
Smart Contract Code

Review And Security

Analysis Report

Customer: Zharta

Date: 18/03/2024

We express our gratitude to the Zharta team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Zharta revolutionizes the NFT landscape by offering instant NFT loans and staking backed by NFTs,

ensuring seamless liquidity without the hassle of traditional lending processes, while providing

unparalleled security and benefits such as fixed APR.

Platform: EVM

Language: Vyper

Tags: NFT Lending

Timeline: 27/02/2024 � 04/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/Zharta/lotm-renting-protocol-v1

Commit c746cea

2

https://hackenio.cc/sc_methodology
https://github.com/Zharta/lotm-renting-protocol-v1

Audit Summary

10/10 10/10 99% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

0 0 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 0

3

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report

for Zharta

Audited By Turgay Arda Usman, Seher Saylik

Approved By Grzegorz Trawinski

Website https://www.zharta.io

Changelog � Preliminary

Report
06/04/2024

Changelog � Final Report 18/04/2024

4

https://www.zharta.io/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 9

Disclaimers 14

Appendix 1. Severity Definitions 16

Appendix 2. Scope 17

System Overview

Zharta is an NFT renting and staking platform with the following contracts:

RentingERC721V3 — a simple non-fungible token contract that enables the conversion of deposited

NFTs into new ERC721 tokens. It facilitates the minting and burning of tokens corresponding to

deposited NFTs by the renting contract. Mint and burn functions can only be called by the renting

contract address.

RentingV3 — a contract that facilitates the delegation and management of NFT rentals, offering

functions to delegate NFTs to wallets, start, extend, and close rentals, and claim rewards. Users can

deposit NFTs into vaults, revoke listings, and stake for their NFTs, while also being able to withdraw

NFTs only if it is not in an active rental and claim rewards accrued from rentals.

Once rental context data, such as price and maximum duration, is signed by both the owner and

protocol admin, users can rent the NFT. They can do so by providing the required signatures and

specifying the rental duration.

Renters are also permitted to cancel the rental at any time, albeit with the requirement to pay for

at least the minimum duration of the rented NFT. This ensures that there is a fair compensation

for the time the NFT was intended to be rented, even if the rental is terminated prematurely.

The rental price, or APR �Annual Percentage Rate), for an NFT is established at the beginning of

the rental period and remains fixed throughout the rental duration. This means that renters are

aware of the price they will pay upfront and can plan accordingly, without the risk of unexpected

price fluctuations during the rental period.

VaultV3 � In the system, for each deposited NFT, a VaultV3 contract is created where the NFT is

stored, and staking management for the specific NFT is handled within the Vault contract. This setup

ensures that each NFT has its own dedicated storage and staking functionalities, maintaining a clear

separation of concerns and facilitating efficient management of assets and associated staking

activities.

Privileged roles

The authorities of the RentingV3 contract"s protocol admin:

Claiming the accrued protocol fees

Setting the protocol fee

Changing the protocol wallet address

Pausing/unpausing the contract

Changing the admin role

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

The code follows best practices.

Test coverage

Code coverage of the project is 99% (branch coverage).

Deployment and basic user interactions are covered with tests.

Tests are well written and the interactions by several users are tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 0 low severity issues,

leading to a security score of 10 out of 10. Following remediation, all identified issues have been

resolved.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

If a renter desires to cancel the rental agreement before the minimum expiration date, they are

obligated to pay the rental fee until the minimum expiration date specified in the contract, rather

than until the current blockchain block timestamp.

The RentingV3.vy enables the owner to set platform fee via the

set_protocol_fee()function. This means that the owner can submit a transaction to alter this

value concurrently. By allocating a higher gas limit to their transaction, the owner can ensure it is

processed faster, resulting in the user receiving a different amount of tokens than anticipated.

This situation allows the owner to engage in front-running, exploiting their ability to preempt user

transactions and alter exchange outcomes to their advantage

This audit report focuses exclusively on the security assessment of the contracts within the

specified review scope. Interactions with out-of-scope contracts are presumed to be correct and

are not examined in this audit. We want to highlight that Interactions with contracts outside the

specified scope, such as:

3rd-party/ApeCoinStaking.sol

3rd-party/HotWallet.sol

3rd-party/HotWallet2.sol have not been verified or assessed as part of this report.

