
Blockchain Protocol Security

Analysis Report

Customer: Analog

Date: 29/03/2024

We express our gratitude to the Analog team for the collaborative engagement that enabled the execution of this

Security Assessment.

Analog is an innovative platform that introduces a groundbreaking approach to interoperability in the Web 3.0

ecosystem.

It enables this advanced interoperability through the use of its unique GMP (Generic Message Passing) protocol,

facilitating seamless communication and data exchange across various blockchain networks.

Analog secures all operations and data through its Timechain distributed ledger, ensuring a high level of security and

trustworthiness. This combination of innovative interoperability and robust security positions Analog at the forefront of

developing decentralized solutions and applications for the future web.

Platform: Analog

Language: Rust

Tags: Substrate, Threshold Signature Scheme, Interoperability

Timeline: 22/11/2023 - 29/03/2024

Methodology: Blockchain Protocol and Security Analysis Methodology

Review Scope

Repository https://github.com/Analog-Labs/testnet/

Commit 3ba97bde46eac298fd61eba7ff5b5ef0078a3ebe

2

https://hackenio.cc/blockchain_methodology
https://github.com/Analog-Labs/testnet/

Audit Summary

10/10 9/10 8/10 6/10
Security Score Code quality score Architecture quality score Documentation quality score

Total 9.3/10
The system users should acknowledge all the risks summed up in the risks section of the report

15 13 1 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 1

Medium 1

Low 13

Vulnerability Status

F-2024-0447 - Panic in Shards Pallet due to Insufficient Error Handling in Group Commitment Computation Mitigated

F-2024-0515 - Integration of Custom P2P Networking Library Accepted

F-2023-0158 - Utilization of Non-Cryptographically Secure fastrand Crate Fixed

F-2023-0176 - Replay Attack and D.O.S. Vulnerability in submit_error Extrinsic Fixed

F-2023-0213 - Predictability Concern in random_signer Function Due to Hybrid Random-Round Robin Approach Fixed

F-2023-0216 - Validators Influence on Random Signer Selection Fixed

F-2023-0241 - Absence of Task State Validation Fixed

F-2023-0244 - Lack of Shard Validation in Task Execution Fixed

F-2023-0301 - Lack of Phase Validation When Submitting Task Results/Errors Fixed

F-2023-0318 - Inconsistent Management of `TaskPhaseState` Across Task Cycles Fixed

F-2024-0445 - Unencrypted Storage of Chronicle's Secret Share Fixed

F-2024-0448 - Logical Inconsistencies in Shard Status Handling Fixed

F-2024-0507 - Validation Gap for Pending Nodes in ROAST Protocol Fixed

F-2024-0509 - Lack of Size Limitations on Error Messages in TaskState Storage Map for Failed Transactions Fixed

F-2024-0512 - Chronicle Crate Panic Caused by Mishandled `PeerId` Fixed

3

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/2e62c981-a658-491b-9b73-444856c5743d
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/0357830c-9e76-4a3a-b320-6f47d37e34f2
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/a493b20b-19d4-4706-ba26-999080e0909e
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/d335daf3-32f1-451a-85f5-982e62bc4d51
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/77d4bab7-e2c9-4db1-9f84-f7b6ed3e3692
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/3dea8459-1be8-4f6a-b0b7-54ff54554f0a
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/728cc9fc-1031-4d7b-8687-612f59645226
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/0e13d5f0-d242-4528-82c1-5cc426689746
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/7a409a99-f750-42f3-9ce5-99e648bce55b
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/9c5bb17d-aacd-40dc-925b-fe088f479ae2
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/117c5038-c449-4246-9fe3-bacd047446c8
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/433ae8d4-2b26-4e47-afb4-a2fca19cc4e8
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/5a4ad7f5-34cc-491c-9c88-fce2cea47b59
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/526c600e-062b-4e9c-be5d-713e04a2da20
https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/150d7d51-0c3d-46fc-b83f-46f671081bd6

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well

as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report

shall be without mandatory consent.

Document

Name Blockchain Protocol Code Review and Security Analysis Report for Analog

Audited By Sofiane Akermoun, Nino Lipartiia, Nataliia Balashova

Approved By Sofiane Akermoun

Website https://www.analog.one/

Changelog 23/01/2024 - Preliminary Report

Changelog 29/03/2024 - Final Report

4

https://www.analog.one/

Table of Contents

System Overview 7

Executive Summary 8

Documentation Quality 8

Code Quality 8

Architecture Quality 8

Security Score 8

Summary 8

Findings 11

Vulnerability Details 11

F-2023-0176 - Replay Attack And D.O.S. Vulnerability In Submit_error Extrinsic - High 11

F-2024-0448 - Logical Inconsistencies In Shard Status Handling - Medium 15

F-2023-0158 - Utilization Of Non-Cryptographically Secure Fastrand Crate - Low 17

F-2023-0213 - Predictability Concern In Random_signer Function Due To Hybrid Random-Round Robin Approach -

Low 19

F-2023-0216 - Validators Influence On Random Signer Selection - Low 22

F-2023-0241 - Absence Of Task State Validation - Low 24

F-2023-0244 - Lack Of Shard Validation In Task Execution - Low 27

F-2023-0301 - Lack Of Phase Validation When Submitting Task Results/Errors - Low 29

F-2023-0318 - Inconsistent Management Of `TaskPhaseState` Across Task Cycles - Low 31

F-2024-0445 - Unencrypted Storage Of Chronicle's Secret Share - Low 32

F-2024-0447 - Panic In Shards Pallet Due To Insufficient Error Handling In Group Commitment Computation - Low 34

F-2024-0507 - Validation Gap For Pending Nodes In ROAST Protocol - Low 37

F-2024-0509 - Lack Of Size Limitations On Error Messages In TaskState Storage Map For Failed Transactions -

