
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Venom
Date: 25 Sep, 2023



Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another
Party. Any subsequent publication of this report shall be without
mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Venom

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OÜ

Type Liquid Staking

Platform Venom

Language TON-Solidity

Methodology Link

Website https://venomstake.com

Changelog
25.08.2023 – Initial Review
18.09.2023 - Second Review
25.09.2023 - Third Review

www.hacken.io 2

mailto:support@hacken.io
https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Table of Contents

Document 2
Table of Contents 3
Introduction 5
System Overview 5
Executive Summary 7
Risks 8
Checked Items 9
Findings 11

Critical 11
C01. Transaction Replay Attack 11
C02. Transaction Replay Attack 11

High 12
H01. Incorrect Function Used 12
H02. Incorrect Gas Management 13
H03. Lack of Validation 14
H04. Data Consistency 14

Medium 15
M01. Inconsistent Ownership Control 15
M02. Missing Validation 16
M03. Missing Validation 17
M04. Implementation Error 17
M05. Incorrect Gas Management 18
M06. Race Condition 19
M07. Denial of Service 20
M08. Missing Validation 20
M09. Invalid Validation 21
M10. Division By Zero 22
M11. Incorrect Gas Management 22
M12. Invalid Validation 23
M13. Missing Validation 23

Low 24
L01. Floating Pragma 24
L02. Outdated Compiler Version 24
L03. Storage Variable Shadowing 25
L04. Missing Validation 26
L05. Incorrect Gas Management 26
L06. Missing Validation 26
L07. Missing Validation 27
L08. Funds Lock 27
L09. Incorrect Gas Management 28
L10. Potential Underflow 28
L11. Incorrect Gas Recipient 29
L12. Incorrect Gas Management 30
L13. Incorrect Gas Management 30
L14. Potential Underflow 31

www.hacken.io 3

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

L15. Incorrect Gas Management 31
L16. Redundant Bounce Flag Set 32
L17. Incorrect Gas Management 33

Informational 33
I01. Redundant Modifier 33
I02. Redundant Constant Variable 34
I03. Redundant Imports 35
I04. Redundant Event Declaration 35
I05. Redundant Use Of Modifier 36
I06. Magic Numbers Usage 36
I07. Testing Functions in Production Interface 36
I08. Style Guide Violation 37
I09. Typographical Error 37
I10. Code Consistency 38
I11. Missing NatSpec 38
I12. TODO Comment 38
I13. Redundant State Change and Event Emission 39
I14. Missing Error Code 39
I15. Magic Numbers Usage 39
I16. Redundant Contract Declaration 40
I17. Redundant Code Block 41
I18. Redundant Function Declaration 41
I19. Code Consistency 42
I20. Redundant tvm.accept() 42
I21. Duplicate Field in Return Object 43

Disclaimers 44
Appendix 1. Severity Definitions 45

Risk Levels 45
Impact Levels 46
Likelihood Levels 46
Informational 46

Appendix 2. Scope 47
Initial review scope 47
Second review scope 48
Third review scope 49

www.hacken.io 4

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Venom (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Venom Staking — a smart contract system designed for the EVER liquid
staking. By aggregating real network validators into one platform, it
ensures an automatic balance of staked EVER across these validators
(achieved by Governance software system). This design eliminates the
decision-making burden on users to select individual validators.

Furthermore, upon staking their EVER, users are issued a staked version of
the SEVER token. This token representation can then be utilized across
other DeFi platforms, allowing users to leverage the locked value of their
stake.

In-scope contracts:

● StEverVault — This central contract oversees the majority of
operations. It serves as the primary interface for user interactions,
such as deposits and withdrawals, as well as administrative and
governance tasks. Additionally, it manages strategy, emergency
protocols, and validator interactions, drawing on the capabilities of
several abstract contracts it inherits from.

○ StEverStrategiesManager — An abstract contract that enriches
the `StEverVault` with functionalities for Cluster and DePool
strategy management.

○ StEverVaultBase — This abstract contract establishes the
foundation for the `StEverVault`. Extending the
`StEverVaultStorage`, it incorporates a plethora of modifiers,
utility functions, and external functions to ensure the vault
operates seamlessly.

○ StEverVaultEmergency — An abstract contract designed to offer
emergency features for users, especially when the Governance
system becomes inactive and fails to process user withdrawal
requests.

○ StEverVaultStorage — An abstract contract where all storage
variables are defined and maintained.

○ StEverVaultStrategiesController — An abstract contract equipped
with functionalities for deposits, withdrawals from strategies,
and rewards processing. It also facilitates the Governance
rebalancing process.

○ StEverVaultValidators — An abstract contract providing helper
view functions. These are utilized to pre-verify the accuracy
of Governance deposits and withdrawal requests.

● StEverAccount — A contract representing individual user accounts,
recording their withdrawal requests.

● StEverCluster — The contract represents a Validator's account. Once
validated, a dedicated contract is created for them. This contract
facilitates the deployment of new strategies via the

www.hacken.io 5

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

DepoolStrategyFactory and manages the addition or removal of these
strategies within the StEverVault.

● StrategyDePool — A contract bridging to the DePool contract,
streamlining the integration of the staking process with DePool
functionalities.

● DepoolStrategyFactory — A factory contract utilized by StEverCluster
validators to deploy StrategyDePool contracts.

Roles

● StEverVault
○ User - Permitted to deposit and withdraw from the StEverVault.

Additionally, the user can invoke an emergency state if the
Governance system becomes inactive.

○ Owner - Has the authority to create new Cluster accounts for
validators, approve strategies, and oversee the upgradability
of contracts.

○ Governance - Tasked with processing withdrawal requests for
users. It also manages the rebalancing of deposits among
Validator strategies.

● StEverAccount
○ Vault - All functions inside the StEverAccount are executed by

the StEverVault.
● StEverCluster

○ ClusterOwner - Empowered to deploy new strategies and add these
deployed strategies to the StEverVault.

○ StEverOwner - Has the authority to remove a Cluster from the
system, with an option to penalize the validator. Can also set
the assurance limit value.

○ Vault - Validates responses to contract actions, ensuring they
originate from the StEverVault.

● StrategyDePool
○ Vault - Ensures that function calls made to StrategyDePool are

initiated by StEverVault.
○ DePool - Ensures that function calls made to StrategyDePool are

initiated by DePool.
● DepoolStrategyFactory

○ Owner - Granted the capability to introduce new StrategyDePool
code and upgrade existing strategies to the latest code.

www.hacken.io 6

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are in place.
● Technical description is robust.
● Exceptional NatSpec comments are provided, including functional and

technical descriptions.

Code quality
The total Code Quality score is 10 out of 10.

● Code is well-written and designed.
● The development environment is configured.

Test coverage
The coverage of the project with tests is about 80%.

● The positive paths of major functionalities have been tested.
● Most of the "set" functionalities have been subjected to testing.
● Tests have been conducted on the view functions.
● There is sometimes a lack of coverage for negative cases.

Security score
As a result of the audit, the code contains no security issues. The
security score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.3.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

www.hacken.io 7

mailto:support@hacken.io
https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Table. The distribution of issues during the audit

Review date Low Medium High Critical

25 August 2023 17 13 4 2

18 September 2023 2 3 2 0

25 September 2023 0 0 0 0

Risks

● Contracts sourced from the "@broxus/contracts" and
"broxus-ton-tokens-contracts" from npm.js were not included in the
scope of this audit.

● The withdrawal process from StEverVault has dependencies on specific
user transaction settings, which the audited contract does not
enforce. For a successful withdrawal:

○ Users must transfer SEVER tokens to StEverVault.
○ The `notify` setting must be set to `true`.
○ At least 3 EVER should be included as `msg.value` to cover gas

costs.
Not following these steps can result in a significant risk of losing
SEVER tokens.

● The deployStrategy() function in DepoolStrategyFactory lacks access
control, allowing any user to deploy a StrategyDePool contract. While
this does not directly compromise the audited code, the emitted
NewStrategyDeployed event could cause unexpected backend behaviors if
not properly filtered.

● The system is highly centralized; each privilege role, if
compromised, can lead to a loss of user funds. Multi-signature
wallets for all privileged roles in the system should be used.

● The startEmergencyProcess() function lets users initiate a withdrawal
if the centralized system fails, once the
timeAfterEmergencyCanBeActivated value is reached after withdrawal
request unlock time. This timeframe can be up to 365 days, creating
potential delays and inconvenience.

www.hacken.io 8

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status

Integer Overflow
and Underflow

All math operations should be safe from
overflows and underflows. Passed

Outdated
Compiler Version

It is recommended to use a recent version of
the TON-Solidity compiler. Passed

Access Control &
Authorization

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

DoS (Denial of
Service)

Execution of the code should never be
blocked by a specific contract state unless
required.

Passed

Race Conditions Race Conditions and Transactions Order
Dependency should not be possible. Passed

Block values as
a proxy for time

Block numbers should not be used for time
calculations. Not Relevant

Signature Reuse Signed messages that represent an approval
of an action should not be reusable. Not Relevant

Weak Sources of
Randomness

Random values should never be generated from
Chain Attributes or be predictable. Not Relevant

Calls Only to
Trusted
Addresses

All external calls should be performed only
to trusted addresses. Passed

Presence of
Unused Variables

The code should not contain unused variables
until they are not justified by design. Passed

Assets Integrity
Funds are protected and cannot be withdrawn
without proper permissions or be locked on
the contract.

