIN_ROLE of the TBillPriceOracle can:

Grant and revoke the OPERATOR_ROLE.

Can update the maximum price deviation.

Can manually update the close NAV price.

The OPERATOR_ROLE of the TBillPriceOracle can:

Can update the price.

Can update the close NAV price.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring

criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

NatSpec is provided.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 89.42% (branch coverage).

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 1 low severity issues, leading to a

security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.6. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The logic of the OpenEdenVaultV3 contract might be upgraded any time by the Admin.

The Epoch might be updated unlimited amount of times by the operator.

At any given time, the owner or operator holds the capability to pause both withdrawals and deposits.

The transaction fees within the system can be configured to any value, including 100%, which implies that users

may receive nothing in return when attempting to deposit or redeem tokens. The fee is calculated and collected

when the operator executes the withdrawal queue, based on the latest fee rate, not the rate at the time of user

redemption.

The TBILL price used in calculations is provided by an oracle through an off-chain mechanism and the

implementation to sustain stable coin mechanism is also handled off-chain.

The owner has the authority to withdraw any token including USDC from the contract.

Only the operator has the authority to execute redemption requests, and the timing of execution is determined

by the operator's discretion.

The Treasury, KycManager and TBillPriceOracle contracts are beyond the scope of this audit (please navigate to

“Appendix 2. Scope” for detailed information regarding the scope). The reliability of these contracts cannot be

confirmed.

The system employs a KYC process. There is a potential risk where a user, after receiving KYC approval and

depositing tokens, could be subsequently banned. This would result in their tokens being permanently locked in

their account.

The redemption process relies on a centralized operator's discretion, and any issues or risks related to this

operator's actions, such as insufficient USDC balance or centralization concerns, can result in users being unable

to access their deposited TBILL tokens or the promised USDC tokens, potentially compromising the

trustworthiness of the redemption process.

There exists a risk where the backend system could fail to accurately set the isWeekend flag, which is crucial for

enforcing the intended fee structure and deposit limits. In this case, users might be able to deposit funds under

incorrect fee structures.

The Open Eden operators can ban users, which may result in declining withdrawal requests if a user has already

deposited funds. This mechanism was introduced to protect against withdrawal queue block due to USDC

blacklisting mechanism.

8



Findings

Vulnerability Details

F-2024-0719 - Authorization Using tx.origin - Medium

Description: Using tx.origin authorization in the onlyOperator modifier in the smart contract

OpenEdenVaultV3Impl.sol, introduces a security vulnerability by not accurately

identifying the actual initiator of a transaction. Reliance on tx.origin severely limits the

functionality with Multisig or account abstraction wallets, as it cannot differentiate

between the original sender and the contract calling another contract.

// only operator can call this function

modifier onlyOperator(address _sender) {

require(tx.origin == _sender, "permission denied");

_;

}

The issue might cause the phishing attack if the operator calls the malicious contract

which might later invoke the functions on the OpenEdenVaultV3Impl contract to

commit malicious actions within the next functions: redeemL(), cancel(),

offRamp(), offRampQ(), processWithdrawalQueue(), updateEpoch(),

setWeekendFlag(), claimServiceFee(), The issue might also affect the integrity

with the Leverage protocol (which is out of scope).

This issue seriously compromises security and restricts the adaptability of the

application, making the smart contract incompatible with enhanced Ethereum wallet

structures and leading to potential breaches.

Assets:
OpenEdenVaultV3Impl.sol

[https://github.com/OpenEdenHQ/openeden.vault.v2.audit/commit/8cf7b346195ea00

aa5012665a81b3889ad15da9d]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood �1�5�� 3

Impact �1�5�� 3

Exploitability �1�2�� 1

Complexity �0�2�� 0

Final Score: 3 �Medium)

Recommendations

Recommendation: To mitigate the security risks associated with using tx.origin for authorization, it is

recomended to transition to the use of msg.sender. Unlike tx.origin, msg.sender

refers to the immediate sender of the current call, which ensures that the

9

https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/e84e4a37-5de1-4d1b-84ca-f788c716fa40


authorization check is based on the originating entity of the current interaction with

the contract.

Remediation (revised commit: d09f86c): The code was updated to utilize the

msg.sender global variable for operators validation.

Evidences

PoC (steps)

Reproduce:
�� The address1 is specified as an operator.

�� The attacker constructs malicious contract that interacts with the

OpenEdenVaultV3Impl.sol  contract.

�� The user who controls the address1 calls the malicious contract, e.g. as a result

of phishing attack.