Low 39

F-2024-0512 - Chronicle Crate Panic Caused By Mishandled `PeerId` - Low 41

F-2024-0515 - Integration Of Custom P2P Networking Library - Low 43

Observation Details 45

F-2023-0313 - Memory Exhaustion Risk Due To Absence Of Task Deletion Mechanism - Low 45

F-2023-0181 - Test Coverage - Info 48

F-2023-0214 - Behavior Of Random_signer Function With All Members In PastSigners - Info 49

F-2023-0221 - TODO Comments In Code - Info 50

F-2023-0222 - Documentation Lacks Comprehensive Coverage - Info 51

F-2023-0223 - Employment Of Sudo Pallet - Info 53

F-2024-0513 - Unsafe Arithmetics - Info 55

Appendix 1. Severity Definitions 58

Appendix 2. Scope 59

Components In Scope 59

System Overview

Timechain, based on the Substrate framework, is tasked with settling transactions received from Chronicle nodes.

These transactions are subsequently processed using a Threshold Signature Scheme (TSS) among the participants,

which ensures secure and efficient transaction handling.

The core components are:

1. The Timechain Node

2. The Chronicle crate

3. The TSS crate

All these components are within the scope of this audit.

Executive Summary

This report presents an in-depth analysis and scoring of the customer's blockchain protocol project. Detailed scoring

criteria can be referenced in the corresponding section of the Blockchain Protocol and Security Analysis Methodology.

Documentation quality

The total Documentation Quality score is 6 out of 10.

Adequate supplementary documentation was available.

Developers offered useful explanations during the audit process.

Additional source code documentation is needed for critical functions and core components for enhanced clarity.

Code quality

The total Code Quality score is 9 out of 10.

Exceptional quality standards are evident in the Rust code.

Substrate code maintains a notably high level of quality.

Weight and Benchmarks are implemented effectively.

The Mocked Runtime implementation exhibits comprehensive code coverage.

Presence of TODO comments in the code.

Architecture quality

The total Architecture Quality score is 8 out of 10.

Employment of the Substrate framework as the foundational infrastructure for the blockchain.

Effective interaction between Chronicle nodes and Timechain nodes, facilitated by a Threshold Signature Scheme.

Approach to achieving interoperability, characterized by its scalability through the addition of protocols and ease of

upgrade.

Centralization aspects of the Chronicle node, while reducing the attack surface, raise considerations regarding the

overall system's robustness.

Security score

Upon auditing, the code was found to contain 0 critical, 1 high, 1 medium, and 13 low severity issues.

All security challenges were effectively resolved, securing a top-notch security rating of 10 out of 10. Two minor issues

were identified but accepted and mitigated, as they present well-defined, low risks, aligning with rigorous risk

management standards.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's blockchain protocol yields an overall score of 9.3 out of 10. This score

reflects the combined evaluation of documentation, code quality, architecture quality, and security aspects of the

project.

7

https://hackenio.cc/blockchain_methodology

Findings

Vulnerability Details

F-2023-0176 - Replay Attack and D.O.S. Vulnerability in submit_error Extrinsic -

High

Description: The submit_error extrinsic within the tasks pallet presents a significant security risk.

This vulnerability originates from the absence of validation against the resubmission of

identical error signatures.

As a result, it opens up the potential for a replay attack, where the same error signature

can be repeatedly submitted by malicious actors.

This repetitive submission not only undermines the integrity of the system but also

triggers a Denial of Service (D.O.S.) by forcing tasks into a failure state prematurely.

Replay attack:

The signature verification process, as it currently stands, does not utilize a nonce or any

other method to guarantee the uniqueness of each submission.

This absence of a uniqueness check allows the same signature to be used repeatedly

without being invalidated after its first use as shown in the following code:

/// Submit Task Error

#[pallet::call_index(4)]

#[pallet::weight(T::WeightInfo::submit_error())]

pub fn submit_error(

origin: OriginFor<T>,

task_id: TaskId,

cycle: TaskCycle,

error: TaskError,

) -> DispatchResult {

ensure_signed(origin)?;

ensure!(Tasks::<T>::get(task_id).is_some(), Error::<T>::UnknownTask);

Self::validate_signature(

task_id,

cycle,

error.shard_id,

schnorr_evm::VerifyingKey::message_hash(error.msg.as_bytes()),

error.signature,

)?;

// ...

In the implementation, the signature is created based on public parameters such as the

task ID, task cycle, error shard ID, and the error message, which are all visible when the

extrinsic is called.

However, crucially, this process does not incorporate a nonce or any other unique

identifier to ensure the uniqueness of each transaction.

The absence of a nonce in the signature generation means that the signature remains

valid for multiple transactions as long as the public parameters remain the same.

In a blockchain environment, where transaction details are publicly visible on the chain,

this aspect of transparency becomes a double-edged sword. While it upholds the

blockchain's principle of openness, it also means that any user can view the details of

transactions, including those that call the submit_error extrinsic.

Denial of Service:

By exploiting the replay attack vulnerability, as previously described, a malicious actor

can repeatedly submit the same submit_error extrinsic with a valid signature.

Each successful execution of the submit_error extrinsic increments the

TaskRetryCounter for the specified task. This counter tracks the number of times an

error has been submitted for a task.

In the runtime configuration, type MaxRetryCount = ConstU8<3> specifies that the

maximum retry count for a task is set to 3. This is a critical threshold value in the

8

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/d335daf3-32f1-451a-85f5-982e62bc4d51

context of task execution.

When the TaskRetryCounter reaches the maximum retry count of 3, as defined in the

runtime configuration, the task's state is automatically set to Failed. This is enforced

by the line TaskState::<T>::insert(task_id, TaskStatus::Failed { error:

error.clone() }); in the submit_error extrinsic.