Passed

User Balances
Manipulation

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data Consistency Smart contract data should be consistent all
over the data flow. Passed

Flashloan Attack

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Not Relevant

www.hacken.io 9

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Token Supply
Manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the Customer.

Passed

Gas Management

Transaction execution costs should not
depend dramatically on the amount of data
stored in the contract. Contracts should
validate that incoming value is enough to
perform the whole call chain.

Passed

Compiler
Warnings

The code should not force the compiler to
throw warnings. Passed

Style Guide
Violation

Style guides and best practices should be
followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Test Coverage

The code should be covered with unit tests.
Test coverage should be sufficient, with
both negative and positive cases covered.
The usage of contracts by multiple users
should be tested.

Failed
(Code Coverage)

Stable Imports
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io 10

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Findings

Critical

C01. Transaction Replay Attack

Impact High

Likelihood High

In the forceWithdrawFromStrategies() function of the
StEverVaultStrategiesController contract, the availableAssets and
totalAssets variables are decreased after the for loop ends.

This implementation creates a flaw. Inside the for loop, checks
ensure the config.fee value can be transferred (availableAssets is
sufficient) and is not greater than totalAssets. These checks become
invalid without a deduction during each loop iteration.

As a result of this oversight, the function accumulates the decrease
amount in two memory variables and deducts them from availableAssets
and totalAssets only after the loop, leading to potential underflow.
Given the function's use of tvm.accept() for external messages and
the possibility of a revert due to the underflow, a vulnerability
arises for a Transaction Replay Attack.

This vulnerability could lead to a total depletion of the contract's
EVER balance. The situation is worsened by the arbitrary nature of
the config.fee, meaning there is no cap on potential loss.

Path:
./contracts/base/StEverVaultStrategiesController.tsol :
forceWithdrawFromStrategies()

Recommendation: Move the decrements for availableAssets and
totalAssets inside the loop to ensure accurate and timely deductions.

Valuable link: everscale.guide/smart_contracts/replay_protection

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

C02. Transaction Replay Attack

Impact High

Likelihood High

The withdrawStEverFee() function in the StEverVault contract is
vulnerable to a Transaction Replay Attack.

www.hacken.io 11

mailto:support@hacken.io
https://everscale.guide/smart_contracts/replay_protection


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

The function invokes tvm.accept() prior to executing all require()
checks. For instance, the function may revert due to insufficient
availableAssets.

Though pragma AbiHeader expire is utilized, it does not provide
protection as the validator is not restricted from replaying the
transaction multiple times within a block.

Moreover, there are additional concerns:

1. The use of the onlyGovernanceOrSelfAndAccept() modifier is
inappropriate; the correct modifier should be
onlyGovernanceAndAccept().

2. The comment for tvm.rawReserve() suggests that the fee should
be paid by the admin. However, gas costs are deducted from the
_amount value, leading to a potential out-of-gas error if
msg.value is zero and _amount is minimal.

3. The owner's account usage for the transfer() function seems
incorrect. The transfer should be made to the governance or an
account provided as a parameter, use of the owner account
indicates the function should employ the onlyOwner() modifier.

Path:
./contracts/StEverVault.tsol : withdrawStEverFee()

Recommendation: Discontinue using the onlyGovernanceOrSelfAndAccept()
modifier. Implement an access control modifier named onlyGovernance()
that doesn't utilize tvm.accept().

Correct the _amount deduction process to align with the comment or
revise the comment to reflect the current behavior.

Ensure that the appropriate account (either governance or a specified
parameter) receives the transfer, or employ the onlyOwner() modifier
if the intended recipient is indeed the owner.

Valuable link: everscale.guide/smart_contracts/replay_protection

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

High

H01. Incorrect Function Used

Impact High

Likelihood Medium

In the withdraw() function of the StrategyDePool contract, there is a
misuse of the depositNotHandled() function.

www.hacken.io 12

mailto:support@hacken.io
https://everscale.guide/smart_contracts/replay_protection


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Specifically, when the state is not in its INITIAL state, the
function depositNotHandled() is triggered instead of the more
appropriate withdrawError().

This incorrect function call will place the Strategy in a non-Active
state. The repercussion of this is that any subsequent deposits to
the Strategy will be denied, leading to a Denial-of-Service (DoS)
situation, where no more funds can be effectively deposited.

Path:
./contracts/StrategyDePool.tsol : withdraw()

Recommendation: Replace the incorrect function depositNotHandled()
with the withdrawError() function.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

H02. Incorrect Gas Management

Impact High

Likelihood Medium

In the emergencyWithdrawToUser() function, defined in the
StEverVaultEmergency contract, there is a mismatch between the
required msg.value and the actual Gas needs during an emergency
state.

The function is designed to operate on all pending user withdrawal
requests. The assumption is that the msg.value should be calculated
from pending withdrawal requests multiplied by 1 EVER, but this is
not correctly enforced.

The current setup leads to the potential risk that if there is a
maximum of 50 withdrawal requests and the last one fails, the entire
recovery of withdrawal requests needs to be reset
(resetPendingValues()). Under the present requirement of minimum 1
EVER, the contract will invariably face an out-of-gas scenario.

Path:
./contracts/StrategyDePool.tsol : emergencyWithdrawToUser()

Recommendation: The msg.value requirement should be updated to
accurately reflect the number of pending withdrawals. As determining
the exact number of withdrawal requests dynamically may be complex, a
safer approach would be to assume a worst-case scenario and require a
msg.value equivalent to the maximum number of possible withdrawal
requests (e.g., 50 EVER for a max of 50 requests).

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 13

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

H03. Lack of Validation

Impact High

Likelihood Medium

The setWithdrawHoldTimeInSeconds() function in StEverVaultBase the
contract, which can only be called by the contract owner, lacks a
check on the maximum limit for the withdrawHoldTime value.

This can create a potential risk where if the owner sets a
withdrawHoldTime greater than TIME_AFTER_EMERGENCY_CAN_BE_ACTIVATED,
users will not be able to process their withdrawal requests.

This scenario can inadvertently or maliciously enable users to
initiate an emergency process, forcing withdrawals from all
strategies.

Path:
./contracts/base/StEverVaultBase.tsol :
setWithdrawHoldTimeInSeconds()

Recommendation: It is essential to introduce a safety check ensuring
that withdrawHoldTime cannot be set to a value greater than
TIME_AFTER_EMERGENCY_CAN_BE_ACTIVATED. This will prevent potential
manipulation or inadvertent mistakes that can lock user funds or
trigger unintended contract behaviors.

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

H04. Data Consistency

Impact High

Likelihood Medium

The setStrategiesTotalAssets() function in the
StEverVaultStrategiesController contract carries with it considerable
risks tied to the manipulation of totalAssets for individual
strategies. Such operations have the potential to cascade into
unintended consequences and even result in the loss of funds.

Two primary concerns have been identified:

1. The use of Constants.INCREASE_STRATEGY_TOTAL_ASSETS_CORRECTION
is not only unclear but also seems unnecessary, possibly
leading to inaccurate accounting of assets.

2. If an admin reduces totalAssets for a strategy to 0, and
subsequently, the strategy is removed while a pending
withdrawal process exists, there can be complications. The
DePool, during onRoundComplete(), might not be able to send the

www.hacken.io 14

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

withdrawal to StEverVault, causing loss of funds. Moreover, a
more concerning issue is the incorrect accounting of
totalAssets in the StEverVault. representation. Given the
contract's invariant that StEverVault.totalAssets should always
be greater than or equal to the combined totalAssets of all the
strategies, any modification in
strategies[strategy].totalAssets mandates a corresponding
adjustment in totalAssets. This is crucial to maintain the
data's integrity and accuracy.

Path:
./contracts/base/StEverVaultStrategiesController.tsol :
setStrategiesTotalAssets()

Recommendation: Given that the function is labeled as a migration
function, the safest course of action would be its complete removal
from the codebase.

If retaining this function is essential for some specific workflows,
consider the following modifications:

● Clarify the role of
Constants.INCREASE_STRATEGY_TOTAL_ASSETS_CORRECTION in the
function. If its utility is not apparent or it is found to be
superfluous, it should be eliminated from the function.

● It is paramount to ensure that any alterations made to the
assets of individual strategies are duly reflected in the
overarching totalAssets. This is crucial not just for
consistency, but to maintain accurate data representation
throughout the system.

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

Medium

M01. Inconsistent Ownership Control

Impact Medium

Likelihood Medium

In the _init() function within the StEverCluster contract, the
stEverOwner variable is set based on the provided input of the
current owner of the StEverVault, and cannot be changed after.

However, there is a potential inconsistency in the management of
ownership between the StEverCluster contract and the StEverVault.

When the vault owner is changed in StEverVault using the
transferOwnership() function, this change is not mirrored or updated
in the StEverCluster. As a result, functionalities in the

www.hacken.io 15

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

StEverCluster that are governed by ownership will not recognize the
new owner from the StEverVault.

This misalignment can lead to unexpected behaviors, reduced control,
or potential deadlocks where the recognized owner is unable to invoke
necessary functions.