�� The malicious contract calls the function which leads to the crucial state change

of the OpenEdenVaultV3Impl.sol contract.

10



F-2024-0760 - The Contract Has The Function Which Allows To Withdraw Tokens

Including The `underlying` - Low

Description: The OpenEdenVaultV3Impl.sol contract has the function offRampQ which is

created to transfer any unexpected token from the contract to the treasury contract

with the qTreasury address, but the function also allows to transfer the underlying

tokens which are supposed to be USDC. The offRampQ and offRamp function does

not check if the contract has sufficient tokens to cover the unClaimedFee after the

withdrawal.

This violates the requirement specified in the NatSpec and might lead to the DoS of

the claimServiceFee() function if the OpenEdenVaultV3Impl contract has

insufficient underlying balance for unClaimedFee withdrawal.

Assets:
OpenEdenVaultV3Impl.sol

[https://github.com/OpenEdenHQ/openeden.vault.v2.audit/commit/8cf7b346195ea00

aa5012665a81b3889ad15da9d]

Status: Accepted

Classification

Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 3

Exploitability �1�2�� 2

Complexity �0�2�� 0

Final Score: 1,73 (Low)

Recommendations

Recommendation: Add the conditional statement to disallow transferring the underlying tokens form

the contract using the offRampQ function. Add validation to the offRamp function to

disallow transfer if the contract does not have sufficient funds to cover unclaimed

fees unClaimedFee.

Remediation: The Open Eden team accepted the issue, with the comment: the

offRampQ function will transfer to qTreasury (quarantine treasury)  and offRamp  will

transfer to treasury, the destinations are different and their events will be used by the

backend server to take different actions.

11

https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/2bef7d43-abf9-4885-adfa-15d7d126252c


Observation Details

F-2024-0704 - Unrestricted Fee Con�guration - Info

Description: The system owner possesses the authority to set transaction fees

setTxFeeHolidayWithdrawPct(), setTxFeeHolidayDepositPct(),

setTxFeeWorkdayWithdrawPct(), setTxFeeWorkdayDepositPct() for both

weekends and weekdays to any value, including 100%. A fee rate of 100% implies that

users will receive nothing when attempting to deposit or redeem tokens.

Moreover, charging fees for reedem operation does not happen in the redeem

function immediately. The fee is taken when the operator process the withdrawal. If

the fee is changed during this period of time, users will pay different amount of fees

than promised.

This unrestricted control over fee configuration by the owner may lead to the

imposition of excessive fees, resulting in users receiving no tokens for their

transactions and potential dissatisfaction with the system. It introduces the risk of

unfair and unjust fee charging and a potential loss of trust in the platform.

Assets:
feeManager.sol

[https://github.com/OpenEdenHQ/openeden.vault.v2.audit/commit/8cf7b346195ea00

aa5012665a81b3889ad15da9d]

Status: Accepted

Classification

Impact: Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �1�2�� 2

Complexity �0�2�� 0

Final Score: 1.6

Recommendations

Recommendation: Set reasonable boundaries for the transaction fees and mention these max and min (if

there is) limits in the documentation. Additionally, calculate and apply the fee within

the redeem function based on the current fee rate, rather than collecting the fee after

a user places a redemption order.

Remediation: The Open Eden team decided to not fix this observation due to

commercial reasons.

12

https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/f046c705-c717-40bb-9b63-0f260ce46188


F-2024-0720 - Missing Checks For `address(0)` - Info

Description: In Solidity, the Ethereum address

0x0000000000000000000000000000000000000000 is known as the "zero address".

This address has significance because it is the default value for uninitialized address

variables and is often used to represent an invalid or non-existent address. The

Missing zero address control issues arise when a Solidity smart contract

PartnerShip.sol does not properly check or prevent interactions with the zero

address in createPartnerShip() _parent parameter, getParent() _child

parameter, leading to unintended behavior.

For instance, a contract might allow setting the zero address without any checks

leading to unintended behaviour .

Assets:
PartnerShip.sol

[https://github.com/OpenEdenHQ/openeden.vault.v2.audit/commit/8cf7b346195ea00

aa5012665a81b3889ad15da9d]

Status: Accepted

Recommendations

Recommendation: It is strongly recommended to implement checks to prevent the zero address from

being set during the initialization of contracts. This can be achieved by adding require

statements that ensure address parameters are not the zero address.

Remediation: The Open Eden acknowledged this observation.

