
Smart Contract Code Review

And Security Analysis Report

Customer: ENKI

Date: 12/03/2024

We express our gratitude to the Enki team for the collaborative engagement that enabled the execution of this

Smart Contract Security Assessment.

ENKI is an blockchain ecosystem that can distribute rewards to its users on both chains. It combines ERC4626

standart with the Vesting opportunities. Users holding Staked ENKI Metis receive their rewards in eMetis,

maintaining consistency and simplicity in the reward cycle. The vesting mechanism, tied to the ENKI token,

encourages sustained engagement and investment in the ecosystem, aligning user incentives with the long-term

success of ENKI.

Platform: Ethereum �L1�, Metis Andromeda �L2�

Language: Solidity

Tags: Multi-chain, Vesting, Incentive

Timeline: 20/02/2024 � 12/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts

Commit 934933f

Remediation Commit addd1fd

2

https://hackenio.cc/sc_methodology
https://github.com/Metatime-Technology-Inc/pool-contracts

Audit Summary

10/10 9/10 100.0% 6/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.4/10
The system users should acknowledge all the risks summed up in the risks section of the report

7 6 1 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 1

Medium 1

Low 5

Vulnerability Status

F�2024�1068 � Risk of centralization due to authority of Timelock and Operator roles in Vesting settings Accepted

F�2024�1063 � Price manipulation on the first liquidation Fixed

F�2024�1064 � Unlimited approval granted to unrelated contract Fixed

F�2024�1066 � Timelock and Operator roles can renounce their permissions Fixed

F�2024�1071 � Owner can renounce its ownership Fixed

F�2024�1079 � `Dealer.lockFor()` and `Dealer.setActive()` functions do not check previous agent entries Fixed

F�2024�1101 � The contract managers are able to withdraw tokens from the contracts Fixed

3

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/00b68dd0-3980-4b5c-a429-eab51f5dd5bd
https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/fca8d8da-c4bd-4b4a-a788-ebee748ba82f
https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/b35f06ff-6016-49ed-99bc-12d16a9b79dd
https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/994f9bdf-b645-4ac5-8e1d-93ab834d59ac
https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/04aa1e49-e3d0-4110-8a19-0dc32e58e541
https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/96e19f3c-634e-4abd-8e07-c9b40a40b960
https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/22e2d8bb-419a-4b01-8316-57721efd67d1

This report may contain confidential information about IT systems and the intellectual property of the Customer,

as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this

report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for ENKI

Audited By Ataberk Yavuzer, Vladyslav Khomenko

Approved By Grzegorz Trawinski

Website https://www.enkixyz.com/

Changelog 28/02/2024 � Preliminary Report

11/03/2024 � Final Report

4

https://www.enkixyz.com/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 21

Disclaimers 29

Appendix 1. Severity Definitions 30

Appendix 2. Scope 31

System Overview

ENKI Protocol is a blockchain ecosystem with the following contracts:

ENKI Metis (eMetis) — an ERC�20 token, pegged 1�1 to Metis tokens circulating in ENKI system. It supports

gasless transfers.

ENKI Metis Minter — contract that allows the exchange of Metis for eMetis. Exchanging the other way is

currently disabled due to outside factors (restrictions in the Metis Sequencer).

Staked ENKI Metis (seMetis) — a token of an ERC4626 vault. Staking eMetis in it lets users earn rewards in

form of eMetis for participating in ENKI system. Unstaking eMetis is done in 2 steps: part of the tokens are

released immediately, other part is temporarily locked in vesting contract.

Vesting — this contract holds eMetis and postpones its withdrawal to ensure participants of the ENKI system

are committed to it. To withdraw eMetis users have to deposit ENKI coins and wait for vesting period to pass.

eMetis is then unlocked gradually.

ENKI — utility token of the ENKI protocol, used to provide access to the eMetis in the Vesting contract.

Rewards Dispatcher — this contract distributes rewards for participating in ENKI system in form of eMetis. The

protocol takes it's cut of the yield and sends the rest to seMetis vault for users to claim.

Config — common contract that stores configuration for the whole system.

Dealer and SequenserAgent — contracts that manage the layer 1 part of the system.

Privileged roles

Owner & Timelock:

Grant timelock and eMetis minter roles.

Timelock & Operator:

Grant and revoke various roles and capabilities.

Pause and unpause the protocol.

Make protocol public and vice versa.

Set protocol fee.

Set a cut of eMetis that goes to Vesting contract when eMetis is unstaked.