Path:
./contracts/StEverCluster.tsol : _init(), onlyStEverOwner(),
stEverOwnerOrClusterOwner()

Recommendation: Update the access control mechanism for the
StEverCluster contract.

Specifically, all functions that are currently guarded by the
onlyStEverOwner() or stEverOwnerOrClusterOwner() modifier should now
be protected by a new onlyVault() modifier.

These functions should be callable only by the StEverVault contract.

Ensure that this allows the owner of the StEverVault to execute those
functions indirectly, preserving the intention of centralized control
while resolving the ownership inconsistency.

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

M02. Missing Validation

Impact High

Likelihood Low

In the transferOwnership() function within the StEverVaultBase
contract, the new owner's address is set directly from the input
parameter _newOwner without validating its legitimacy. This means
that a careless call to this function can set the ownership of the
contract to the zero address.

A critical point to consider, especially in the TVM environment, is
that transactions can be constructed with a zero address as the
sender using an external message.

Setting the owner to the zero address can lead to irreversible
consequences, making all functionalities that rely on the onlyOwner()
modifier widely open. This poses a severe risk and can lead to loss
of all funds.

Path:
./contracts/base/StEverVaultBase.tsol : transferOwnership()

Recommendation: Before setting the owner variable, add a validation
check to ensure that _newOwner is not the zero address.

www.hacken.io 16

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

M03. Missing Validation

Impact High

Likelihood Low

In the transferGovernance() function of the StEverVaultBase contract,
the new governance address is directly updated from the
_newGovernance input parameter without any checks to validate its
legitimacy.

A critical point to consider, especially in the TVM environment, is
that transactions can be constructed with a zero address as the
sender using an external message.

Functions or operations reliant on the governance role could become
without any access control, possibly leading to irreversible crucial
contract operations.

Path:
./contracts/base/StEverVaultBase.tsol : transferGovernance()

Recommendation: Before updating the governance variable, incorporate
a validation check to ensure _newGovernance is not the zero address.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

M04. Implementation Error

Impact Low

Likelihood High

In the _reserve() function of the StEverCluster contract, the
computation to calculate the needed reserved amount for rawReserve()
calls leverages the StEverAccountGas.CONTRACT_MIN_BALANCE value.
However, it appears that the correct value to reference should be
ClusterGas.CONTRACT_MIN_BALANCE.

Using an inaccurate reference for the minimum balance can lead to
potential discrepancies in the reserve calculation. This might
inadvertently cause the contract to reserve an incorrect amount of
balance, potentially leading to functionality disruptions or failures
in subsequent operations that depend on the reserved value.

In the minCallValue() modifier of the given contract the similar
issue occurs, the constant StEverVaultGas.MIN_CALL_MSG_VALUE is used
to check the minimum required msg.value. However, it appears that the

www.hacken.io 17

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

incorrect constant is being used and it should be
ClusterGas.MIN_CALL_VALUE instead.

Path:
./contracts/StEverCluster.tsol : _reserve(), minCallValue()

Recommendation: Update the _reserve() function to utilize the
ClusterGas.CONTRACT_MIN_BALANCE value in place of
StEverAccountGas.CONTRACT_MIN_BALANCE.

Update the minCallValue() function to utilize the
ClusterGas.MIN_CALL_VALUE value in place of
StEverVaultGas.MIN_CALL_MSG_VALUE.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

M05. Incorrect Gas Management

Impact Medium

Likelihood Medium

In the deployStrategies() function of the StEverCluster contract,
there is a calculation for the required message value to deploy
strategies based on the number of _dePools provided.

While the calculation multiplies the ClusterGas.STRATEGY_DEPLOY_VALUE
and ClusterGas.MIN_CALL_VALUE by the length of _dePools, it does not
account for the additional Gas required for executing the
deployStrategies() function itself.

The omission of this additional Gas reservation could lead to
out-of-gas errors during the function's execution.

Path:
./contracts/StEverCluster.tsol : deployStrategies()

Recommendation: Update the Gas calculation to include an extra
ClusterGas.MIN_CALL_VALUE to account for the Gas consumed by the
deployStrategies() function.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 18

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

M06. Race Condition

Impact High

Likelihood Low

In the StEverVault contract, functions requestWithdraw() and
onPendingWithdrawAccepted() exhibit a vulnerability when they operate
in an asynchronous TVM environment due to their reliance on
user-provided nonces.

The requestWithdraw() function facilitates the creation of a
PendingWithdraw entry using a user-provided nonce. This means if
another user provides the same nonce (intentionally or
unintentionally) before the first user's transaction is completed,
the initial user's withdrawal request can be overridden. While this
does not directly lead to fund loss, it can potentially force the
contract into an emergency state or create unexpected behaviors.

In the onPendingWithdrawAccepted() function, due to the asynchronous
nature of calls in TVM, a scenario can arise where calls from two
different users (A and B) are interleaved. In this situation, the
acceptance of user A's withdrawal can be overridden by user B's
subsequent calls. This can lead to the withdrawal event for user A
being missed, and the Governance not processing the withdrawal.

Path:
./contracts/StEverVault.tsol : requestWithdraw(),
onPendingWithdrawAccepted()

Recommendation: There are multiple ways to solve the problem:

● Instead of relying on user-provided nonces, consider
implementing an internal nonce management mechanism to ensure
uniqueness and protect against overrides.

● Implement a locking mechanism to prevent concurrent access to
PendingWithdraw data associated with the same nonce. This can
prevent unwanted overrides in an asynchronous environment.

● Add validation checks to ensure that a PendingWithdraw
associated with a given nonce exists and belongs to the
expected user before processing it.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 19

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

M07. Denial of Service

Impact High

Likelihood Low

The onClusterRemoved() function in the StEverCluster contract, which
is designed to handle the removal of clusters associated with a
particular _clusterOwner, contains a problematic operation.

When all clusters for a given _clusterOwner are removed, it deletes
the entire _clusterOwner entry from clusterPools.

However, this deletion inadvertently resets the currentClusterNonce
for the _clusterOwner. The implications are severe, as nonces
determine the address for deploying new clusters. If the nonce is
reset, any subsequent deployment for the _clusterOwner will occur at
an address that has previously been used.

This could lead to unexpected behaviors, vulnerabilities, and even
lock the _clusterOwner from acquiring new clusters in the future.

Path:
./contracts/base/StEverStrategiesManager.tsol : onClusterRemoved()

Recommendation: Retain the currentClusterNonce value even when
clearing other data fields related to the _clusterOwner. This can
ensure that every new deployment will always use a unique nonce and,
by extension, a fresh address.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

M08. Missing Validation

Impact High

Likelihood Low

Two functions StEverCluster.handleDelegateStrategies() and
StEverStrategiesManager.delegateStrategies() are used to manage
strategy delegation.

These functions present issues that could lead to unintended
behaviors or inconsistencies in the state of the contract.

In handleDelegateStrategies(), when looping through _strategies, only
those strategies not already present in strategies are considered.
The problem arises when a strategy is already part of the cluster. In
such a case, there is no mechanism to notify the caller or make any
adjustments. This means a strategy can indefinitely remain in the
TRANSFERRING state.

www.hacken.io 20

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

In delegateStrategies(), the input _strategies size is arbitrary and
lacks batching, potentially causing block size or Gas limit issues.

The handleDelegateStrategies() function misses validation checks on
maxStrategiesCount and Assurance size.

In delegateStrategies(), there is an absence of a mechanism to revert
or adjust the operation if not all strategies are accepted by the
destination cluster.

Paths:
./contracts/base/StEverStrategiesManager.tsol : delegateStrategies()
./contracts/StEverCluster.tsol : handleDelegateStrategies()

Recommendation: Implement a revert mechanism or callback to the
original caller, ensuring they are informed about any strategies not
processed. This can help in rectifying the state of those strategies
or making further decisions.

Implement a batching mechanism or set a maximum limit to _strategies
size. This will ensure the function does not hit block or Gas
limitations, especially when working with a large number of
strategies.

Introduce checks that validate the length of _strategies against
maxStrategiesCount and Assurance size. This will ensure that the
cluster does not exceed its allowed number of strategies and
maintains the expected assurance size.

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

M09. Invalid Validation

Impact Low

Likelihood High

The onRoundComplete() function in the StrategyDePool contract
conducts a balance check to decide the need for additional funds. It
does this by checking if the contract's balance is below
THRESHOLD_BALANCE to take certain actions.

However, the function does not account for the fact that msg.value is
part of address(this).balance when performing the check. This leads
to an inaccurate assessment of the contract's original balance before
the function's transaction took place. This discrepancy is especially
pronounced when msg.value carries withdrawal from DePool.

Path:
./contracts/StrategyDePool.tsol : onRoundComplete()

Recommendation: Subtract msg.value from address(this).balance to
ensure an accurate representation of the contract's balance.

www.hacken.io 21

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

M10. Division By Zero

Impact High

Likelihood Low

The setFullUnlockRewardSeconds() function in the StEverVaultBase
contract allows the owner to change the fullUnlockSeconds value.
However, it lacks validation to prevent the value from being set to
0.