Once the retry counter hits this limit, the task is marked as failed regardless of the

actual validity or severity of the reported errors.

Consequences::

Premature Task Failure: A malicious actor can cause a task to fail prematurely by

artificially inflating the retry count. This is achieved by repeatedly submitting the

same error signature until the retry count threshold is reached.

Disruption of Normal Operations: Such premature failures of tasks can disrupt the

normal operations of the blockchain system, leading to a denial of service for those

particular tasks.

Undermining System Reliability: Repeated occurrences of such incidents can

erode trust in the system's reliability, as legitimate tasks may be unjustly terminated

due to this vulnerability.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: High

Impact: 5/5

Likelihood: 3/5

Recommendations

Recommendation: To address the Denial of Service (D.O.S.) vulnerability in the submit_error extrinsic,

incorporating the TaskRetryCounter as part of the signature presents a promising

solution.

This approach effectively uses the TaskRetryCounter as a nonce, adding a unique

element to each transaction and thereby mitigating the risk of replay attacks. Here's a

detailed recommendation:

Incorporate TaskRetryCounter into Signature:

Unique Transaction Identifier: Modify the signature generation process to include

the current value of the TaskRetryCounter for the task. Each time an error is

reported and the submit_error extrinsic is called, the TaskRetryCounter is

incremented. By including this incremented value in the signature, each submission

becomes unique.

Preventing Replay Attacks: This change ensures that a signature used in a

previous submission cannot be reused for a new submission, as the

TaskRetryCounter part of the signature would differ. This effectively prevents the

possibility of replaying the same transaction.

Evidences

9

Proof of Concept

Reproduce:
The following Rust code is a Proof of Concept (PoC) specifically designed to

demonstrate a replay attack vulnerability in the submit_error extrinsic.

This PoC is based on a test scenario originally developed by the Analog team to

demonstrate the vulnerability discovered during the audit process.

It effectively simulates the scenario where a malicious actor can repeatedly submit the

same error, leading to an unwarranted task failure. This PoC is instrumental in illustrating

the vulnerability and confirming its presence in the system.

To run this PoC, follow these steps:

1. Copy the entire PoC script provided below.

2. Paste the script at the bottom of the pallets/tasks/src/tests.rs file. This is

the appropriate location in the Substrate pallet where the submit_error extrinsic

is defined and tested.

3. Execute the test using the following command in your terminal:

cargo test -p pallet-tasks poc_submit_task_error_replay_sig

4. If the test passes (i.e., the assertions in the test are true), it confirms the existence

of the vulnerability. The test is crafted to pass if it successfully shows that the

task's status is incorrectly set to Failed after the repetitive submission of the same

error.

#[test]

fn poc_submit_task_error_replay_sig() {

// Start a new test environment. This is a simulated blockchain environment

// provided by the testing framework.

new_test_ext().execute_with(|| {

// Step 1: Initialize the environment and create a task.

// This step involves bringing a shard online and creating a task

// within the Ethereum network context.

Tasks::shard_online(1, Network::Ethereum);

assert_ok!(Tasks::create_task(

RawOrigin::Signed([0; 32].into()).into(),

mock_task(Network::Ethereum, 1)

));

// Step 2: Prepare a mock error and submit it

See more

Results:
Output:

running 1 test

test tests::poc_submit_task_error_replay_sig ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 37 filtered out; fini

shed in 0.01s

10

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/d335daf3-32f1-451a-85f5-982e62bc4d51

F-2024-0448 - Logical Inconsistencies in Shard Status Handling - Medium

Description: The existing implementation encounters several challenges in managing shard states,

particularly concerning the ShardStatus::Committed state.

The primary issue arises when all members commit to the shard, transitioning it to the

Committed state. In this scenario, if at least one member fails to call ready, the shard

remains indefinitely in the committed state, hindering its progression to an online status.

Additionally, the shard does not initiate an offline state, leaving other members trapped

in a dysfunctional shard.

Another significant concern involves the absence of state changes in

ShardStatus::Committed when members go online or offline. The functions

responsible for these transitions, namely online_member and offline_member, lack

the necessary logic to ensure accurate reflections of individual member states in the

overall shard status.

The relevant code snippets for these functions are provided below:

primitives/src/shard.rs:107

pub fn online_member(&self) -> Self {

match self {

ShardStatus::PartialOffline(count) => {

let new_count = count.saturating_less_one();

if new_count.is_zero() {

ShardStatus::Online

} else {

ShardStatus::PartialOffline(new_count)

}

},

_ => *self,

}

}

pub fn offline_member(&self, max: u16) -> Self {

match self {

ShardStatus::PartialOffline(count) => {

let new_count = count.saturating_plus_one();

if new_count > max {

ShardStatus::Offline

} else {

ShardStatus::PartialOffline(new_count)

}

},

// if a member goes offline before the group key is submitted,

// then the shard will never go online

ShardStatus::Created(_) => ShardStatus::Offline,

ShardStatus::Online => {

if max.is_zero() {

ShardStatus::Offline

} else {

ShardStatus::PartialOffline(1)

}

},

_ => *self,

}

}

It is crucial to highlight the presence of logic monitoring the number of offline members

in ShardStatus::PartialOffline(u16). When this count reaches a certain

threshold, the shard transitions to an offline state. However, a notable deficiency exists

in this logic. Specifically, if a member goes offline when the shard is

ShardStatus::Committed, the shards pallet fails to capture this change.

This scenario poses a vulnerability: a member can invoke the ready function on a

committed shard and later go offline while the shard remains committed. Consequently,

the shard may transition to ShardStatus::Online even when the member is offline,

causing a mismatch in the count of offline members reflected in the shard's state.

