
Smart Contract Code Review

And Security Analysis Report

Customer: SatoshiSync

Date: 06/03/2024



We express our gratitude to the SatoshiSync team for the collaborative engagement that enabled the execution of this

Smart Contract Security Assessment.

Satoshisync is a permissionless chain agnostic protocol for BTC L2 aiming to facilitate seamless bridging of BRC20

assets between their native chain and any EVM compatible chain.

Platform: EVM

Language: Solidity

Tags: Bridging, BRC20, Ordinals, BTCFi

Timeline: 29/02/2024 - 01/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://gitlab.com/hacken-audit-contracts/satoshisync-wrappedbrc20/

Commit 0bec464e

2

https://hackenio.cc/sc_methodology
https://gitlab.com/hacken-audit-contracts/satoshisync-wrappedbrc20/


Audit Summary

10/10 10/10 0% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 0

Medium 0

Low 0

Vulnerability Status

F-2024-1190 - mint() function will not mint any wrapped assets, resulting in the loss of all tokens intended to bridge Fixed

3

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/03beb147-96db-4066-9fdd-bc1347531175


This report may contain confidential information about IT systems and the intellectual property of the Customer, as well

as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report

shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for SatoshiSync

Audited By Philipp Eder

Approved By Yves Toiser

Website https://hacken.io

Changelog 04/03/2024 - Preliminary Report & 06/03/2024 - Final Report

4

https://hacken.io/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 10

Disclaimers 17

Appendix 1. Severity Definitions 18

Appendix 2. Scope 19



System Overview

SatoshiSync is a permissionless, chain agnostic protocol for inscriptions and BTC L2.

It aims to facilitate easy customization and one-click bridging of BRC20 assets between their native chain and any EVM

compatible chain.

WrappedBRC20.sol — a contract to mint wrapped assets on any EVM compatible chain as a result of bridging the

BRC20 assets.

Privileged roles

The owner of the smart contract has the sole privilege to mint wrapped assets.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring criteria

can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 0% (branch coverage).

Security score

Upon auditing, the code was found to contain 1 critical, 0 high, 0 medium, and 0 low severity issues, leading to a

security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The code is intended to be deployed within a Beacon Proxy pattern however, the framework to facilitate this

structure was not provided.

The bridging functionality, particularly the procedure to invoke the mint() function for generating wrapped assets

lacks any kind of documentation, leaving this critical process unaddressed and unexplained.

The security of the bridging process is reliant on the security of the third-party bridging mechanism, which is not

subject of examination within the scope of this audit.

The bridging mechanism depends on the contract owner's ability to mint tokens, making it essential for the

bridging mechanism to hold the owner role for effective operation.

The smart contract appears to offer upgradeability features, yet remains incomplete. Although the owners assert

their intention to render it non-upgradeable, their capacity to enable upgrades presents a significant risk,

demanding implicit trust in their commitment to finalizing the contract's non-upgradeable state.

8



Findings

Vulnerability Details

F-2024-1190 - mint() function will not mint any wrapped assets, resulting in the

loss of all tokens intended to bridge - Critical

Description: The conditional statement if (amount == 0) _mint(to, amount); within the

mint() function makes it impossible to mint wrapped tokens. Therefore any attempt to

bridge funds will result in a complete loss of the tokens sent.

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Classification

Severity: Critical

Impact:
Likelihood [1-5]: 5

Impact [1-5]: 5

Exploitability [1-2]: 0

Complexity [0-2]: 0

Final Score: 5.0 [CRITICAL]

Recommendations

Recommendation: change the conditional statement in order for mint() to be able to mint wrapped

tokens.

Remediation: The client has fixed this vulnerability.

9

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/03beb147-96db-4066-9fdd-bc1347531175


Observation Details

F-2024-1163 - Missing event emission - Info

Description: The contract WrappedBRC20.sol lacks events to track important operations like minting

or rescuing native tokens.

Events in smart contracts are essential for tracking changes on the blockchain,

especially for key administrative actions.

Without events, tracking changes becomes challenging, reducing transparency and

making it harder to verify actions retrospectively. This absence hinders external

systems and interfaces from efficiently monitoring and reacting to important state

changes in the contract

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Recommendations

Recommendation: Introduce specific events for functions to log significant activities:

For rescueNativeToken(), emit an event capturing both the beneficiary's

address and amount.

Remediation: The client has fixed this observation.