Minter:

Mint and burn eMetis tokens.

User:

Exchange Metis for eMetis.

Stake eMetis to generate rewards.

Unstake it and get part of the stake and rewards. Other part is kept in Vesting contract.

Stake ENKI to unlock the eMetis in Vesting contract.

Unstake ENKI and claim eMetis.

Beta User:

Can participate while the system is not public.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring

criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 6 out of 10.

Whitepaper is not provided.

Litepaper is provided.

Functional requirements are partially missed.

Technical description is not provided.

Code quality

The total Code Quality score is 9 out of 10.

Several template code patterns were found.

The development environment is configured.

Test coverage

Code coverage of the project is 100% (branch coverage).

Deployment and basic user interactions are covered with tests.

ERC4626 test coverage is missed.

Interactions by several users are not tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 1 high, 1 medium, and 5 low severity issues, leading to a

security score of 4 out of 10. All significant findings were resolved during the remediation phase. The security

score increased to 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.4. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The minter_burn_from() function allows accounts, whitelisted by the contract managers to burn eMetis

tokens of any account.

The unstake() function has modifier forUser which prevent users from calling it when the protocol is

paused. This way ENKI tokens can be temporarily withheld from users.

There is no safeguard against price manipulation on seMetis contract.

The RewardDispatcher contract grants unlimited approval to eMetisMinter contract. That contract can

consume all eMetis tokens from RewardDispatcher contract.

There is a couple of centralization risks on Config contracts. Timelock and Operator roles can change

vesting configuration while its already active.

8

Findings

Vulnerability Details

F-2024-1063 - Price manipulation on the �rst liquidation - High

Description: The seMetis contract is designed as ERC�4626 Tokenized Vault standart and it

uses eMetis token as its main asset.

There is a loss of funds risk according to the OpenZeppelin's ERC4626.sol

documentation:

In empty (or nearly empty) ERC�4626 vaults, deposits are at high risk of

being stolen through frontrunning with a "donation" to the vault that

inflates the price of a share. This is variously known as a donation or

inflation attack and is essentially a problem of slippage. Vault deployers

can protect against this attack by making an initial deposit of a non-trivial

amount of the asset, such that price manipulation becomes infeasible.

Withdrawals may similarly be affected by slippage.

It was identified that the seMetis vault does not have any security precautions to

prevent such scenario. Therefore, the first liquidation is open to manipulation. A

malicious user can front-run the first liquidity in order to profit.

Also, share prices will be determined by the first liquidator. Inflating share prices to

very high amount could be another risky scenario. In such scenario, other users

will not be able to purchase shares even if they have paid large amounts.

Steps to reproduce:

�� seMetis contract is deployed.

�� The initial liquidity provider tries to call two different deposits. (0.5e18 eMetis

+ 0.75e18 eMetis � 1.25e18 eMetis in total)

�� Malicious user front-runs that call.

�� Malicious user calls eMetisMinter.mintAndDeposit(user1, 1) function.

(1 asset = 1 share)

�� Malicious user also transfers 1e18 eMetis to the seMetis contract . (1e18

asset = 1 share)

�� Initial liquidity providers’ calls takes place secondly due to gas fee priority.

�� 0.5e18 eMetis � 0 share

�� 0.75e18 eMetis � 0 share

�� In total, malicious user sent 1e18 � 1 eMetis to the contract and got 1 share.

Liquidity provider sent 1.25e18 eMetis in total and got 0 share.

Path:

contracts/SeMetis.sol#L17

Assets:
SeMetis.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Status: Fixed

9

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/fca8d8da-c4bd-4b4a-a788-ebee748ba82f

Classification

Severity: High

Impact: Likelihood �1�5�� 4

Impact �1�5�� 5

Exploitability �0�2�� 0

Complexity �0�2�� 1

Final Score: 4.3 �High)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: Consider requiring a minimal amount of share tokens to be minted for the first

minter, and send a portion of the initial mints as a reserve to the seMetis so that

the price per share can be more resistant to manipulation.

Remediation (revised commit: addd1fd)� The finding was eliminated after the

ENKI team added an initial minting to the eMetisMinter.initialize() function

in order to prevent potential ERC4626 price manipulation issues.