A zero value for fullUnlockSeconds will subsequently cause a division
by zero issue in the StEverVaultStrategiesController.strategyReport()
function. This could lead to a denial of service (DoS) scenario,
making it impossible for the many functions to execute correctly,
which can disrupt the normal operations of the contract.

Path:
./contracts/base/StEverVaultBase.tsol : setFullUnlockRewardSeconds()

Recommendation: It is crucial to introduce a validation check
ensuring that fullUnlockSeconds cannot be set to 0. This will prevent
potential disruptions and safeguard against unintentional mistakes
that can compromise contract operations.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

M11. Incorrect Gas Management

Impact High

Likelihood Low

The processSendToUsers() function in the StEverVault contract does
not adequately check the size of the config.nonces array. There is a
potential for the array to have a size larger than the intended
limit, specifically greater than MAX_PENDING_COUNT, which is set to
50.

When calculating the unusedIterationFee and the value parameter for
the IStEverAccount(account).processWithdraw function call, the code
multiplies the length of config.nonces by respective fee constants.
If the length of config.nonces exceeds MAX_PENDING_COUNT, this can
lead to unanticipated behavior, including an incorrect fee
calculation.

www.hacken.io 22

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Path:
./contracts/StEverVault.tsol : processSendToUsers()

Recommendation: Before using the length of config.nonces, check
whether its length exceeds MAX_PENDING_COUNT. If it does, handle it
accordingly by limiting the unusedIterationFee to (MAX_PENDING_COUNT
- 1) * FEE_FOR_WITHDRAW_TO_USER_ITERATION and value of the
IStEverAccount(account).processWithdraw to MAX_PENDING_COUNT *
WITHDRAW_FEE + unusedIterationFee.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

M12. Invalid Validation

Impact Low

Likelihood High

In the withdrawExtraMoney() function of the StrategyDePool contract,
the contract's balance is evaluated to determine if it exceeds the
MAX_BALANCE. However, the current balance calculation mistakenly
includes msg.value, leading to potential misinterpretations of the
available balance.

Path:
./contracts/StrategyDePool.tsol : withdrawExtraMoney()

Recommendation: Adjust the balance calculation by subtracting
msg.value from address(this).balance to accurately represent the
contract's original balance.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

M13. Missing Validation

Impact High

Likelihood Low

In the setStrategyFactory() function of the StEverVaultBase contract,
the new strategyFactory address is directly updated from the
_strategyFactory input parameter without any checks to validate its
legitimacy.

A critical point to consider, especially in the TVM environment, is
that transactions can be constructed with a zero address as the
sender using an external message.

www.hacken.io 23

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Functions or operations reliant on the strategyFactory role could
become without any access control, possibly leading to irreversible
crucial contract operations.

Path:
./contracts/base/StEverVaultBase.tsol : setStrategyFactory()

Recommendation: Before updating the strategyFactory variable,
incorporate a validation check to ensure _strategyFactory is not the
zero address.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

Low

L01. Floating Pragma

Impact Low

Likelihood Medium

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths:
./contracts/*

Recommendation: Consider locking the pragma version whenever possible
and avoid the usage of a floating pragma in the final deployment.

Found in: b293dd8

Status: Mitigated (The 0.62.0 version has no disclosed bugs related
to the code.)

L02. Outdated Compiler Version

Impact Low

Likelihood Medium

The 0.62.0 version of the TON-Solidity Compiler is used, however, it
is considered to be outdated. Newer compiler versions contain fixes
for various issues.

Paths:
./contracts/*

Recommendation: Use the relevant compiler version.

www.hacken.io 24

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: b293dd8

Status: Mitigated (The 0.62.0 version has no disclosed bugs related
to the code.)

L03. Storage Variable Shadowing

Impact Low

Likelihood Low

In the onCodeUpgrade() function in the StEverAccount contract, the
local variables vault, user and currentVersion shadow the storage
variables with the same names.

In the getDepositStEverAmountFor() function in the StEverVaultBase
contract, the local variable effectiveEverAssets shadows the storage
variable with the same name.

In the getWithdrawEverAmountFor() function in the StEverVaultBase
contract, the local variable effectiveEverAssets shadows the storage
variable with the same name.

In the onPendingWithdrawRemoved() function in the StEverVault
contract, parameter name nonce shadows the storage variable with the
same name.

In the getAndCheckWithdrawToUserInfo() function in the
StEverVaultBase contract, the local variable nonce shadows the
storage variable with the same name.

This can lead to confusion and potential mistakes when trying to
access or modify them.

Paths:
./contracts/StEverAccount.tsol : onCodeUpgrade()
./contracts/base/StEverVaultBase.tsol : getDepositStEverAmountFor(),
getWithdrawEverAmountFor(), getAndCheckWithdrawToUserInfo()
./contracts/StEverVault.tsol : onPendingWithdrawRemoved()

Recommendation: It is advisable to rename the local variables by
using _ (underscore) as a prefix.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 25

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

L04. Missing Validation

Impact Low

Likelihood Low

The setGainFee() function in the StEverVaultBase contract allows the
owner to change the gainFee value. However, there is a missing
validation check for the _gainFee value. As per the comment, there is
a requirement that 1 ever is the minimum for _gainFee, but the
function does not enforce this constraint.

Path:
./contracts/base/StEverVaultBase.tsol : setGainFee()

Recommendation: Implement a validation check to ensure that _gainFee
is greater than or equal to the minimum threshold of 1 ever.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

L05. Incorrect Gas Management

Impact Low

Likelihood Low

The calculation for requiredMsgValue in the startEmergencyProcess()
function should also consider the increase by MIN_CALL_VALUE on top
of the calculated value.

Path:
./contracts/base/StEverVaultEmergency.tsol : startEmergencyProcess()

Recommendation: Adjust the calculation of requiredMsgValue to include
MIN_CALL_VALUE in addition to the current calculations.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

L06. Missing Validation

Impact Medium

Likelihood Low

In the constructor() of the StEverVault contract, the gainFee
variable is set directly from the _gainFee input parameter without
any checks to validate its legitimacy. There is a requirement that 1
ever is the minimum for gainFee, but the constructor does not enforce
this constraint.

www.hacken.io 26

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

In the constructor() of the StEverVault contract, the
stEverFeePercent is directly set from the _stEverFeePercent input
parameter without validation checks. There is a requirement that
stEverFeePercent should be less than or equal to 1000, but the
constructor does not enforce this constraint.

Path:
./contracts/StEverVault.tsol : constructor()

Recommendation: Introduce a validation check to ensure that _gainFee
is greater than or equal to the minimum threshold of 1 ever.

Introduce a validation check to ensure that _stEverFeePercent is less
than or equal to 1000 to prevent setting an invalid fee percentage.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

L07. Missing Validation

Impact Low

Likelihood Low

In the createCluster() function of the StEverStrategiesManager
contract, a new cluster can be deployed potentially with an unset
strategyFactory. If strategyFactory is address(0), then the deployed
cluster will not be able to create any strategy.

This can lead to a malfunction in the contract's intended behavior.

Path:
./contracts/base/StEverStrategiesManager.tsol : createCluster()

Recommendation: Introduce a validation check before deploying the
cluster to ensure that strategyFactory is not address(0).

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

L08. Funds Lock

Impact Low

Likelihood Medium

In the onPendingWithdrawRejected() and the onPendingWithdrawRemoved()
functions of the StEverVault contract, the WITHDRAW_FEE is reserved
to be returned to the user.

However, the FEE_FOR_WITHDRAW_TO_USER_ITERATION should also be
returned to the user, but it is currently not being handled in the
function.

www.hacken.io 27

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

This could lead to users not receiving the full amount they are
entitled to when a withdrawal request is rejected.

Path:
./contracts/StEverVault.tsol : onPendingWithdrawRejected(),
onPendingWithdrawRemoved()

Recommendation: Update both functions to also reserve and return the
FEE_FOR_WITHDRAW_TO_USER_ITERATION to the user in addition to the
WITHDRAW_FEE.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

L09. Incorrect Gas Management

Impact Medium

Likelihood Low

In the upgrade() function of the DepoolStrategyFactory contract,
there is no enforcement on the minimum msg.value required to call
this function.

Given the Gas considerations and operations within the function, it
is crucial to ensure that the caller provides a sufficient amount of
Gas.

Path:
./contracts/DepoolStrategyFactory.tsol : upgrade()

Recommendation: Integrate the minCallValue() modifier to the upgrade
function to enforce a minimum msg.value for the call.

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

L10. Potential Underflow

Impact Medium

Likelihood Low

In the onStrategyHandledWithdrawRequest() function of the
StEverVaultStrategiesController contract, the
HANDLING_STRATEGY_CB_FEE is deducted from msg.value when updating the
availableAssets and totalAssets. However, if config.fee is an
arbitrary low value, it could cause msg.value -
StEverVaultGas.HANDLING_STRATEGY_CB_FEE to underflow.

In the onStrategyDidntHandleDeposit() function of the
StEverVaultStrategiesController contract, the
HANDLING_STRATEGY_CB_FEE is deducted from msg.value when updating the

www.hacken.io 28

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

availableAssets. There is a potential for underflow in edge cases,
for example, if minStrategyDepositValue is set to 0 and
depositConfig.fee is very low.