Subsequent transitions to PartialOffline(n) will yield inaccurate values due to

members going offline during the committed state. This inconsistency delays the

11

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/433ae8d4-2b26-4e47-afb4-a2fca19cc4e8

shard's move to the offline state and hinders a precise assessment of the functional

member count, leading to notable disruptions in the pallet's logic.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Medium

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To address this issue effectively, it is advisable to reevaluate the logic governing shard

status, introducing a validation step when the shard is in the committed state. One

potential solution involves preventing a shard from transitioning to the online state if any

member goes offline by immediately making the shard go offline. Alternatively, a

systematic mechanism for tracking the count of offline members during the committed

state could be implemented. This count could then be leveraged to facilitate a transition

to either ShardStatus::Online or ShardStatus::PartialOffline(n), ensuring an

accurate representation of disconnected members.

This refinement aims to fortify security measures by guaranteeing a precise depiction of

shard states. It mitigates potential disruptions in the pallet's logic arising from

discrepancies in member counts during state transitions.

12

F-2023-0158 - Utilization of Non-Cryptographically Secure fastrand Crate - Low

Description: The fastrand crate, currently used in the codebase, is explicitly stated as non-

cryptographically secure in its GitHub documentation.

This is an issue for blockchain applications, where cryptographic security is non-

negotiable.

The README.md of the fastrand crate found here clearly mentions the use of Wyrand,

which, while efficient and fast, does not meet cryptographic security standards.

Therefore, the use of fastrand in any blockchain-related codebase is inappropriate

and poses a security risk.

Assets:
Cryptography and Keys

Dependencies

Status: Fixed

Classification

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: Before exploring external crates for secure random number generation, it is advisable to

first consider a Substrate idiomatic way for generating randomness. Substrate's

framework offers tailored solutions for randomness within blockchain environments,

particularly aligning with the deterministic and consensus-driven nature of blockchains.

Substrate provides the Randomness trait, which is central to both generating and

consuming randomness in a blockchain context. When implementing randomness in a

Substrate-based blockchain, there are two primary options within the Substrate

framework to consider:

Insecure Randomness Pallet: This pallet offers a function to generate pseudo-

random values based on the block hashes of the previous 81 blocks. While this

method provides efficient performance, it is important to note that it is not secure.

This type of randomness is suitable for scenarios with low security requirements or

for testing purposes in randomness-consuming applications. It is not recommended

to use this pallet in a production environment where security is a concern.

BABE Pallet for Randomness: The BABE (Blind Assignment for Blockchain

Extension) pallet offers a more secure alternative by using verifiable random

functions (VRFs) for randomness generation. This pallet provides production-grade

randomness and is utilized in the Polkadot network. Opting for the BABE pallet

implies that your blockchain should employ the BABE slot-based consensus

mechanism for block production. This method is recommended for environments

where security and trust are paramount.

In summary, when integrating randomness into a Substrate-based blockchain, it is

crucial to align the method of randomness generation with the overall security

requirements and architecture of your blockchain.

For secure, production-grade environments, the BABE pallet is the recommended

13

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/a493b20b-19d4-4706-ba26-999080e0909e
https://github.com/smol-rs/fastrand
https://paritytech.github.io/polkadot-sdk/master/pallet_insecure_randomness_collective_flip/index.html
https://paritytech.github.io/polkadot-sdk/master/pallet_babe/index.html

choice, while the insecure randomness pallet can be used for lower-security

applications or testing stages.

For more information please read: https://docs.substrate.io/build/randomness/

External References:
fastrand Github

Substrate randomness

14

https://docs.substrate.io/build/randomness/
https://github.com/smol-rs/fastrand
https://docs.substrate.io/build/randomness/

F-2023-0213 - Predictability Concern in random_signer Function Due to Hybrid

Random-Round Robin Approach - Low

Description: The random_signer function in shards pallet selects a signer from a pool of members

using a hybrid approach combining random selection and a round-robin method.

While this approach ensures that all members are eventually selected, it introduces a

bias in the probability of selection, especially noticeable when only a few members

remain unchosen.

The function iteratively checks each member from left to right in the members array to

find an eligible signer.

An eligible signer is defined as a member who has not yet signed, and therefore, is not

listed in the PastSigners storage value.

The starting point for this check is determined by a randomly generated index

(signer_index).

pallets/shards/src/lib.rs:340:

let mut rng = fastrand::Rng::with_seed(seed);

let members = Self::get_shard_members(shard_id);

let mut signer_index = rng.usize(..members.len());

let mut signer = T::Members::member_public_key(&members[signer_index].0)

.expect("All signers should be registered members");

if members.len() == 1 {

// only one possible signer for shard size 1

return signer;

}

if PastSigners::<T>::iter_prefix(shard_id).count() < members.len() {

while PastSigners::<T>::get(shard_id, &signer).is_some() {

signer_index = if signer_index == members.len() - 1 { 0 } else { signer_index + 1

};

signer = T::Members::member_public_key(&members[signer_index].0)

.expect("All signers should be registered members");

}

}

PastSigners::<T>::insert(shard_id, &signer, ());

signer

The signer_index is incremented to move to the next member in the array. If it

reaches the end of the array (members.len() - 1), it wraps around to the

beginning (index 0). This ensures that all members are considered.

For each new index, the public key of the member at that index is fetched to check

if they are in PastSigners.

The loop continues until it finds a member who is not in PastSigners, making

them an eligible signer.

This iteration process, while ensuring that all members are eventually considered,

introduces a bias.

Members who have a greater number of already selected members (listed in

PastSigners) preceding their position in the members array tend to have a higher

probability of being selected.

This bias could potentially impact the fairness of the selection process, particularly in

scenarios where an unbiased and evenly distributed probability of selection is required.

Assets:
Runtime & Pallets

Status: Fixed

Classification

15

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/77d4bab7-e2c9-4db1-9f84-f7b6ed3e3692

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: To address the bias in the selection process of the random_signer function and

enhance its randomness, a more effective approach would be to create a separate array

of eligible signers.