Evidences

PoC

Reproduce:
function test_ERC4626_price_manipulation_PoC01() public {

vm.startPrank(user1);

l1MetisToken.approve(address(eMetisMinter), type(uint256).max);

eMetisMinter.mint(user1, 1 ether + 1);

eMetisMinter.mintAndDeposit(user1, 1);

eMetis.transfer(config.seMetis(), 1 ether); // total deposit 1e18 + 1 --> 1s

hare:1e18

changePrank(user2);

l1MetisToken.approve(address(eMetisMinter), type(uint256).max);

eMetisMinter.mintAndDeposit(user2, 0.5 ether);

eMetisMinter.mintAndDeposit(user2, 0.75 ether); // total deposit 1.25e18 ->

share amount: 0 even user2 holds higher amount of total deposits

changePrank(user1);

seMetis.redeem(1, user1, user1);

changePrank(user2);

seMetis.redeem(1, user2, user2); // fails due to rounding error.

vm.stopPrank();

}

Results:

10

11

F-2024-1101 - The contract managers are able to withdraw tokens from the

contracts - Medium

Description: The Base contract has a function that allows the OPERATOR_ROLE or

TIMELOCK_ROLE (contract manager addresses) to withdraw tokens that were sent

to the contract by mistake. This also allows these actors to withdraw tokens that

are supposed to stay in the contract.

Contracts that inherit the Base.sol and tokens they are expected to hold:

EMetisMinter � Metis

RewardDispatcher - eMetis

SeMetis - eMetis

Vesting - eMetis, ENKI

Assets:
Base.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood �1�5�� 4

Impact �1�5�� 5

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.7 �Medium)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: Prevent withdrawal of the tokens that the contract is expected to work with.

Optionally - keep track of the relevant tokens on the contract and only allow to

withdraw tokens from direct transfers.

Remediation (revised commit: addd1fd)� The holdTokens variable was

implemented to track which tokens will be used in the protocol. Therefore, it will

be forbidden to recover/transfer these tokens by the contract owner.

12

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/22e2d8bb-419a-4b01-8316-57721efd67d1

F-2024-1064 - Unlimited approval granted to unrelated contract - Low

Description: The RewardDispatcher contract is designed for transferring eMetis token to the

Protocol treasury and seMetis vault. Even, there is a communication between

eMetisMinter and RewardDispatcher contracts, the eMetisMinter contract

does not make any eMetis function call for RewardDispatcher contract directly.

The initialize() function of RewardDispatcher contract grants unlimited

approval for eMetisMinter contract which is irrelevant. If any security

vulnerability occurs in the eMetisMinter contract, all eMetis tokens on

RewardDispatcher can be transferred by the eMetisMinter contract.

It was also confirmed with the ENKI team that the

IERC20Upgradeable(metis).approve() call is irrelevant.

function initialize(address _config) public initializer {

__Base_init(_config);

metis = config.metis();

eMetisMinter = config.eMetisMinter();

eMetis = config.eMetis();

seMetis = config.seMetis();

IERC20Upgradeable(metis).approve(eMetisMinter, type(uint256).max);

}

Path:

contracts/RewardDispatcher.sol#L37

Assets:
RewardDispatcher.sol [https://github.com/ENKIXYZ/lsd-

contracts/tree/v2/contracts]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �0�2�� 0

Complexity �0�2�� 0

Final Score: 2.5 (Low)

Hacken Calculator Version: 0.6

Recommendations

13

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/b35f06ff-6016-49ed-99bc-12d16a9b79dd

Recommendation: Consider removing unneeded IERC20Upgradeable(metis).approve() call

from the RewardDispatcher.initialize() function in order to prevent any

unwanted situations occur.

Remediation (revised commit: addd1fd)� Unlimited approval was removed from

the contract with the latest code update.

14

F-2024-1066 - Timelock and Operator roles can renounce their permissions -

Low

Description: The Timelock and Operator roles of the Config contract are designed for

changing protocol settings. These roles can perform some privileged functions

such as setPublic(), setProtocolTreasury(),

setProtocolTreasuryRatio(), setVestingRatio() and

setVestingDuration(). In the Config contract, the renounceRole() function

is used to renounce Timelock and Operator roles. Renouncing roles before

transferring would result in the contract having no Timelock or Operator users,

eliminating the ability to call these privileged functions.

function renounceRole(bytes32 role, address account) external override {

require(account == _msgSender(), "AccessControl: can only renounce roles for

self");

_revokeRole(role, account);

}

Path:

contracts/Config.sol#L172�L176

Assets:
Config.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 4

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: It is recommended to override the renounceRole() function in a way that

prevents revoking roles without transferring roles.