10

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/645051cd-5983-4b8b-be4e-56183dbc3f3d


F-2024-1184 - Redundant payable flag in initializer function - Info

Description: The initialize() function within the WrappedBRC20.sol smart contract is marked as

payable without any apparent reason.

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Recommendations

Recommendation: Remove the payable flag from WrappedBRC20.initialize() function.

Remediation: The client has fixed this observation.

11

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/7de72e61-c37e-45c7-8720-370e777226df


F-2024-1185 - Solidity style guide violation - Info

Description: The contracts WrappedBRC20.sol & CheckerZeroAddr.sol violate the solidity style guide

by arbitrary placement of functions (regarding their visibility) & state variable

declarations.

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Recommendations

Recommendation: Inside each contract, library or interface, use the following order:

Type declarations

State variables

Events

Errors

Modifiers

Functions

Functions should be grouped according to their visibility and ordered:

constructor

receive function (if exists)

fallback function (if exists)

external

public

internal

private

Remediation: The client has fixed this observation.

12

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/4d927830-d5ef-4e9a-8bec-231089da98a5


F-2024-1192 - Unused function in CheckerZeroAddr.sol - Info

Description: The function function __CheckerZeroAddr_init_unchained() is present in

CheckerZeroAddr.sol but never used.

Unused functions unnecessarily increase deployment cost.

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Recommendations

Recommendation: Remove the unused function.

Remediation: The client has fixed this observation.

13

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/4b35065d-d02f-436b-8861-df00e5cb08bd


F-2024-1193 - Unused interface with functions differing from implementation

contract - Info

Description: The interface ITokensRescuer.sol and its intended implementation contract

TokensRescuer.sol are in no way connected through inheritance, furthermore the

interface contains multiple functions not present in the implementation.

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Recommendations

Recommendation: Make the contract TokensReceiver.sol inherit from the Interface ITokensReceiver.sol

and implement either all functions in both or delete unused functions or remove the

interface ITokensReceiver.sol

Remediation: The client has fixed this observation.

14

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/1b9c73f4-955b-4a99-bc29-a16bc6e0cfc8


F-2024-1213 - Functions not used internally can be marked as external - Info

Description: The mint() function is currently set to public visibility but never called internally.

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Recommendations

Recommendation: Reduce the function visibility of mint() to external.

Remediation: The client has fixed this observation.

15

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/7f36d4b7-d505-4738-81e0-e4abe98e29ef


F-2024-1214 - Missing handling of negative case in conditional - Info

Description: The function mint() with the body if (amount == 0) _mint(to, amount); is

missing the handling of a negative case.

Assets:
contracts/core/WrappedBRC20.sol [https://gitlab.com/hacken-audit-

contracts/satoshisync-wrappedbrc20/-/blob/main/contracts/core/WrappedBRC20.sol]

Status: Fixed

Recommendations

Recommendation: Add a require statement and revert string or a custom error to handle negative cases of

the conditional.

Remediation: The client has fixed this observation.

16

https://portal.hacken.io/App/Projects/Details/318688f9-a29c-4bde-90d0-7f621bfc24a9/Finding/0f9fff93-6f2b-426f-a256-8cc04bab1d9c


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing of

this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the

intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The

report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do not consider this

report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other

contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to note that you

should not rely on this report only — we recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated

versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and

other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

17



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited scope,

but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to asset

loss. Contradictions and requirements violations. Major deviations from best practices are also in this

category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a significant

impact on code execution, do not affect security score but can affect code quality score.

18

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://gitlab.com/hacken-audit-contracts/satoshisync-wrappedbrc20/

Commit 0bec464e73797953e143236f1b14eae0293a7fcf

Whitepaper https://satoshisync.com/lightpaper.pdf

Requirements https://syncsatoshi.gitbook.io/welcome/

Technical Requirements Documentation.docx.pdf

Contracts in Scope

./contracts/core/WrappedBRC20.sol

./contracts/extensions/CheckerZeroAddr.sol

./contracts/extensions/TokensRescuer.sol

19

https://gitlab.com/hacken-audit-contracts/satoshisync-wrappedbrc20/
https://satoshisync.com/lightpaper.pdf
https://syncsatoshi.gitbook.io/welcome/
https://gitlab.com/hacken-audit-contracts/satoshisync-wrappedbrc20/-/blob/0bec464e73797953e143236f1b14eae0293a7fcf/doc/WrappedBRC20%20Smart%20Contract%20Documentation.docx.pdf



