
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Venom
Date: 28 Aug, 2023



Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another
Party. Any subsequent publication of this report shall be without
mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Venom

Approved By Oleksii Zaiats | SC Audits Head at Hacken OÜ

Type Vesting

Platform Venom

Language TON-Solidity

Methodology Link

Website web3.world/vesting

Changelog 11.08.2023 – Initial Review
28.08.2023 – Second Review

www.hacken.io 2

mailto:support@hacken.io
https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
http://web3.world/vesting


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Table of Contents

Document 2
Table of Contents 3
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 9

Critical 9
C01. Transaction Replay Attack 9

High 9
Medium 9

M01. Inconsistent Gas Management 9
Low 10

L01. Floating Pragma 10
L02. Outdated Compiler Version 10

Informational 11
I01. Code Duplication 11
I02. Redundant Branching 11
I03. Magic Numbers Usage 11
I04. Implicit Call Flag 12
I05. Style Guide Violation 12
I06. Incorrect File Extension 12
I07-1. Redundancies 13
I07-2. Redundancies 13

Disclaimers 14
Appendix 1. Severity Definitions 15

Risk Levels 15
Impact Levels 16
Likelihood Levels 16
Informational 16

Appendix 2. Scope 17
Initial review scope 17
Second review scope 17

www.hacken.io 3

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Venom (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Venom Vesting — a smart contract system allowing vesting contracts creation
and management.

In-scope contracts:

● IndexFactory & Index — contracts that provide an ability to list
decentralized data.

● VestingFactory (inherit IndexFactory) — contract allows Vesting and
NativeVesting contracts deployment. It deploys Index contracts for
vesting creator, recipient, and TIP-3 token.

● NativeVesting — vesting contract for native tokens. Should be
fulfilled with direct deposit.

● Vesting — vesting contract for TIP-3 tokens. Should be fulfilled with
a callback of the TIP-3 deposit.

Roles

● Only the vesting recipient specified on deployment is able to
withdraw vested funds.

● Any user is able to create and fulfill vesting.

www.hacken.io 4

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● A description of system functionality is provided.
● The technical description is comprehensive.

Code quality
The total Code Quality score is 9 out of 10.

● Magic numbers usage is found.
● Style guide violations are found.
● The development environment is configured.

Test coverage
The coverage of the project with tests is about 85%.

● Some minor view functions are not tested thoroughly. Check if all the
implemented functions are called and the return values are checked.

● Missing access control tests for callbacks.

Security score
As a result of the audit, the code does not contain security issues. The
security score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.3.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

11 August 2023 2 1 0 1

28 August 2023 0 0 0 0

www.hacken.io 5

mailto:support@hacken.io
https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Risks

● Depending on TIP-3 token implementation funds may get stuck in case
not enough value is attached to the call (especially during
performing a deposit to the Vesting contract).

● In case of the Gas price change, the minimal attached amount may be
not enough for performing the execution of the whole call chain.

● Users may be unable to retrieve the list of their vestments on-chain.
● In case the vesting period is overlong, vesting contracts may need

additional funding to not be frozen.

www.hacken.io 6

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Integer Overflow
and Underflow

All math operations should be safe from
overflows and underflows. Passed

Outdated
Compiler Version

It is recommended to use a recent version of
the TON-Solidity compiler. Passed

Access Control &
Authorization

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

DoS (Denial of
Service)

Execution of the code should never be
blocked by a specific contract state unless
required.

Passed

Race Conditions Race Conditions and Transactions Order
Dependency should not be possible. Passed

Block values as
a proxy for time

Block numbers should not be used for time
calculations. Not Relevant

Signature Reuse Signed messages that represent an approval
of an action should not be reusable. Not Relevant

Weak Sources of
Randomness

Random values should never be generated from
Chain Attributes or be predictable. Not Relevant

Calls Only to
Trusted
Addresses

All external calls should be performed only
to trusted addresses. Passed

Presence of
Unused Variables

The code should not contain unused variables
until they are not justified by design. Passed

Assets Integrity
Funds are protected and cannot be withdrawn
without proper permissions or be locked on
the contract.

Passed

User Balances
Manipulation

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data Consistency Smart contract data should be consistent all
over the data flow. Passed

Flashloan Attack

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Not Relevant

www.hacken.io 7

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Not Relevant

Gas Management

Transaction execution costs should not
depend dramatically on the amount of data
stored in the contract. Contracts should
validate that incoming value is enough to
perform the whole call chain.

Passed

Compiler
Warnings

The code should not force the compiler to
throw warnings. Passed

Style Guide
Violation

Style guides and best practices should be
followed.

Failed
(I05)

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Test Coverage

The code should be covered with unit tests.
Test coverage should be sufficient, with
both negative and positive cases covered.
The usage of contracts by multiple users
should be tested.