Remediation (revised commit: addd1fd)� This finding was eliminated after the

renounceRole() function was removed from the code.

15

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/994f9bdf-b645-4ac5-8e1d-93ab834d59ac

F-2024-1068 - Risk of centralization due to authority of Timelock and

Operator roles in Vesting se�ings - Low

Description: The Config contract is designed to store all protocol related configurations in a

place. This contract has two different roles (Timelock and Operator) to manage

configuration changes. Basically, when this contract is initialized, the msg.sender

of initialization call becomes the Timelock and will be responsible from managing

this contract.

The Timelock role can grant also grant Operator role to other users which has

really similar permissions. These roles should be granted to multi-sig wallet

addresses.

In other case, the Timelock and Operator roles can change:

Vesting Ratio

Vesting Duration

Protocol Treasury Ratio

Changing this values to very small and very high amounts may prevent Vesting

contract working properly.

Assets:
Config.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Status: Accepted

Classification

Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 4

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: Consider using Multi-sig wallet for Timelock and Operator addresses.

Remediation �Accepted)� This finding was acknowledged by the ENKI team.

16

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/00b68dd0-3980-4b5c-a429-eab51f5dd5bd

F-2024-1071 - Owner can renounce its ownership - Low

Description: The Owner of the contract is usually the account that deploys/initializes the

contract. Additionally, the Owner can perform some privileged functions. The

ERC20PermitPermissionedMint contracts uses Ownable library of

OpenZeppelin which has renounceOwnership() function.

Renouncing ownership before transferring would result in the contract having no

Owner, eliminating the ability to call privileged functions.

Assets:
ERC20PermitPermissionedMint.sol [https://github.com/ENKIXYZ/lsd-

contracts/tree/v2/contracts]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 4

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: Consider replacing Ownable library with Ownable2Step that includes a two-step

mechanism to transfer ownership.

Remediation (revised commit: addd1fd)� The Ownable library was replaced with

Ownable2Step to fix this finding.

17

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/04aa1e49-e3d0-4110-8a19-0dc32e58e541

F-2024-1079 - `Dealer.lockFor()` and `Dealer.setActive()` functions do not

check previous agent entries - Low

Description: It was identified that the Dealer.lockFor() and Dealer.setActive()

functions on the L1Dealer contract, which help to add new SequencerAgent, do

not control the activeSequencerIds variable before adding new agents. As a

result, the admin of that contract can add duplicate entries to the protocol by

mistake. This situation may pose unexpected situations since the

activeSequencerIds variable takes so many places in the Dealer contract.

function lockFor(uint32 agentId, address sequencerSigner, uint256 amount, by

tes memory signerPubKey) external onlyRole(DEFAULT_ADMIN_ROLE) {

address agent = sequencerAgents[agentId];

metis.safeTransferFrom(msg.sender, agent, amount);

SequencerAgent(agent).lockFor(sequencerSigner, amount, signerPubKey);

activeSequencerIds.push(agentId);

}

function setActive(uint32 agentId, bool active) external onlyRole(DEFAULT_AD

MIN_ROLE) {

if (active) {

activeSequencerIds.push(agentId);

} else {

_removeFromActiveList(agentId);

}

}

Assets:
L1/Dealer.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 2

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: It is recommended to verify that specified agents are not previously included to

the activeSequencerIds array.

Remediation (revised commit: addd1fd)� The _setActive() function was added

to the Dealer contract to prevent adding existing entries.

18

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/96e19f3c-634e-4abd-8e07-c9b40a40b960

Observation Details

F-2024-1065 - `__ReentrancyGuard_init()` function is not called during the

initialization - Info

Description: The __ReentrancyGuard_init() function updates the value of the _status

variable to 1 when the contracts are initialized. Although this does not cause any

known security vulnerabilities, calling this function is considered best-practice.

There are multiple instances that use the ReentrancyGuardUpgradeable library

without initializing it.

Path:

contracts/Config.sol#L118�L119

contracts/EMetisMinter.sol#L44�L45

contracts/RewardDispatcher.sol#L30�L31

contracts/SeMetis.sol#L14�L17

contracts/Vesting.sol#L56�L57

Status: Fixed

Recommendations

Recommendation: It is recommended to call the __ReentrancyGuard_init() function during the

initialization of contracts.

Remediation (revised commit: addd1fd)� The __ReentrancyGuard_init() was

implemented for the Base contract in order to initialize the ReentrancyGuard.