Path:
./contracts/base/StEverVaultStrategiesController.tsol :
onStrategyHandledWithdrawRequest(), onStrategyDidntHandleDeposit()

Recommendation: Ensure the deduction of HANDLING_STRATEGY_CB_FEE
occurs in the processWithdrawFromStrategies() function, or introduce
a validation check before the subtraction to prevent potential
underflow.

It is advisable to ensure that the deduction of
HANDLING_STRATEGY_CB_FEE is handled safely in the
onStrategyDidntHandleDeposit() function. If this fee is indeed
necessary, consider attaching this value in the depositToStrategies()
function and decrease or attach the fee there accordingly.

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

L11. Incorrect Gas Recipient

Impact Medium

Likelihood Low

In the onStrategyRemoved() function of the StEverCluster contract,
the remaining Gas is always transferred to clusterOwner. However, the
removeStrategies() function can also be called by stEverOwner.

This discrepancy could lead to unintended behavior where the wrong
entity receives the remaining Gas.

Path:
./contracts/StEverCluster.tsol : onStrategyRemoved()

Recommendation: Ensure that the remaining Gas is transferred to the
correct entity. This can be achieved by passing the correct recipient
information through the chain-of-calls using a _sendGasTo parameter
or another appropriate mechanism.

Found in: b293dd8

Status: Mitigated (with Customer notice:

“This is a centralized protocol. We are whitelisting cluster owners
and we are ready to pay a fee in case the strategy is deleted by
us.”)

www.hacken.io 29

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

L12. Incorrect Gas Management

Impact Low

Likelihood Low

In the withdrawAssurance() function of the StEverCluster contract,
there is no enforcement on the minimum msg.value required to call
this function.

If the cluster owner provides too low a msg.value, they can
potentially lose their SEVER.

Path:
./contracts/StEverCluster.tsol : withdrawAssurance()

Recommendation: Integrate the minCallValue() modifier to the
withdrawAssurance() function to enforce a minimum msg.value for the
call.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

L13. Incorrect Gas Management

Impact Low

Likelihood Low

In the upgradeStEverAccount() function of the StEverVaultBase
contract, the minCallValue() modifier is used to enforce a minimum
msg.value required to call this function. However, the same amount is
forwarded to the upgrade function, which could lead to insufficient
funds for the entire operation.

In the upgradeStEverCluster() function of the StEverVaultBase
contract, the attached value (msg.value) is checked to be at least 1
EVER due to the minCallValue modifier. However, this might not be
sufficient because the same amount is forwarded to the upgrade
function of the cluster. This can lead to potential out-of-gas issues
and disrupt the function's intended behavior.

Path:
./contracts/base/StEverVaultBase.tsol : upgradeStEverAccount(),
upgradeStEverCluster()

Recommendation: Increase the enforced msg.value or adjust the amount
forwarded to ensure that the entire operation can be funded.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 30

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

L14. Potential Underflow

Impact Medium

Likelihood Low

In the receiveExtraMoneyFromStrategy() function of the
StEverVaultStrategiesController contract, the calculation of
receivedValue can potentially underflow, leading to unintended
consequences.

This can happen, for instance, when Gas forwarded from
withdrawExtraMoney() function is below 0.03 ever.

Path:
./contracts/base/StEverVaultStrategiesController.tsol :
receiveExtraMoneyFromStrategy()

Recommendation: Implement countermeasures similar to those used in
the availableAssetsIncreasedFor calculations to prevent potential
underflows. Ensure that the subtraction does not result in negative
values, or consider using a safe subtraction function.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

L15. Incorrect Gas Management

Impact Low

Likelihood Medium

In the withdrawExtraEver() function of the StEverVault contract, the
call to tvm.rawReserve() can cause an out-of-gas exception in
scenarios where msg.value is 0 and totalExtraEver is too low. This
can lead to unexpected behavior and hinder the intended execution of
the function.

Path:
./contracts/StEverVault.tsol : withdrawExtraEver()

Recommendation: Use the minCallValue() modifier for this function to
ensure that there is a minimum attached msg.value to prevent
potential out-of-gas issues. Properly managing the Gas reservation is
essential to ensure the function's correct execution.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 31

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

L16. Redundant Bounce Flag Set

Impact Low

Likelihood Low

In the upgradeStEverCluster() function of the StEverVaultBase
contract, the bounce flag is set to true when calling the upgrade
function of the IStEverCluster contract. However, this is redundant
since the onBounce() of StEverVault will not process this,
potentially leading to unexpected behavior.

In the upgradeStEverAccount() function of the StEverVaultBase
contract, the bounce flag is set to true when calling the upgrade
function of the IStEverAccount contract. However, this is redundant
since the onBounce() of StEverVault will not process this,
potentially leading to unexpected behavior.

In the _upgradeStEverAccounts() function of the StEverVaultBase
contract, the bounce flag is set to true by default when making a
call to IStEverAccount(userData).upgrade. However, this is redundant
since the onBounce() function of StEverVault does not process such
bounces.

In the _upgradeStEverClusters() function of the StEverVaultBase
contract, the bounce flag is set to true by default when making a
call to IStEverCluster(clusterAddress).upgrade. This is redundant
since the onBounce() function of StEverVault does not process such
bounces.

Path:
./contracts/base/StEverVaultBase.tsol : upgradeStEverCluster(),
upgradeStEverAccount(), _upgradeStEverAccounts(),
_upgradeStEverClusters()

Recommendation: Consider explicitly setting the bounce flag to false
to avoid unnecessary Gas usage and potential confusion in the future.

Found in: b293dd8

Status: Mitigated (with Customer notice:

“This is not really redundant. If an error occurs vault will receive
the remaining value, otherwise an onBounce phase won't come so we
won't spend any additional value.”)

www.hacken.io 32

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

L17. Incorrect Gas Management

Impact Low

Likelihood Low

In the forceStrategyRemove() function of the
StEverVaultStrategiesController contract, the attached value
(msg.value) is checked to be at least
StEverVaultGas.REMOVE_STRATEGY_RESERVE.

However, this might not be sufficient as the same amount is passed to
the onStrategyRemoved() function of the IStEverCluster contract, and
this function might need additional Gas for its operations.

Path:
./contracts/base/StEverVaultStrategiesController.tsol :
forceStrategyRemove()

Recommendation: Ensure that the attached msg.value is sufficiently
large to cover the Gas costs of both the current function and the
subsequent onStrategyRemoved() function.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

Informational

I01. Redundant Modifier

The onlyGovernanceAndAccept() modifier in the StEverVaultBase
contract is designed to ensure that only the Governance account can
call certain functions and to accept any incoming funds. However, the
modifier is not utilized anywhere in the contract.

The adminOrClusterOwner() modifier in the StEverVaultBase contract is
intended to ensure that either the Owner or the ClusterOwner
(identified by _clusterId) can call certain functions. However, the
modifier appears to be redundant and not utilized in the contract.

Path:
./contracts/base/StEverVaultBase.tsol : onlyGovernanceAndAccept(),
adminOrClusterOwner()

Recommendation: It is advisable to remove the redundant modifiers
from the contract to reduce redundancy and improve code clarity.
Before removal, ensure that there are no future plans to use those
modifiers.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 33

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

I02. Redundant Constant Variable

A constant variable, DEPOSIT_FEE, is defined in the library
StEverVaultGas but is not used elsewhere in the contracts. This can
lead to confusion and unnecessary clutter in the codebase.

A constant variable, UPGRADE_VALUE, is defined in the library
ClusterGas but is not used elsewhere in the contracts. This can lead
to confusion and unnecessary clutter in the codebase.

Constant variables INITIAL_AVAILABLE_ASSETS, DEPLOY_VAULT_FEE and
EMERGENCY_DURATION, are defined in the library Constants but are not
used elsewhere in the contracts. This can lead to confusion and
unnecessary clutter in the codebase.

Constant variables STATUS_SUCCESS, STATUS_STAKE_TOO_SMALL,
STATUS_DEPOOL_CLOSED, STATUS_NO_PARTICIPANT,
STATUS_PARTICIPANT_ALREADY_HAS_VESTING,
STATUS_WITHDRAWAL_PERIOD_GREATER_TOTAL_PERIOD,
STATUS_TOTAL_PERIOD_MORE_18YEARS, STATUS_WITHDRAWAL_PERIOD_IS_ZERO,
STATUS_TOTAL_PERIOD_IS_NOT_DIVISIBLE_BY_WITHDRAWAL_PERIOD,
STATUS_REMAINING_STAKE_LESS_THAN_MINIMAL,
STATUS_PARTICIPANT_ALREADY_HAS_LOCK,
STATUS_TRANSFER_AMOUNT_IS_TOO_BIG, STATUS_TRANSFER_SELF,
STATUS_TRANSFER_TO_OR_FROM_VALIDATOR, STATUS_FEE_TOO_SMALL,
STATUS_INVALID_ADDRESS, STATUS_INVALID_DONOR,
STATUS_NO_ELECTION_ROUND, STATUS_INVALID_ELECTION_ID,
STATUS_TRANSFER_WHILE_COMPLETING_STEP, STATUS_NO_POOLING_STAKE and
STATUS_NOT_ALLOWED_PARTICIPANT, are defined in the StrategyDePool
contract but are not used elsewhere in the contracts. This can lead
to confusion and unnecessary clutter in the codebase.