This array should include only those members who have not yet signed and are not

present in the PastSigners storage value.

Once this array of eligible signers is prepared, the randomness can be applied directly

to this array. Here's how this can be implemented:

fn random_signer(shard_id: ShardId) -> PublicKey {

let seed = u64::from_ne_bytes(

frame_system::Pallet::<T>::parent_hash().encode().as_slice()[0..8]

.try_into()

.expect("Block hash should convert into [u8; 8]")

);

let mut rng = fastrand::Rng::with_seed(seed);

let members = Self::get_shard_members(shard_id);

// Handle the case where there is only one member

if members.len() == 1 {

return T::Members::member_public_key(&members[0].0)

.expect("Single member should have a valid public key");

}

let eligible_signers = members

.iter()

.filter(|member| !PastSigners::<T>::contains_key(shard_id, member))

.collect::<Vec<_>>();

if !eligible_signers.is_empty() {

let signer_index = rng.usize(..eligible_signers.len());

let signer = T::Members::member_public_key(&eligible_signers[signer_index].0)

.expect("All signers should be registered members");

// Add the selected signer to PastSigners

PastSigners::<T>::insert(shard_id, &eligible_signers[signer_index].0, ());

signer

} else {

// Handling case based on decision from observation F-2023-0214

// If all members have already signed, the approach to handle this situation need

s to be defined

// based on the decision from observation F-2023-0214

// This could involve selecting a random member from the entire list or returning

a specific error/default value

panic!("Based on observation F-2023-0214, handling of no eligible signers needs t

o be defined");

}

}

Key Points in This Revision:

Single Member Check: The function first checks if there is only one member in the

shard. If so, it directly returns this member as the signer, bypassing any need for

random selection.

Random Selection for Multiple Members: If more than one member exists, the

function then constructs an array of eligible signers (those not in PastSigners)

and randomly selects one of them.

Updating PastSigners: After a signer is selected, they are added to

PastSigners. This ensures that members are not repeatedly chosen before others

have had a chance to sign.

Handling No Eligible Signers: The function now includes a placeholder for handling

the case where there are no eligible signers left. The specific behavior in this

scenario should be defined based on the decision from observation F-2023-0214.

16

This could involve repeating the selection from all members or handling the

situation in a different manner, as per the system's requirements.

This revision aligns the function's behavior with the observations and recommendations,

ensuring a balanced and fair signer selection process while also providing a clear

direction for handling edge cases.

17

F-2023-0216 - Validators Influence on Random Signer Selection - Low

Description: The random_signer function within shards pallet demonstrates a potential vector for

influencing the random number generator (RNG) seed, which could affect the fairness

of signer selection.

This influence stems from the ability of validators to choose and order transactions

within a block they produce.

pallets/shards/src/lib.rs:325

fn random_signer(shard_id: ShardId) -> PublicKey {

let seed = u64::from_ne_bytes(

frame_system::Pallet::<T>::parent_hash().encode().as_slice()[0..8]

.try_into()

.expect("Block hash should convert into [u8; 8]"),

);

let mut rng = fastrand::Rng::with_seed(seed);

...

}

In this function, the RNG seed is derived from the hash of the parent block.

Validators, when creating a new block, can manipulate the set and order of transactions.

Since these transactions are part of the data that generates the block hash, they

indirectly influence the RNG seed used in random_signer.

The potential for exploiting this issue is generally low under the BABE consensus

mechanism, given its inherent randomness in selecting validators.

However, this likelihood may increase with other consensus models, especially those

where validators have greater predictability or control in producing blocks.

This consideration is particularly relevant for the Timechain blockchain if it opts to use

alternative consensus mechanisms that give more weight to the intentions and actions

of validators in the block creation process.

Assets:
Cryptography and Keys

Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: To mitigate the risk of validators influencing the random number generator (RNG) in the

random_signer function, it is crucial to utilize a more robust and less manipulable

source of randomness.

The Substrate framework, particularly the BABE consensus mechanism, offers features

for generating on-chain randomness that can serve this purpose more effectively than

relying solely on the previous block's hash.

The BABE pallet includes mechanisms to accumulate randomness over time, combining

data from various blocks to produce a more unpredictable and secure random number.

This method reduces the potential impact any single validator can have on the RNG

18

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/3dea8459-1be8-4f6a-b0b7-54ff54554f0a

outcome. Integrating this enhanced source of randomness into the random_signer

function would increase its fairness and resilience against potential manipulation.

Refer to the recommendations in issue F-2023-0158 for additional details on

implementing and integrating these features. This approach aligns with best practices

for ensuring the integrity of random number generation within blockchain networks,

especially in scenarios where unbiased and unpredictable outcomes are critical.

19

F-2023-0241 - Absence of Task State Validation - Low

Description: The tasks pallet is susceptible to a vulnerability arising from the absence of essential

checks to ensure that a task is not in a stopped, failed, or completed state before any

data pertaining to the task is submitted.

Within the tasks pallet, the TaskState map is responsible for storing task statuses,

including options such as:

pub enum TaskStatus {

Created,

Failed { error: TaskError },

Stopped,

Completed,

}

The identified issue stems from a lack of status validation in key extrinsic functions like

submit_result, submit_error, submit_hash, and submit_signature. Despite the

pivotal role these functions play in the task lifecycle, the absence of a task status check

allows operations on tasks marked as Stopped, Failed, and Completed. This not only

renders the stopping and resuming of tasks ineffective but also undermines the notion

of a completed task, as any task can be perpetually executed even after being marked

as Completed. This disruption significantly impacts the overall integrity of the task

lifecycle.

This vulnerability is compounded by the absence of shard validation, allowing shards

not assigned to a specific task to invoke submit_result and submit_error (see F-
2023-0244). Although these functions still necessitate a valid shard signature, as

verified by the validate_signature function, the likelihood of misbehaviors due to

the lack of task state validation is significantly increased.