19

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/7c90512d-e65c-493d-ab95-d3dc43cb6bbc

F-2024-1067 - Long revert messages consumes extra gas - Info

Description: Shortening the revert strings to fit within 32 bytes will decrease deployment time

and decrease runtime Gas when the revert condition is met.

Revert strings that are longer than 32 bytes require at least one additional mstore

introduction, along with additional overhead to calculate memory offset, etc.

To optimize gas usage in your Solidity contract, it is recommended to keep revert

strings as short as possible and to ensure that they fit within 32 bytes. It is

possible to use abbreviations or simplified error messages to keep the string

length short. Doing so can reduce the amount of gas used during deployment and

runtime when the revert condition is met.

There are multiple instances of Long revert messages in the protocol.

Status: Accepted

Recommendations

Recommendation: Consider shorting all revert strings longer than 32 characters in order to optimise

gas usage. In addition, Custom Errors can be used to decrease gas usage.

Remediation �Accepted)� This finding was acknowledged by the ENKI team.

External References:
Custom Errors

20

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/9a06a0df-79a7-4ad9-b2d0-c66dda9dcc13
https://soliditylang.org/blog/2021/04/21/custom-errors/

F-2024-1069 - Missing lower and upper bounds on `setVestingDuration()`

function - Info

Description: The Config.setVestingDuration() function is designed to change the

configMap[UINT64_VESTING_DURATION] variable. That variable is one of the

key elements of vesting calculations. Currently, there is no lower and upper

bounds for _vestDuration variable Config.setVestingDuration() function.

Setting very small or very high amounts as this variable can drastically affect the

vesting logic. Therefore, it is necessary to have lower and upper bounds for this

function.

function setVestingDuration(uint64 _vestDuration) public override onlyOperat

orOrTimeLock {

require(_vestDuration > 0, "Config: vestingDuration must be greater than 0")

;

uint64 oldValue = uint64(configMap[UINT64_VESTING_DURATION]);

configMap[UINT64_VESTING_DURATION] = _vestDuration;

emit VestingDurationSet(oldValue, _vestDuration);

}

Assets:
Config.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Status: Accepted

Recommendations

Recommendation: Consider implementing lower and upper bounds for _vestDuration variable of

the Config.setVestingDuration() function.

Remediation �Accepted)� This finding was acknowledged by the ENKI team.

21

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/b720c03f-4fc8-40ca-a0f8-379a3ee484a8

F-2024-1070 - Missing amount control - Info

Description: There are multiple instances of functions that do not check if the amount variable

is higher than zero. These instances can be executed with zero amount which can

produce unexpected behaviors. Various token transfers are also callable with

these amount variables. Invoking these token transfers with zero amounts will only

waste users' gas. It is important to prevent functions from being called with a zero

amount.

Path:

contracts/EMetisMinter.sol#L57

contracts/EMetisMinter.sol#L66

contracts/EMetisMinter.sol#L72

contracts/EMetisMinter.sol#L82

contracts/Vesting.sol#L65

Assets:
EMetisMinter.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Vesting.sol [https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts]

Status: Fixed

Recommendations

Recommendation: It is a best-practice to having amount > 0 checks in contracts to prevent any

unexpected situations occur.

Remediation (revised commit: addd1fd)� The finding was eliminated after the

amount > 0 checks were implemented to the code.

22

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/3b217bcf-537e-4f73-8f88-d320807d0901

F-2024-1073 - TokenMinterBurned event creates confusion due to invalid

naming of event parameter - Info

Description: The TokenMinterBurned event is implemented for providing details about

ERC20PermitPermissionedMint.minter_burn_from() function. These event

uses the following structure:

event TokenMinterBurned(address indexed from, address indexed to, uint256 am

ount);

The variable names used here do not seem correct considering the logic of the

minter_burn_from() function. The naming here has created confusion as if the

burned tokens were sent to the to address. However, the to variable exhibits who

calls the minter_burn_from() function.

Assets:
ERC20PermitPermissionedMint.sol [https://github.com/ENKIXYZ/lsd-

contracts/tree/v2/contracts]

Status: Accepted

Recommendations

Recommendation: Consider renaming to field of TokenMinterBurned event to clear that confusion.

Remediation �Accepted)� This finding was acknowledged by the ENKI team.