Paths:
./contracts/utils/Gas.tsol : DEPOSIT_FEE, UPGRADE_VALUE
./contracts/utils/Constants.tsol : INITIAL_AVAILABLE_ASSETS,
DEPLOY_VAULT_FEE, EMERGENCY_DURATION
./contracts/StrategyDePool.tsol : STATUS_SUCCESS,
STATUS_STAKE_TOO_SMALL, STATUS_DEPOOL_CLOSED, STATUS_NO_PARTICIPANT,
STATUS_PARTICIPANT_ALREADY_HAS_VESTING,
STATUS_WITHDRAWAL_PERIOD_GREATER_TOTAL_PERIOD,
STATUS_TOTAL_PERIOD_MORE_18YEARS, STATUS_WITHDRAWAL_PERIOD_IS_ZERO,
STATUS_TOTAL_PERIOD_IS_NOT_DIVISIBLE_BY_WITHDRAWAL_PERIOD,
STATUS_REMAINING_STAKE_LESS_THAN_MINIMAL,
STATUS_PARTICIPANT_ALREADY_HAS_LOCK,
STATUS_TRANSFER_AMOUNT_IS_TOO_BIG, STATUS_TRANSFER_SELF,
STATUS_TRANSFER_TO_OR_FROM_VALIDATOR, STATUS_FEE_TOO_SMALL,
STATUS_INVALID_ADDRESS, STATUS_INVALID_DONOR,
STATUS_NO_ELECTION_ROUND, STATUS_INVALID_ELECTION_ID,
STATUS_TRANSFER_WHILE_COMPLETING_STEP, STATUS_NO_POOLING_STAKE,
STATUS_NOT_ALLOWED_PARTICIPANT

Recommendation: Remove the redundant constant variables from the
code. Before removal, ensure that there are no future plans to use
those constants.

www.hacken.io 34

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

I03. Redundant Imports

The contract StEverStrategiesManager includes an import for
ClusterLib.tsol which appears to be unnecessary as none of its
members or functionalities are referenced within the contract.

The interface IStEverAccount includes an import for IStEverVault.tsol
which appears to be unnecessary as none of its members or
functionalities are referenced within the contract.

The interface IStEverCluster includes an import for IStEverVault.tsol
which appears to be unnecessary as none of its members or
functionalities are referenced within the contract.

Redundant imports can lead to confusion and unnecessary bloat in the
codebase.

Paths:
./contracts/base/StEverStrategiesManager.tsol : ClusterLib.tsol
./contracts/interfaces/IStEverAccount.tsol : IStEverVault.tsol
./contracts/interfaces/IStEverCluster.tsol : IStEverVault.tsol

Recommendation: Remove redundant import statements from the contracts
to maintain clarity and reduce potential confusion. Before removal,
ensure that there are no future plans to use those imports.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I04. Redundant Event Declaration

The event Receive is declared in the code but appears to be redundant
as it is not being used elsewhere in the contract.

The event RemoveStrategyError is declared in the code but appears to
be redundant as it's not being used elsewhere in the contract.

Unnecessary event declarations can lead to confusion and clutter in
the codebase.

Paths:
./contracts/interfaces/IStEverAccount.tsol : Receive
./contracts/interfaces/IStEverCluster.tsol : RemoveStrategyError

Recommendation: Remove the redundant event declarations from the
contracts to maintain clarity and reduce potential confusion. Before
removal, ensure that there are no future plans to use this event.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 35

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

I05. Redundant Use Of Modifier

In the function startEmergencyProcess(), the minCallValue() modifier
appears to be redundant. The msg.value is evaluated later in the
code, making this initial check unnecessary. Additionally, the value
of 1 EVER is not appropriate for this function.

In the function upgradeStEverAccounts(), the minCallValue() modifier
appears to be redundant. The msg.value is evaluated later in the code
with a specific require statement, making this initial check
unnecessary.

Paths:
./contracts/base/StEverVaultEmergency.tsol : startEmergencyProcess()
./contracts/base/StEverVaultBase.tsol : upgradeStEverAccounts()

Recommendation: Remove the minCallValue() modifier from the
startEmergencyProcess() function declaration to maintain clarity and
reduce potential confusion.

Remove the minCallValue() modifier from the upgradeStEverAccounts()
function declaration to maintain clarity and reduce potential
confusion.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I06. Magic Numbers Usage

Constant number values are used as message flags that obscure their
purpose.

Path:
./contracts/StEverCluster.tsol : deployStrategies(), addStrategies()

Recommendation: Use MsgFlag library to make flags declarative. For
example, use MsgFlag.SENDER_PAYS_FEES for flag: 1.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I07. Testing Functions in Production Interface

The interface IDePool contains definitions for testing functions
roundComplete(), setClosed(), and setWithdrawalsClosed().

These testing functions should not be part of a production interface,
as they can introduce risks and potential misuse in a live
environment.

www.hacken.io 36

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Path:
./contracts/interfaces/IDePool.tsol : roundComplete(), setClosed(),
setWithdrawalsClosed()

Recommendation: Consider declaring these testing functions in a
separate testing-only interface or provide proper documentation and
guards to ensure they are not misused in a production environment.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I08. Style Guide Violation

There are variable names defined in the snake case.

Paths:
./contracts/StEverAccount.tsol : _upgrade_data, send_gas_to
./contracts/StEverVault.tsol : _withdraw_nonce
./contracts/base/StEverVaultBase.tsol : constructor_params

Recommendation: Follow the style guides, use camel case for variable
and parameter names.

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

I09. Typographical Error

The name of the modifier onyClusterOwner() contains a typographical
error.

The name of the modifier onyStrategyFactory() contains a
typographical error.

The parameter name _poofNonce in the function startEmergencyProcess()
contains a typographical error.

Typographical error can lead to confusion and potential misuse.

Paths:
./contracts/StEverCluster.tsol : onyClusterOwner(),
onyStrategyFactory()
./contracts/base/StEverVaultEmergency.tsol : _poofNonce

Recommendation: Rename the modifier from onyClusterOwner to
onlyClusterOwner to accurately reflect its purpose and avoid
potential confusion.

Rename the modifier from onyStrategyFactory to onlyStrategyFactory to
accurately reflect its purpose and avoid potential confusion.

Rename the parameter from _poofNonce to _proofNonce to accurately
reflect its purpose and avoid potential confusion.

www.hacken.io 37

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: b293dd8

Status: Fixed (Revised commit: bb9497b)

I10. Code Consistency

In the function setStEverFeePercent(), the transfer method is invoked
using msg.sender.transfer(). However, in other onlyOwner functions,
the convention used is owner.transfer().

In the function stopEmergencyProcess(), the transfer method is
invoked using msg.sender.transfer(). However, in other onlyOwner
functions, the convention used is owner.transfer().

This inconsistency can lead to confusion and potential misuse in
future code updates.

Paths:
./contracts/base/StEverVaultBase.tsol : setStEverFeePercent()
./contracts/base/StEverVaultEmergency.tsol : stopEmergencyProcess()

Recommendation: For code consistency, replace msg.sender.transfer()
with owner.transfer() to align with the convention used in other
onlyOwner functions.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I11. Missing NatSpec

All contracts throughout the codebase lack NatSpec documentation.

Comprehensive documentation is crucial for understanding the purpose,
functionality, and usage of contracts and their functions, especially
in a decentralized system where transparency is essential.

Paths:
./contracts/*

Recommendation: Add comprehensive NatSpec comments to all contracts
that lack them. This will ensure clarity, transparency, and ease of
understanding for developers and users interacting with the code.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I12. TODO Comment

A TODO comment has been found in the codebase, indicating an
unresolved task or pending action related to the grammar in a
comment. Such comments in production code can lead to confusion and
potential misunderstandings about the state of the code or its
intended behavior.

www.hacken.io 38

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Path:
./contracts/base/StEverVaultEmergency.tsol : startEmergencyProcess()

Recommendation: Address the TODO comment by either taking the
necessary action or removing the comment if it is no longer relevant.
Ensure that all comments in the codebase are clear, grammatically
correct, and provide meaningful context.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I13. Redundant State Change and Event Emission

In the function setIsPaused(), the state variable isPaused is always
updated and the event PausedStateChanged is always emitted regardless
of whether the passed value _isPaused is different from the current
state.

This can lead to unnecessary Gas consumption and redundant event logs
in cases where the state remains unchanged.

Path:
./contracts/base/StEverVaultBase.tsol : setIsPaused()

Recommendation: Introduce an if condition to check if isPaused is
different from _isPaused. Only change the state and emit the event
when they are different. This will optimize Gas usage and avoid
redundant event logs.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I14. Missing Error Code

In the external function createCluster(), the require() statement
that checks if msg.value is sufficient lacks an error code.

Consistent usage of error codes is crucial for debugging and
understanding the cause of a transaction failure.

Path:
./contracts/base/StEverStrategiesManager.tsol : createCluster()

Recommendation: Add the missing error code
ErrorCodesCluster.LOW_MSG_VALUE to the require() statement to provide
clarity on the nature of the failure if the condition is not met.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I15. Magic Numbers Usage

In the function onStrategyRemoved(), a magic number 0.2 ever is used
twice for the value parameter in contract method calls.

www.hacken.io 39

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

In the internal function isDePoolMakingWithdraw(), a magic number
0.05 ever is used to compare with _msgValue.