A noteworthy issue is the absence of signer validation in the submit_signature

function. This allows anyone to submit a signature for a task in the Sign phase without

the necessity of a valid shard signature or being a member of the shard. This flawed

logic heightens the risk of potential malicious activities, increasing the security concern

related to the absence of task state validation.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To address this vulnerability effectively, it is strongly recommended to implement a

robust validation check within the specified functions. This check should ensure that

the task is in an active state before permitting any further operations. Such a measure

will significantly enhance the security and reliability of the tasks pallet, contributing to

the overall stability of the blockchain network.

20

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/728cc9fc-1031-4d7b-8687-612f59645226

Evidences

Reproduce:
A series of tests has been conducted to illustrate that submissions on tasks are allowed

when they should not be. These tests demonstrate potential vulnerabilities across

various scenarios.

// The test checks that `submit_result` and `submit_error` can be called on the s

topped task

#[test]

fn poc_task_status_vulnerability_stopped() {

new_test_ext().execute_with(|| {

assert_ok!(Tasks::create_task(

RawOrigin::Signed([0; 32].into()).into(),

mock_task(Network::Ethereum, 1)

));

// Stop the task

assert_ok!(Tasks::stop_task(RawOrigin::Signed([0; 32].into()).into(), 0));

assert_eq!(TaskState::<Test>::get(0), Some(TaskStatus::Stopped));

// submit_result and submit_error don't fail, even though the task is stopped

assert_ok!(Tasks::submit_result(

RawOrigin::Signed([0; 32].into()).into(),

0,

0,

mock_result_ok(1, 0, 0)

));

assert_ok!(Tasks::submit_error(

RawOrigin::Signed([0; 32].into()).into(),

0,

1,

mock_error_result(1, 0, 1)

));

});

}

// The test checks that `submit_result` and `submit_error` can be called on the f

ailed task

#[test]

fn poc_task_status_vulnerability_failed() {

let mock_error = mock_error_result(1, 0, 0);

new_test_ext().execute_with(|| {

assert_ok!(Tasks::create_task(

RawOrigin::Signed([0; 32].into()).into(),

mock_task(Network::Ethereum, 1)

));

Tasks::shard_online(1, Network::Ethereum);

// Fail the task

for _ in 1..=10 {

assert_ok!(Tasks::submit_error(

RawOrigin::Signed([0; 32].into()).into(),

0,

0,

mock_error.clone()

));

}

assert_eq!(Tasks::task_state(0), Some(TaskStatus::Failed { error: mock_error }));

// submit_result and

See more

21

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/728cc9fc-1031-4d7b-8687-612f59645226

F-2023-0244 - Lack of Shard Validation in Task Execution - Low

Description: The tasks pallet exhibits a logical flaw, allowing any shard to invoke extrinsic functions

on tasks for which it was not originally assigned.

The core issue resides in the implementation of the submit_result and

submit_error functions. While the pallet includes logic for assigning tasks to specific

shards by storing them in the ShardTasks and TaskShard maps, these extrinsics

neglect to validate whether the executing shard is the one originally designated for the

task.

Despite the implementation of checks in the submit_result and submit_error

functions to ensure the correctness of the shard's signature, a crucial validation is

absent, enabling any shard to call these functions for tasks not assigned to it.

Consequently, a shard can submit a result or error with TaskResult or TaskError and

the correct signature, leading to the execution of these transactions without error.

This flaw presents a concern for the effective management of tasks, casting doubt on

the overall reliability of the system and compromising the integrity of the task execution

logic. While the current centralized nature of nodes may mitigate immediate security

threats, the significance of this vulnerability is expected to increase as the system

transitions to a decentralized model. In a decentralized environment, where nodes can

potentially act maliciously, and when considered alongside other existing flaws, this

issue has the potential to significantly impact the overall integrity of the task lifecycle

(see F-2023-0241). However, the probability of exploitation is diminished by the

necessity for controlling the entire shard to carry out the attack, rendering it less

feasible.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: To address this issue, it is strongly recommended to implement stringent checks,

ensuring that each shard can only execute tasks specifically assigned to it. This

proactive measure will fortify the integrity of task execution, contributing to the overall

resilience and dependability of the system.

22

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/0e13d5f0-d242-4528-82c1-5cc426689746

F-2023-0301 - Lack of Phase Validation When Submitting Task Results/Errors -

Low

Description: The tasks pallet reveals a logical flaw wherein the extrinsics submit_result and

submit_error lack any checks on the phase of the task. This deficiency permits a

shard to execute these functions during the Write or Sign phase, potentially disrupting

the intended task lifecycle.

The issue stems from an inconsistency in the implementation of the task phase logic. In

a typical progression, a payable task is expected to traverse the Write phase (with an

additional Sign phase for tasks featuring the SendMessage function) before advancing

to the Read phase through hash submission. However, this crucial sequence can be

circumvented by directly executing the submit_result or submit_error functions,

as these functions lack validation to ensure the task is in the correct phase.

This flaw allows a malicious shard to execute tasks without submitting the hash of the

corresponding transaction.

To maintain the robustness of the implemented logic, it is crucial to have the capability

to verify the accuracy and validity of the submitted hash.

Skipping the submit_hash step significantly disrupts the task logic and may lead to

improper validation of executed tasks, jeopardizing the proper handling of tasks and

casting doubt on the overall reliability of the system.

The vulnerability is further exacerbated by the absence of shard validation, enabling

shards not assigned to a specific task to invoke submit_result and submit_error

(see F-2023-0244). While these functions still require a valid shard signature, as verified

by the validate_signature function, the likelihood of this issue being exploited is

significantly increased.