Failed
(Code Coverage)

Stable Imports
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io 8

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Findings

Critical

C01. Transaction Replay Attack

Impact High

Likelihood High

The sendTransaction function of the
@broxus/contracts/contracts/wallets/Account.tsol wallet
implementation is considered to be vulnerable to a transaction replay
attack due to tvm.accept() call being performed before all essential
checks are done and an arbitrary flag for a performed call could be
provided.

The dest.transfer(..) call may fail, for, example, due to a low
contract balance. The flag value is not checked for containing +2
(ignore exceptions) modifier. Thus, the failing transaction could be
replayed by a validator draining the wallet balance.

The pragma AbiHeader expire is used, however, it does not help due to
validator is not bounded by the number of times replaying the
transaction in one block.

Path: ./contracts/Wallet.sol

Recommendation: Use trusted wallet implementations, validate that
contract will not fail after a tvm.accept() call, or remove the file.

Valuable link: everscale.guide/smart_contracts/replay_protection

Found in: ce6dee4

Status: Fixed (Revised commit: 46a4f7d)

High

No high severity issues are found.

Medium

M01. Inconsistent Gas Management

Impact Medium

Likelihood Medium

Although the Gas price is stable for now, it may be changed in the
future.

The variables and constants store needed value approximation, not the
Gas amount.

www.hacken.io 9

mailto:support@hacken.io
https://everscale.guide/smart_contracts/replay_protection


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Paths:

● ./contracts/indexer/IndexFactory.tsol: _indexDeployValue,
_indexDestroyValue

● ./contracts/indexer/NativeVesting.sol: MIN_MSG_VALUE
● ./contracts/indexer/Vesting.sol: TOKEN_WALLET_DEPLOY_VALUE,

MIN_MSG_VALUE
● ./contracts/indexer/VestingFactory.sol: VESTING_DEPLOY_VALUE

Recommendation: Store the minimal amount of Gas attached to the call,
not the minimal value, and check if the provided value is enough
using the gasToValue(..) function.

Found in: ce6dee4

Status: Mitigated (The gasToValue(..) functionality is still
experimental)

Low

L01. Floating Pragma

Impact Low

Likelihood Medium

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths: ./contracts/*

Recommendation: Consider locking the pragma version whenever possible
and avoid the usage of a floating pragma in the final deployment.

Note: Locking pragma to ^0.Y.Z is considered to be valid as allows
applying patches without breaking changes.

Found in: ce6dee4

Status: Fixed (Revised commit: 46a4f7d)

L02. Outdated Compiler Version

Impact Low

Likelihood Medium

The 0.62.0 version of the TON-Solidity Compiler is used, however, it
is considered to be outdated. Newer compiler versions contain fixes
for various issues.

Paths: ./contracts/*

Recommendation: Use the relevant compiler version.

www.hacken.io 10

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Note: updating pragma over 0.67.0 requires the following changes:

● constructor should not have visibility specifier
● now should be replaced with block.timestamp
● <TvmSlice>.decode should be replaced with <TvmSlice>.load

Found in: ce6dee4

Status: Mitigated (The 0.62.0 version has no disclosed bugs related
to the code)

Informational

I01. Code Duplication

● tokens_to_claim/value_to_claim value calculation is duplicated
in pendingVested() and claim() functions.

Paths: ./contracts/Vesting.sol, ./contracts/NativeVesting.sol

● The Vesting and NativeVesting contracts have common logic that
could be moved to a base contract.

Paths: ./contracts/Vesting.sol, ./contracts/NativeVesting.sol

● The common sanity checks can be compiled into a modifier.

Path: ./contracts/VestingFactory.sol: deployNativeVesting(),
deployVesting()

Recommendation: Extract common logic into a standalone piece of code.

Found in: ce6dee4

Status: Reported

I02. Redundant Branching

There is an unnecessary code branching present. It can be omitted by
extracting each piece of logic into a separate internal function,
only used where it fits.

Path: ./contracts/VestingFactory.sol: onVestingDeployed()

Recommendation: Logical branching should be split into separate
functions and common logic - kept in one function.

Found in: ce6dee4

Status: Reported

I03. Magic Numbers Usage

Constant number values are used as message flags that obscure their
purpose.

www.hacken.io 11

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Paths:

● ./contracts/indexer/Index.tsol
● ./contracts/indexer/IndexFactory.tsol

Recommendation: Use MsgFlag library to make flags declarative.

Found in: ce6dee4

Status: Reported

I04. Implicit Call Flag

Some messages are implicitly configured. The flag field is missing.

Paths:

● ./contracts/Vesting.tsol: _setupTokenWallets()
● ./contracts/indexer/IndexFactory.tsol: destructIndex()

Recommendation: Consider specifying flag to make call configuration
explicit.

Found in: ce6dee4

Status: Fixed (Revised commit: 46a4f7d)

I05. Style Guide Violation

There are variable names defined in the snake case.