 While we have diligently identified and mitigated potential security risks within the defined

scope, it is important to note that our assessment is confined to the isolated contracts within this

scope. The overall security of the entire system, including external contracts and integrations beyond

our audit scope, cannot be guaranteed.

Users and stakeholders are urged to exercise caution when assessing the security of the broader

ecosystem and interactions with external contracts. For a comprehensive evaluation of the entire

system, additional audits and assessments outside the scope of this report are necessary.

 This report serves as a snapshot of the security status of the audited contracts within the

specified scope at the time of the audit. We strongly recommend ongoing security evaluations and

continuous monitoring to maintain and enhance the overall system's security.

8

Findings

Vulnerability Details

Observation Details

F-2024-1195 - Unused Event In RentingV3 - Info

Description: The RentalChanged event is declared within the contract's codebase,

however, it is not utilized anywhere in the contract logic, rendering it

redundant and potentially misleading readers.

Resolving this issue necessitates either integrating the RentalChanged

event into pertinent contract functionality or removing it entirely to

optimize gas usage and enhance code clarity.

Assets:
RentingV3.vy [https://github.com/Zharta/lotm-renting-protocol-

v1/tree/draft/v3-design]

Status: Fixed

Recommendations

Recommendation: Remove the unused event from the contract.

Remediation �Revised commit: 8b3218f): The Zharta team removed the

unused event from the contract.

9

https://portal.hacken.io/App/Projects/Details/976085bd-00ed-4c15-9e2b-5e54e5a1cc3d/Finding/665586bc-8435-49a7-81b5-31260ddc6418

F-2024-1196 - Missing Event Logging - Info

Description: The functions claim_token_ownership() and set_paused() fail to log

important state updates, hindering off-chain tracking of important

contract events. Proper event logging is crucial for off-chain analysis and

auditing, ensuring comprehensive oversight and accountability in contract

operations.

Assets:
RentingV3.vy [https://github.com/Zharta/lotm-renting-protocol-

v1/tree/draft/v3-design]

Status: Fixed

Recommendations

Recommendation: Log the required events for critical state updates.

Remediation �Revised commit: 0261f02�� The Zharta team introduced

the missing events for the given functions.

10

https://portal.hacken.io/App/Projects/Details/976085bd-00ed-4c15-9e2b-5e54e5a1cc3d/Finding/5e00d7ba-096e-49d6-a5f5-656dcf91d925

F-2024-1311 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address.

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

Function init() is lack of missing zero address validation.

Assets:
VaultV3.vy [https://github.com/Zharta/lotm-renting-protocol-

v1/tree/draft/v3-design]

Status: Fixed

Recommendations

Recommendation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Remediation �Revised commit: cf84a21�� The Zharta team introduced

zero address checks for the init() function.

11

https://portal.hacken.io/App/Projects/Details/976085bd-00ed-4c15-9e2b-5e54e5a1cc3d/Finding/f1a93873-f617-434c-af60-d72d6c570abd

F-2024-1312 - Checks-E�ects-Interactions Pa�ern Violation - Info

Description: State variables are updated after the external calls to the vault contract

that sends a call to the msg.sender to check if the msg.sender(contract)

can accept NFTs.

The current implementation do not allow onERC721Received() function

in possible malicious contract to trigger any external calls or to modify any

state variables since its type is declared as “view” in the RentingERC721

contract interface. However, it’s always recommended to use a reentrancy

guard for possible future risks.

It is always best practice to follow the checks-effects-interactions pattern

when interacting with external contracts to avoid reentrancy-related

issues.

@external

def withdraw(token_contexts: DynArray[TokenContext, 32]):

"""

@notice Withdraw multiple NFTs and claim rewards

@dev Iterates over token contexts to withdraw NFTs from their vaults

and claim any unclaimed rewards, while also burning the matching ERC

721 renting token.

@param token_contexts An array of token contexts, each containing th

e vault state for an NFT.