It is noteworthy that the current risk level is relatively low, hinging on the centralized

nature of the chronicles, where all shard members are presumed non-malicious.

However, with the project's transition to a decentralized model, the gravity of this issue

escalates, rendering it a more pronounced vulnerability.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 3/5

Likelihood: 1/5

Recommendations

Recommendation: To address this issue, it is strongly recommended to implement checks for the task's

phase in the submit_result and submit_error extrinsics, allowing these functions to

be called only when the task is in the Read phase. This proactive measure will fortify the

integrity of task execution, ensuring tasks progress through the designated phases as

intended.

23

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/7a409a99-f750-42f3-9ce5-99e648bce55b

Evidences

Reproduce:
The test below highlights the issue:

#[test]

fn poc_submit_result_error_on_write_phase() {

let a: AccountId = A.into();

new_test_ext().execute_with(|| {

// Create a new payable task

assert_ok!(Tasks::create_task(

RawOrigin::Signed(a.clone()).into(),

mock_payable(Network::Ethereum)

));

System::assert_last_event(Event::<Test>::TaskCreated(0).into());

Tasks::shard_online(1, Network::Ethereum);

// Check that the task is in the Write phase

assert_eq!(

Tasks::get_shard_tasks(1),

vec![TaskExecution::new(0, 0, 0, TaskPhase::Write(pubkey_from_bytes(A)))]

);

// submit_error doesn't return an error when it's called on this task

let task_error = mock_error_result(1, 0, 0);

assert_ok!(Tasks::submit_error(RawOrigin::Signed(a.clone()).into(), 0, 0, task_er

ror));

// The task is still in the Write phase

assert_eq!(

Tasks::get_shard_tasks(1),

vec![TaskExecution::new(0, 0, 1, TaskPhase::Write(pubkey_from_bytes(A)))]

);

// submit_result doesn't return an error when it's called on this task

let task_result = mock_result_ok(1, 0, 0);

assert_ok!(Tasks::submit_result(RawOrigin::Signed(a).into(), 0, 0, task_result.cl

one()));

System::assert_last_event(Event::<Test>::TaskResult(0, 0, task_result).into());

});

}

24

F-2023-0318 - Inconsistent Management of `TaskPhaseState` Across Task Cycles

- Low

Description: The tasks pallet exhibits a logical flaw in managing task phases, preventing the

submission of the hash for a recurring task after its initial submission in the first cycle of

task execution.

According to the tasks pallet logic, each payable task is expected to transition from the

Write phase (preceded by an additional Sign phase for tasks incorporating the

SendMessage function) to the Read phase by submitting a hash during each task cycle,

as regulated by TaskCycleState. However, a notable bug has been observed: after

the initial completion of this process, the phase remains stuck at TaskPhase::Read.

This occurs because the TaskPhaseState doesn't change when either a result or error

is submitted.

Consequently, in subsequent cycles, the task is incapable of reinitiating this process,

constraining its functionality solely to submitting results/errors, while attempts to

execute submit_hash and submit_signature prove futile. This issue disrupts the

logical continuity of the task lifecycle significantly and introduces potential

vulnerabilities for future disruptions.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 1/5

Likelihood: 5/5

Recommendations

Recommendation: It is strongly recommended to implement a robust logic that ensures the

synchronization of the task phase with its actual state. This entails introducing

mechanisms that update the TaskPhaseState to accurately reflect the ongoing phase

of the task. Such an implementation will enhance the reliability and functionality of the

tasks pallet, mitigating the observed bug and fostering a seamless progression through

task cycles.

25

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/9c5bb17d-aacd-40dc-925b-fe088f479ae2

F-2024-0445 - Unencrypted Storage of Chronicle's Secret Share - Low

Description: A vulnerability is present in the chronicle's security architecture due to the unencrypted

storage of its secret share, making it susceptible to potential unauthorized access and

misuse.

During our security review, a weakness has been identified in the storage mechanism of

the chronicle's secret share. This secret share is currently stored in an unencrypted

format within a file, raising concerns about data security. The functions responsible for

interacting with this file, specifically write_key_to_file and read_key_from_file,

operate without applying any encryption measures. This configuration introduces a

significant risk, providing an avenue for unauthorized parties to access the secret share,

potentially leading to severe security breaches.

The absence of encryption leaves the stored data vulnerable to exploitation, particularly

if an attacker exploits system or OS vulnerabilities or identifies weaknesses in other

software running on the server. Unauthorized access to the file containing the

unencrypted secret share empowers malicious actors to execute harmful actions and

potentially impersonate the chronicle. Beyond the immediate threat, this vulnerability

has the potential to erode stakeholder confidence in the overall security of the system.

Assets:
Cryptography and Keys

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 1/5

Recommendations

Recommendation: To rectify this vulnerability, the following measures are recommended:

Encryption at Boot: Introduce a robust mechanism to facilitate the secure decryption of

the chronicle's secret share during the distributed key generation process. Adopt

industry-recognized cryptographic algorithms such as AES-256-GCM or ChaCha20-
Poly1305 for storing the secret share within the file.

Utilize Zeroize Crate: Ensure that any unencrypted representation of the secret share

in memory is thoroughly scrubbed using tools like the zeroize crate. This crate is

specifically designed to securely zero out sensitive data from memory, thereby

enhancing the overall security posture of the system.

26

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/117c5038-c449-4246-9fe3-bacd047446c8
https://crates.io/crates/zeroize

F-2024-0447 - Panic in Shards Pallet due to Insufficient Error Handling in Group

Commitment Computation - Low

Description: The shards pallet exhibits a potential panic during the computation of group

commitments, arising from inadequate error handling within the commit function.