13

https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/13ff70a8-8276-48a5-bf78-8cb19fa4871b


F-2024-0745 - Redundant `_msgSender()`, Meta-Transactions Not Implemented

- Info

Description: The _msgSender() function is needed to handle the meta transactions, in the

OpenZeppelin library, it is used to support the development of the libraries which

might be used with the contracts with the specified TrustedForwarder or to be used in

such contracts directly. 

However, the current implementation is not a library and does not rewrite the

_msgSender() function to support meta transactions. This leads to the redundancy,

because the system do not utilize _msgSender() features and used only as a

substitute for msg.sender.

Assets:
OpenEdenVaultV3Impl.sol

[https://github.com/OpenEdenHQ/openeden.vault.v2.audit/commit/8cf7b346195ea00

aa5012665a81b3889ad15da9d]

Status: Accepted

Recommendations

Recommendation: If _msgSender() is not going to be used in current implementation to support the

meta transactions it is recommended to use msg.sender to prevent unforeseen

issues and misinterpretations that may occur after the future updates.

Remediation: The Open Eden acknowledged this observation.

14

https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/8750e6fd-9352-418a-a8f8-83ca1ac20e0b


F-2024-0759 - Missing Failover Mechanism to Unlock Withdrawal Queue

Blocked by Non-Banned Users - Info

Description: The cancel() function plays a critical role in managing withdrawal requests for

banned users, specifically those who have been blacklisted by the internal mechanism

of USDC. These requests must be canceled because attempting to transfer funds to a

blacklisted account results in transaction reversal and queue processing blockage,

preventing other users from withdrawing their funds.

While the cancel() function is effective in addressing some aspects of the queue

blocking issue, it does not provide a comprehensive solution, as it is tailored

exclusively to banned users. Several concerns persist regarding non-blocked users:

�� Denial of Service incidents may not always originate from banned users. Various

scenarios, such as changes in Know Your Customer �KYC� status for the

withdrawal receiver between the redemption and queue processing stages, can

also lead to disruptions.

�� A separate issue pertains to the fees applied during the withdrawal processing.

Users might still encounter discrepancies between the promised or agreed-upon

fee amounts and the actual fees deducted. In exceptionally rare cases, if fees are

altered between redemption and withdrawal queue processing, a user's

withdrawal request could fail, causing queue blockages.

Assets:
OpenEdenVaultV3Impl.sol

[https://github.com/OpenEdenHQ/openeden.vault.v2.audit/commit/8cf7b346195ea00

aa5012665a81b3889ad15da9d]

Status: Accepted

Recommendations

Recommendation: Implementing a failover mechanism is strongly advised to address situations where a

valid (non-banned) user's withdrawal request experiences a reversal, resulting in the

blocking of the withdrawal queue.

Remediation: The Open Eden acknowledged this observation.

15

https://portal.hacken.io/App/Projects/Details/d24f8831-d7e2-4f7f-b23e-4be56f7d094d/Finding/6a50b1c6-528f-4901-bd6f-78c8193a9ccf


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing of

this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation, deployment, and functionality (performing the

intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code.

The report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do not

consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status,

or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to note that you

should not rely on this report only — we recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated

versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and

other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

16



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited

scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to asset

loss. Contradictions and requirements violations. Major deviations from best practices are also in this

category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a significant

impact on code execution, do not affect security score but can affect code quality score.

17

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details - initial

Repository https://github.com/OpenEdenHQ/openeden.vault.v2.audit/

Commit fdfe7a34f65a2a026632054c69e5b1a453c658a4

Whitepaper None

Requirements https://docs.openeden.com/treasury-bills-vault/introduction

Technical Requirements https://docs.openeden.com/treasury-bills-vault/introduction

Scope Details - second

Repository https://github.com/OpenEdenHQ/openeden.vault.v2.audit/

Commit d09f86cb9827242dc6e76033a60c7a464aebe27d

Whitepaper None

Requirements https://docs.openeden.com/treasury-bills-vault/introduction

Technical Requirements https://docs.openeden.com/treasury-bills-vault/introduction

Contracts in Scope

./contracts/feeManager.sol

./contracts/OpenEdenVaultV3Impl.sol

./contracts/interfaces/IPartnerShip.sol

./contracts/PartnerShip.sol

18

https://github.com/OpenEdenHQ/openeden.vault.v2.audit/
https://docs.openeden.com/treasury-bills-vault/introduction
https://docs.openeden.com/treasury-bills-vault/introduction
https://github.com/OpenEdenHQ/openeden.vault.v2.audit/
https://docs.openeden.com/treasury-bills-vault/introduction
https://docs.openeden.com/treasury-bills-vault/introduction