"""

withdrawal_log: DynArray[WithdrawalLog, 32] = empty(DynArray[Withdra

walLog, 32])

tokens: DynArray[TokenAndWallet, 32] = empty(DynArray[TokenAndWallet

, 32])

total_rewards: uint256 = 0

for token_context in token_contexts:

assert self._is_context_valid(token_context), "invalid context"

assert not self._is_rental_active(token_context.active_rental), "act

ive rental"

token_owner: address = renting_erc721.owner_of(token_context.token_i

d)

if token_owner != empty(address):

assert msg.sender == token_owner, "not owner"

else:

assert msg.sender == token_context.nft_owner, "not owner"

vault: IVault = self._get_vault(token_context.token_id)

self._consolidate_claims(token_context.token_id, token_context.nft_o

wner, token_context.active_rental, False)

self._clear_token_state(token_context.token_id)

tokens.append(TokenAndWallet({

token_id: token_context.token_id,

wallet: token_context.nft_owner

}))

vault.withdraw(token_context.token_id, msg.sender)

self.listing_revocations[token_context.token_id] = block.timestamp

12

https://portal.hacken.io/App/Projects/Details/976085bd-00ed-4c15-9e2b-5e54e5a1cc3d/Finding/a7370c21-ae63-4286-b333-955d22298c7e

withdrawal_log.append(WithdrawalLog({

vault: vault.address,

token_id: token_context.token_id,

}))

renting_erc721.burn(tokens)

rewards_to_claim: uint256 = self.unclaimed_rewards[msg.sender]

transfer reward to nft owner

if rewards_to_claim > 0:

self._transfer_payment_token(msg.sender, rewards_to_claim)

self.unclaimed_rewards[msg.sender] = 0

log NftsWithdrawn(

msg.sender,

nft_contract_addr,

rewards_to_claim,

withdrawal_log

)

Assets:
RentingV3.vy [https://github.com/Zharta/lotm-renting-protocol-

v1/tree/draft/v3-design]

Status: Fixed

Recommendations

Recommendation: Follow the checks-effects-interactions pattern when interacting with

external contracts and implement reentrancy lock to safeguard the

function.

Remediation(Revised commit: e15a6be): The Zharta team changed the

order of operations, which involves making the payment transfer and

updating the claimed rewards

13

https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

Risk Statement

This audit report focuses exclusively on the security assessment of the contracts within the specified

review scope. Interactions with out-of-scope contracts are presumed to be correct and are not

examined in this audit. We want to highlight that Interactions with contracts outside the specified

scope, such as:

3rd-party/ApeCoinStaking.sol

3rd-party/HotWallet.sol

3rd-party/HotWallet2.sol have not been verified or assessed as part of this report.

While we have diligently identified and mitigated potential security risks within the defined scope, it is

important to note that our assessment is confined to the isolated contracts within this scope. The

overall security of the entire system, including external contracts and integrations beyond our audit

scope, cannot be guaranteed.

Users and stakeholders are urged to exercise caution when assessing the security of the broader

ecosystem and interactions with external contracts. For a comprehensive evaluation of the entire

system, additional audits and assessments outside the scope of this report are necessary.

This report serves as a snapshot of the security status of the audited contracts within the specified

scope at the time of the audit. We strongly recommend ongoing security evaluations and continuous

monitoring to maintain and enhance the overall system's security.

14

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

15

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/Zharta/lotm-renting-proto

Commit e15a6be05d88b651fed6d49793405c5e3a45d0a7

Whitepaper
https://zharta.gitbook.io/zharta-welcome-kit/overview/introducing-

zharta

Requirements https://github.com/Zharta/lotm-renting-protocol-v1/pull/69

Technical

Requirements

https://zharta.gitbook.io/zharta-welcome-kit/overview/introducing-

zharta

Contracts in Scope

contracts/RentingERC721V3.vy

contracts/RentingV3.vy

contracts/VaultV3.vy

16

https://github.com/Zharta/lotm-renting-proto
https://zharta.gitbook.io/zharta-welcome-kit/overview/introducing-zharta
https://github.com/Zharta/lotm-renting-protocol-v1/pull/69
https://zharta.gitbook.io/zharta-welcome-kit/overview/introducing-zharta