In the function onRoundComplete(), magic numbers 0.11 ever and 0.1
ever are used for the value parameter in contract method calls.

Using magic numbers can lead to confusion and make the code harder to
maintain or modify.

Paths:
./contracts/StEverCluster.tsol : onStrategyRemoved()
./contracts/StrategyDePool.tsol : isDePoolMakingWithdraw(),
onRoundComplete()

Recommendation: Consider declaring a named constant for the value 0.2
ever to improve code readability and maintainability.

Consider declaring a named constant for the value 0.05 ever to
improve code readability and maintainability.

Consider declaring a named constant for the 0.11 ever and 0.1 ever
values to improve code readability and maintainability.

Using a descriptive name for the constant will provide context and
clarity about its purpose.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I16. Redundant Contract Declaration

The contract RPlatform appears to be a redundant wrapper around the
Platform contract without any additional functionality or
modifications, and it is not used by other contracts.

The contract Wallet appears to be a redundant wrapper around the
Account contract without any additional functionality or
modifications, and is not used by other contracts.

Such redundancy can lead to confusion and unnecessary clutter in the
codebase.

Paths:
./contracts/RPlatform.tsol
./contracts/Wallet.tsol

Recommendation: Consider removing the RPlatform contract or provide
justification for its existence.

Consider removing the Wallet contract or provide justification for
its existence.

Found in: b293dd8

Status: Mitigated (Used to build contract artifacts.)

www.hacken.io 40

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

I17. Redundant Code Block

In the function onStrategyRemoved(), the
clusterOwner.transfer({value: 0, flag: MsgFlag.ALL_NOT_RESERVED,
bounce: false}); statement is executed both within an if block and
outside of it. This redundancy can lead to unnecessary gas
consumption and potential confusion about the intended behavior.

Path:
./contracts/StEverCluster.tsol : onStrategyRemoved()

Recommendation: Remove the redundant clusterOwner.transfer({value: 0,
flag: MsgFlag.ALL_NOT_RESERVED, bounce: false}); statement from
inside the if block, as the same statement is executed immediately
after the if block concludes. This will optimize Gas usage and
clarify the function's logic.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I18. Redundant Function Declaration

The internal function _reserveWithValue() is declared in the
StrategyDePool contract but appears to be redundant as it is not
being used elsewhere in the contract.

The internal function _reserveExceptFee() is declared in the code but
appears to be unused elsewhere in the contract. From the constant
variables and the purpose of the function, it seems it was initially
designed to be used in the deposit() function to extract DEPOSIT_FEE
from msg.value.

Unnecessary function declarations can lead to confusion and clutter
in the codebase.

Paths:
./contracts/StrategyDePool.tsol : _reserveWithValue()
./contracts/base/StEverVaultBase.tsol : _reserveExceptFee()

Recommendation: Remove the redundant internal function declaration
_reserveWithValue() from the StrategyDePool contract to maintain
clarity and reduce potential confusion. Before removal, ensure that
there are no future plans to use this function.

Remove the redundant internal function declaration
_reserveExceptFee() from the StEverVaultBase contract to maintain
clarity and reduce potential confusion. Before removal, ensure that
there are no future plans to use this function.

www.hacken.io 41

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I19. Code Consistency

In the function getDetails() in StEverVaultBase contract, the order
of bounce and flag fields in the return object is inconsistent with
the order found in most other contracts in the codebase.

In the function installNewStrategyCode() in DepoolStrategyFactory
contract, the order of bounce and flag fields in the return object is
inconsistent with the order found in most other contracts in the
codebase.

Consistent code structure and ordering enhance readability and
maintainability.

Path:
./contracts/base/StEverVaultBase.tsol : getDetails()
./contracts/DepoolStrategyFactory.tsol : installNewStrategyCode()

Recommendation: Reorder the fields in the return object of the
getDetails() function to match the convention found in other
contracts.

Reorder the fields in the _sendGasTo.transfer() function to match the
convention found in other contracts.

Specifically, ensure that the bounce field is declared last, as seen
in most cases.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

I20. Redundant tvm.accept()

In the function onRoundComplete(), the tvm.accept(); statement is
redundant.

Given that this function is always called via a TVM internal message
and it always carries some value, this statement is unnecessary.

Furthermore, a subsequent tvm.rawReserve call is made to ensure the
proper Gas value reservation, making the prior tvm.accept(); call
superfluous.

Redundant code can lead to confusion and unnecessary Gas consumption.

Path:
./contracts/base/StEverVaultBase.tsol : getDetails()

Recommendation: Remove the redundant tvm.accept(); statement from the
function. Ensure that the remaining tvm.rawReserve call sufficiently
handles the Gas value reservation for the intended behavior of the
function.

www.hacken.io 42

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Found in: b293dd8

Status: Mitigated (with Customer notice:

“It isn't redundant, because the DePool contract sends only 1 nEver.
So we need to make a tvm.accept() otherwise the transaction will be
immediately terminated.”)

I21. Duplicate Field in Return Object

In the function getDetails() in StrategyDePool contract, the field
bounce: false is duplicated in the return object. Duplicate fields
can lead to confusion and potential misunderstandings about the
intended structure and behavior of the returned object.

Path:
./contracts/StrategyDePool.tsol : getDetails()

Recommendation: Remove the duplicated bounce: false field from the
return object to maintain clarity and ensure the correct behavior of
the function.

Found in: b293dd8

Status: Fixed (Revised commit: 0ee727f)

www.hacken.io 43

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io 44

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io 45

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io 46

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/broxus/stEver-contracts

Commit b293dd889b154e77bbf83d48ec5e0db413173ed7

Technical
description README.md

Contracts File: contracts/DepoolStrategyFactory.tsol
SHA3: 594c540f72046e1933f81499246efcde804419c892adf57310b9c29bee122743

File: contracts/Platform.tsol
SHA3: d6b53325cf9dfe7145e00c0e860df32ceac31d68d4e51fc624a8845dcfae5f04

File: contracts/StEverAccount.tsol
SHA3: db87d1ff02cdcedfa8e5b90d53372a3181db13a64b03c2459f5badd18f716d9c

File: contracts/StEverCluster.tsol
SHA3: ada22a75c646f59b1dcf33089a51d6b3e5b59d3d2faf96cfe6d35d61c8157637

File: contracts/StEverVault.tsol
SHA3: e77361f0cb5c28fd4732c6e24c4c6deae02bae57cef3e4815956a3de20ceedd8

File: contracts/StrategyDePool.tsol
SHA3: 2f9ba228b54bf3272bad3c2ca14c12251f1f414a11be36a4014e09b3dd597440

File: contracts/Wallet.tsol
SHA3: d8681a227bec361b72e7dcad6dffa8648511c05d03c6d68fb5f5404135a04745

File: contracts/base/StEverStrategiesManager.tsol
SHA3: 9efc4a2521bc92fdc5f9444ce4eb64fa344e63e8cdff98c0950157df6ba0829d

File: contracts/base/StEverVaultBase.tsol
SHA3: 5b1fc774d35fca41d5f0942a21cacfe0893314931cf5f91bc0f09a01343e9dab

File: contracts/base/StEverVaultEmergency.tsol
SHA3: 5782f69152078a99add2a30730fe2723c5e3ed11fb00c0737431e3d52c49ddd8

File: contracts/base/StEverVaultStorage.tsol
SHA3: 3a0f1ace82ed3c7ad45bdbfacae3d6171d2964161d7d8afde53351ec4edf1b74

File: contracts/base/StEverVaultStrategiesController.tsol
SHA3: f6c7a97c531d2b5c574e7d9a3eb7087e731045eeb6e79c5ebd2c3fc616d18eac

File: contracts/base/StEverVaultValidators.tsol
SHA3: f3c70ed88bae906217083122812fdc6727ef1c1b4fdf78535a0eec017c3fad09

File: contracts/utils/ClusterLib.tsol
SHA3: d98dd5ae052786baf30ff2be18eddfd471fade143507e61c52bcec4065f730f5

File: contracts/utils/Constants.tsol
SHA3: e48fcf15af3a5b245fd568b01a9e40e08785ae913f761b6db6474fd3e50f2ca5

File: contracts/utils/ErrorCodes.tsol
SHA3: 850edef415f85112b5a161a80ea2b9c5b379b8e9f4c94afac2491843db9e6818

www.hacken.io 47

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

File: contracts/utils/Gas.tsol
SHA3: 19a74f9afbdffe3da2647266a779ba7501074407c9a0cbab97927eb1efa1f0af

Second review scope

Repository https://github.com/broxus/stEver-contracts

Commit 0ee727f3528477e9492dc22718f29934de7b5482

Requirements README.md
https://st-ever-docs.netlify.app/contracts

Technical
description

README.md
NatSpec comments
https://st-ever-docs.netlify.app/contracts

Contracts File: contracts/DepoolStrategyFactory.tsol
SHA3: 658d30dc084d31915becc5f2f3a0a19bd1c650f85a03442aebf18248b4e7ca4b