Paths:

● ./contracts/interfaces/IFactory.tsol: vesting_amount,
vesting_start, vesting_end

● ./contracts/NativeVesting.tsol: remaining_amount, send_gas_to,
value_to_claim, period_left, period_passed,

● ./contracts/Vesting.tsol: remaining_amount, tokens_to_claim,
period_left, period_passed,

● ./contracts/VestingFactory.tsol: deploy_nonce,
vestings_deployed, vesting_amount, vesting_start, vesting_end,
vesting_contract_type, vesting_address

Recommendation: Follow the style guides, use camel case for variable
and parameter names.

Found in: ce6dee4

Status: Reported

I06. Incorrect File Extension

It is considered best practice usage of tsol extension for
TON-Solidity files.

Paths: ./contracts/*.sol

www.hacken.io 12

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Recommendation: Convert sol extension into tsol.

Found in: ce6dee4

Status: Reported

I07-1. Redundancies

The return parameter names are redundant in the functions due to
explicit return statements being used.

Paths:

● ./contracts/Vesting.sol: getDetails()
● ./contracts/NativeVesting.sol: getDetails()

Recommendation: Eliminate mentioned redundancies.

Found in: ce6dee4

Status: Mitigated (The return parameter names provide ABI of the
functions return data)

I07-2. Redundancies

The else branch is redundant in the functions.

Paths:

● ./contracts/Vesting.sol: pendingVested()
● ./contracts/NativeVesting.sol: pendingVested()

Recommendation: Eliminate mentioned redundancies.

Found in: ce6dee4

Status: Fixed (Revised commit: 46a4f7d)

www.hacken.io 13

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io 14

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io 15

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io 16

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/venom-blockchain/vesting

Commit ce6dee47d0140e298b330089eb0fd00290d32a4d

Requirements README.md

Contracts File: ./contracts/indexer/IndexFactory.tsol
SHA3: be263ac32451c56f9f88ff6fb9008a8932ac847119ffb37d8348c6786b6e07ee

File: ./contracts/indexer/Index.tsol
SHA3: fbc0098235d5d6cc77780d7331921f66d2638032a6e3251647198bbb9e781413

File: ./contracts/interfaces/IFactory.sol
SHA3: 0ab9a8d0f0fdf74532d17f98675192f5ea2784e6c42dd9513b75bddc4292b805

File: ./contracts/NativeVesting.sol
SHA3: 7ada960b9724f9a196bacb1598fd63e6b59552ff8faaee0e1ab251d13459cef0

File: ./contracts/VestingFactory.sol
SHA3: d8d31cf6131ecc24238e1c174502e9c392770eb80e6d180abb7f2df05e596786

File: ./contracts/Vesting.sol
SHA3: 3f0e97b2cf78e2727bc8efeaa65765b486c868cddfafdb31bae77d0369c95911

File: ./contracts/Wallet.sol
SHA3: 276184a9a9d9090832533e3a386fc047889ab81ce9dd40a167757b83e36fd691

Second review scope

Repository https://github.com/venom-blockchain/vesting

Commit 871af51db9c58c8054cb144aea0d4c2f368f692b

Requirements README.md

Contracts File: ./contracts/indexer/IndexFactory.tsol
SHA3: 4daec32981c46e6dcbb06c886631f5d077e33eec5bd559a62794ab82d6d28687

File: ./contracts/indexer/Index.tsol
SHA3: 5af1d74f5efdf16a86eaf1bd7754896639f0e5839dc4d6cc8d9203be3e95965d

File: ./contracts/Vesting.sol
SHA3: a6da90077d2e41b80fb3ea4c92656c6bb50c6feb8a303522d16c0ecd49741034

File: ./contracts/NativeVesting.sol
SHA3: 5769e063dd3767d12a2db23004ca99e80c9f72df473eb8d753569f06aa64690c

File: ./contracts/VestingFactory.sol
SHA3: d8d31cf6131ecc24238e1c174502e9c392770eb80e6d180abb7f2df05e596786

File: ./contracts/interfaces/IFactory.sol
SHA3: 0ab9a8d0f0fdf74532d17f98675192f5ea2784e6c42dd9513b75bddc4292b805

www.hacken.io 17

mailto:support@hacken.io
https://github.com/venom-blockchain/vesting
https://github.com/venom-blockchain/vesting/tree/ce6dee47d0140e298b330089eb0fd00290d32a4d
https://github.com/venom-blockchain/vesting/blob/ce6dee47d0140e298b330089eb0fd00290d32a4d/README.md
https://github.com/venom-blockchain/vesting
https://github.com/venom-blockchain/vesting/tree/871af51db9c58c8054cb144aea0d4c2f368f692b
https://github.com/venom-blockchain/vesting/blob/871af51db9c58c8054cb144aea0d4c2f368f692b/README.md