23

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/b4d0c9fc-aae8-458a-a830-01e6162a7f74

F-2024-1074 - Floating pragma - Info

Description: A floating pragma in Solidity refers to the practice of using a pragma statement

that does not specify a fixed compiler version but instead allows the contract to be

compiled with any compatible compiler version. This issue arises when pragma

statements like pragma solidity ^0.8.0; are used without a specific version

number, allowing the contract to be compiled with the latest available compiler

version. This can lead to various compatibility and stability issues.

It was identified that there are multiple examples of floating pragma exists.

In addition, the project folder contains multiple pragma versions which. Each

pragma statement should be identical within a contract or file, as it sets the

compiler version and potentially other compiler-specific configurations.

Status: Fixed

Recommendations

Recommendation: Consider using the same pragma version and locking all of the pragma version in

the protocol whenever possible and avoid using a floating pragma in the final

deployment.

Remediation (revised commit: addd1fd)� This finding is eliminated after the ENKI

team locked the pragma version to 0.8.24.

External References:
Solidity Releases

24

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/3d4063db-d6aa-4a06-a815-8a8668070930
https://github.com/ethereum/solidity/releases

F-2024-1076 - Unused imports - Info

Description: The following identifiers are imported but never used within contracts:

import "@openzeppelin/contracts-upgradeable/proxy/ClonesUpgradeable.sol";

import "../interface/ICrossDomainEnabled.sol";

It is suggested to clear unused imports from the code in order to prevent code

clutters.

Path:

contracts/L1/SequencerAgent.sol#L6

contracts/L1/SequencerAgent.sol#L8

Status: Fixed

Recommendations

Recommendation: Regularly review your Solidity code to remove unused imports. This practice

declutters the codebase, making it easier to understand and maintain. In addition,

consider using tools or IDE features that can automatically detect and highlight

unused imports for cleanup. Keeping imports limited to only what is necessary

helps maintain a clear understanding of the contract's dependencies and reduces

potential confusion for developers working on or reviewing the code.

Remediation (revised commit: addd1fd)� Unused imports were removed from the

code.

25

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/0fb545b1-d6e9-4fc1-bc77-8aab60cfa577

F-2024-1077 - For loop optimizations - Info

Description: It has been observed for loops in the protocol were not optimized properly. Having

not optimized for loops can cost too much gas usage. These for loops can be

optimized with suggestions below:

In Solidity (pragma 0.8.0 and later), adding unchecked keyword for

arithmetical operations can reduce gas usage on contracts where

underflow/underflow is unrealistic. It is possible to save gas by using this

keyword on multiple code locations.

In all for loops, the index variable is incremented using i++. It is known that, in

loops, using ++i costs less gas per iteration than i++. This also affects

incremented variables within the loop code block.

Do not initialize index variables with 0, Solidity already initializes these uint

variables as zero.

Path:

contracts/ERC20PermitPermissionedMint.sol#L82

contracts/L1/Dealer.sol#L144

contracts/L1/Dealer.sol#L205

contracts/L1/Dealer.sol#L243

Status: Accepted

Recommendations

Recommendation: It is recommended to apply the following pattern for Solidity pragma version

between 0.8.0 and 0.8.20.

for (uint256 i; i < arrayLength ;) {

. . .

unchecked {

++ i;

}

}

Remediation �Accepted)� This finding was acknowledged by the ENKI team.

26

https://portal.hacken.io/App/Projects/Details/1d969a4c-1a0f-4286-a334-54b22217d1c3/Finding/a0bc0cfe-f2a8-4483-8089-3abf16f42d3d

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of

which are disclosed in this report �Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the

code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do

not consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-free

status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that

you should not rely on this report only — we recommend proceeding with several independent audits and a

public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language,

and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the

Consultant cannot guarantee the explicit security of the audited smart contracts.

27

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited

scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to

asset loss. Contradictions and requirements violations. Major deviations from best practices are also

in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality score.

28

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts

Commit 934933fc5963075ab6cbfa3a13bcf17b36480268

Remediation Commit addd1fd48d70a68ce6366088ab8fe80abd983a3b

Whitepaper N/A

Requirements N/A

Technical Requirements N/A

Contracts in Scope

Base.sol

Config.sol

EMetis.sol

EMetisMinter.sol

ERC20PermitPermissionedMint.sol

RewardDispatcher.sol

SeMetis.sol

Vesting.sol

L1/Dealer.sol

L1/SequencerAgent.sol

interfaces/*.sol

29

https://github.com/ENKIXYZ/lsd-contracts/tree/v2/contracts