File: contracts/Platform.tsol
SHA3: de9c43e5c810212d7a6ef2b9f9b683eac1088ea30c5a56b853ca002e3643ec83

File: contracts/StEverAccount.tsol
SHA3: 59994c936021c7482d66dcd8b07e5869e4e6d75680129216159ae162b9301f74

File: contracts/StEverCluster.tsol
SHA3: 02eccf5212feb08fc0926bb139e5816d98f23ef388e3ff1b5235593af84318a7

File: contracts/StEverVault.tsol
SHA3: 3a798a46a61b7f3eead3ccd2f30aadcf5891538d36c25e666229f2370a7945dc

File: contracts/StrategyDePool.tsol
SHA3: 1703ed0fcaf04aa93c73a286e22d90117a29c960ebdee70d83716f3ec53ca2f0

File: contracts/Wallet.tsol
SHA3: 9d904be7fffdb30794661737bd2c73fd018a094e0045dab19601c5627e52a1d2

File: contracts/base/StEverStrategiesManager.tsol
SHA3: 612dd78ebe7f4b879a815761603b0505c9d33944a254c0ade5439783c8a6f131

File: contracts/base/StEverVaultBase.tsol
SHA3: ae95f9a148c21b59354e3c132b92e05ab62f386ff9610b22bf6591a43a899e5c

File: contracts/base/StEverVaultEmergency.tsol
SHA3: 654a92e1659cd8c6848c5073aff8329abccf465216e90a8370ebe461e214ffbc

File: contracts/base/StEverVaultStorage.tsol
SHA3: 576ae57e4f9cb8bd60b67ea5dae66bad4dbd4304275d382d8d131b7da488fa77

File: contracts/base/StEverVaultStrategiesController.tsol
SHA3: f1a980f913fb1efa64227b2c2d0f4987efda6d597fccef3aa0c9398dba8e1d12

File: contracts/base/StEverVaultValidators.tsol
SHA3: 29fc015496a8bb5ef9cd27d6213037d7ea4f83ba91636ba892d6b4576b4037e8

File: contracts/interfaces/IDePool.tsol
SHA3: 1711ae39189dfea517ad6c8377cf8033d06c9378d9579cca0a08b1e9cd7edabd

File: contracts/interfaces/IDePoolStrategy.tsol
SHA3: 4a274dddf30f3f3c04041928805cd7411071fae51c059b5e77d03ad78f702b53

File: contracts/interfaces/IDepoolStrategyFactory.tsol
SHA3: f5d7efbfd94e06aedb3a7e27c877da69b1111434a8e31cde376e3c737bcd9003

www.hacken.io 48

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

File: contracts/interfaces/IParticipant.tsol
SHA3: bc370f6c977d085f5cc24bd6fd29a14aa9558b249a2c1174e058095f40999067

File: contracts/interfaces/IStEverAccount.tsol
SHA3: ca1c6ef7a4225a3fe401de6e8be41d66df3c6bb5d2b30a3aa095044f08d80016

File: contracts/interfaces/IStEverCluster.tsol
SHA3: 484b9476c9e4dc931c66dc0783cec7d8142e3230d33ceb4100d5d213fe92607a

File: contracts/interfaces/IStEverVault.tsol
SHA3: dc33e123d5ef37d8ac67d192b9a46de904bc285ca50478aa0c9d50a8db7bdeaa

File: contracts/interfaces/IStrategy.tsol
SHA3: d09108942b2902bca11e20372a531d13bbf1005776b792ad5fb0b56031c46241

File: contracts/utils/ClusterLib.tsol
SHA3: d98dd5ae052786baf30ff2be18eddfd471fade143507e61c52bcec4065f730f5

File: contracts/utils/Constants.tsol
SHA3: 56b84b00737c93492021fbb78f96a7a6720bf5f204c19bc2bdd6398295341d54

File: contracts/utils/ErrorCodes.tsol
SHA3: a1036f90217ffc059fdce799bd4c4fbc74be778475032f0108333ff3a9428e79

File: contracts/utils/Gas.tsol
SHA3: 902c64a0404ac301adc874554be34ec6a20b87573d10ea5b72fa7acf18118ddd

File: contracts/utils/Utils.tsol
SHA3: 1f574bec9b64f4dd856b425a832591a37ef7b8cec4a729bdad8cd76e8476e7f2

Third review scope

Repository https://github.com/broxus/stEver-contracts/tree/venom-main

Commit bb9497b55bddbcec5767e3c2d5caa6f4239f9697

Requirements README.md
https://st-ever-docs.netlify.app/contracts

Technical
description

README.md
NatSpec comments
https://st-ever-docs.netlify.app/contracts

Contracts File: contracts/DepoolStrategyFactory.tsol
SHA3: 648eedad3beed14bfacbd7432870106cec3291d9fccc3bfe999391748410ab8f

File: contracts/Platform.tsol
SHA3: de9c43e5c810212d7a6ef2b9f9b683eac1088ea30c5a56b853ca002e3643ec83

File: contracts/StEverAccount.tsol
SHA3: 73a3cc4cb75277df66c95edc015702b1334e8e162e6ee52f2c9df63bad0bd27c

File: contracts/StEverCluster.tsol
SHA3: 9bfaf70545ac57154f7a4d9b57fcfb182beb63f2af245019cff475902e64d39d

File: contracts/StEverVault.tsol
SHA3: cb5989f58cfba29ae7ae11d52a2e294a5b82fa9c0d339aa569c38032e537c9dc

File: contracts/StrategyDePool.tsol
SHA3: 6ca840a4b6852a66b510510be2deac3be3830310a00088272f35d8d6acf91401

File: contracts/Wallet.tsol

www.hacken.io 49

mailto:support@hacken.io


Hacken OÜ
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti

Kesklinna, Estonia
support@hacken.io

SHA3: 9d904be7fffdb30794661737bd2c73fd018a094e0045dab19601c5627e52a1d2

File: contracts/base/StEverStrategiesManager.tsol
SHA3: 0f6f47654c5c0f2776c6ecd532062d8430603c995d36202ebd2b02c40b8caa7f

File: contracts/base/StEverVaultBase.tsol
SHA3: 74703b2a4b17e3b718c634aad0431b4203c4ae95be6dbfbb2dd229acdd812b9c

File: contracts/base/StEverVaultEmergency.tsol
SHA3: 3af5e2d9e942a774268ec1d5c0064c1121b9166fc520b4e8993812be4e090ad8

File: contracts/base/StEverVaultStorage.tsol
SHA3: 576ae57e4f9cb8bd60b67ea5dae66bad4dbd4304275d382d8d131b7da488fa77

File: contracts/base/StEverVaultStrategiesController.tsol
SHA3: 3bebe89ac6868fe9332875e3fff753d3df3ecd3830155bd4554aba9d40533421

File: contracts/base/StEverVaultValidators.tsol
SHA3: 29fc015496a8bb5ef9cd27d6213037d7ea4f83ba91636ba892d6b4576b4037e8

File: contracts/interfaces/IDePool.tsol
SHA3: 1711ae39189dfea517ad6c8377cf8033d06c9378d9579cca0a08b1e9cd7edabd

File: contracts/interfaces/IDePoolStrategy.tsol
SHA3: 4a274dddf30f3f3c04041928805cd7411071fae51c059b5e77d03ad78f702b53

File: contracts/interfaces/IDepoolStrategyFactory.tsol
SHA3: f5d7efbfd94e06aedb3a7e27c877da69b1111434a8e31cde376e3c737bcd9003

File: contracts/interfaces/IParticipant.tsol
SHA3: bc370f6c977d085f5cc24bd6fd29a14aa9558b249a2c1174e058095f40999067

File: contracts/interfaces/IStEverAccount.tsol
SHA3: 71bae72b7f4b36aa1bbb54a8c8c88535d91bd19af71ac17c0ed8d9717336e4d6

File: contracts/interfaces/IStEverCluster.tsol
SHA3: c12819975b4b4c985af956ca5038bb9066ade5d00b2dc6bac4a29870d91a293f

File: contracts/interfaces/IStEverVault.tsol
SHA3: 75a9b0b5a83e6aedd27c11e2441f253a0f08998c77126297a002ae8bdebd77ab

File: contracts/interfaces/IStrategy.tsol
SHA3: d09108942b2902bca11e20372a531d13bbf1005776b792ad5fb0b56031c46241

File: contracts/utils/ClusterLib.tsol
SHA3: d98dd5ae052786baf30ff2be18eddfd471fade143507e61c52bcec4065f730f5

File: contracts/utils/Constants.tsol
SHA3: 26a96a3b97b31c40a441c8030469d6be0a654016a90665c9b68d174fbdf02fd0

File: contracts/utils/ErrorCodes.tsol
SHA3: 8e3fba97751e800852a08e36851ec50a31424fe523ff6cf294aa892ce459b56b

File: contracts/utils/Gas.tsol
SHA3: 4e46bb6823a5bfcd5cef726c2831ae8043d34dd9342c41e816d20cf2f818112e

File: contracts/utils/Utils.tsol
SHA3: 1f574bec9b64f4dd856b425a832591a37ef7b8cec4a729bdad8cd76e8476e7f2

www.hacken.io 50

mailto:support@hacken.io