The problematic section of the code lies within the commit function of the shards

pallet:

pallets/shards/src/lib.rs:147:

for c in &commitment {

ensure!(VerifyingKey::from_bytes(*c).is_ok(), Error::<T>::InvalidCommitment);

}

/* ... */

let commitment = ShardMembers::<T>::iter_prefix(shard_id)

.filter_map(|(_, status)| status.commitment().cloned())

.reduce(|mut group_commitment, commitment| {

for (group_commitment, commitment) in

group_commitment.iter_mut().zip(commitment.iter())

{

*group_commitment = VerifyingKey::new(

VerifyingKey::from_bytes(*group_commitment).unwrap().to_element()

+ VerifyingKey::from_bytes(*commitment).unwrap().to_element(),

)

.to_bytes()

.unwrap();

}

group_commitment

})

.unwrap();

While each commitment undergoes individual validation as a valid VerifyingKey, the

aggregation of all commitments may potentially yield

VerifyingKey::new(ProjectivePoint::IDENTITY). These specific scenarios pose

a risk of encountering an error during the subsequent to_bytes operation, ultimately

leading to panic during unwrapping.

It is noteworthy that while the occurrence of obtaining IDENTITY as the sum of valid

commitments is considered improbable due to the large order of the underlying elliptic

curve group secp256k1, it remains a potential risk that could compromise the overall

security of the system.

Importantly, the current low risk is contingent on the centralized nature of the

chronicles, where all shard members are assumed non-malicious. However, as the

project transitions to a decentralized model, this issue becomes critical. Malicious

members could exploit the situation by constructing intentional malicious commitments,

leading to panics in the shards pallet.

Assets:
Runtime & Pallets

Status: Mitigated

Classification

Severity: Low

Impact: 5/5

Likelihood: 1/5

Recommendations

27

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/2e62c981-a658-491b-9b73-444856c5743d

Recommendation: To address this issue effectively, it is highly advisable to improve the error-handling

mechanisms within the commit function. Specifically, the function should be modified to

return an appropriate error in cases where the result of the cumulative sum is

VerifyingKey::new(ProjectivePoint::IDENTITY). This adjustment aims to

replace the current scenario leading to panics with a more controlled and informative

response. By implementing a more robust error-handling approach, the potential for

panics during commitment computation can be significantly reduced.

Moreover, it is advisable to implement an escape mechanism to gracefully handle

situations in which the commitment sum results in the IDENTITY value. Potential options

for mitigation include committing again, forming a new shard, and/or implementing

measures to slash misbehaving nodes.

Evidences

Reproduce:
The accompanying test underlines this issue:

#[test]

fn poc_malicious_commitment_causes_panic() {

let shard = shard();

let public_key = public_key();

new_test_ext().execute_with(|| {

Shards::create_shard(Network::Ethereum, shard.to_vec(), 1);

// Compute a malicious commitment that will be submitted by the last member

// The sum of all commitments is IDENTITY

let public_key_element = VerifyingKey::from_bytes(public_key).unwrap().to_element

();

let malicious_commitment =

VerifyingKey::new(ProjectivePoint::IDENTITY - public_key_element - public_key_ele

ment);

let shard_id = 0;

for (member_number, account) in shard.iter().enumerate() {

if member_number != shard.len() - 1 {

// All members submit their commitments

assert_ok!(Shards::commit(

RawOrigin::Signed(account.clone()).into(),

shard_id as _,

vec![public_key],

[0; 65]

));

} else {

// The last member submits `malicious_commitment`

// This causes the panic

assert_ok!(Shards::commit(

RawOrigin::Signed(account.clone()).into(),

shard_id as _,

vec![malicious_commitment.to_bytes().unwrap()],

[0; 65]

));

}

// The members 0 and 1 submitted successfully

// The panic is during the last member call

println!("Member number {} has committed successfully", member_number);

}

});

}

Results:
This test results in panic:

Member number 0 has committed successfully

Member number 1 has committed successfully

thread 'tests::poc_malicious_commitment_causes_panic' panicked at pallets/shards/

src/lib.rs:164:30:

called `Result::unwrap()` on an `Err` value: InvalidPublicKey

28

F-2024-0507 - Validation Gap for Pending Nodes in ROAST Protocol - Low

Description: The identified issue stems from the ROAST implementation in the tss crate, specifically

the coordinator's failure to verify that a node submitting a commitment is not

concurrently in a pending state within an existing signing session. This lack of

verification contradicts the fundamental logic of ROAST.

The root cause lies in the implementation of the on_commit function for

RoastCoordinator, as depicted below:

tss/src/roast.rs:112:

fn on_commit(&mut self, peer: Identifier, commitment: SigningCommitments) {

self.commitments.insert(peer, commitment);

}

Upon receiving a ROAST request containing a commitment, the coordinator directly

appends it to the map storing commitments for future sessions, neglecting to confirm

whether the signer is currently involved in any ongoing signing session. As the

coordinator proceeds to initiate a new session upon accumulating a sufficient number of

commitments, the existing flaw permits a node already pending in one signing session

to commit once again and engage in other sessions.

This deviation from the fundamental logic of the ROAST protocol is critical, as the

protocol's robustness relies on the premise that each signer is pending in at most one

session. The protocol anticipates a finite and limited number of sessions to conclude.

However, the identified flaw introduces a vulnerability, enabling a malicious node to

secure a position in every session by consistently dispatching commitments to the

coordinator. Subsequently, the malicious node can impede session termination by

withholding its signature share.

This compromised scenario severely undermines the robustness of the ROAST protocol,

providing an avenue for any malicious member to obstruct the process and obstruct the

computation of a valid signature.

It is essential to underscore that the current risk level is relatively low, contingent upon

the centralized nature of the chronicles, where all shard members are presumed non-

malicious. However, as the project transitions to a decentralized model, this issue

becomes more critical, representing a vulnerability susceptible to exploitation by any

shard member. Such exploitation could compromise the performance and overall

security of the system.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 1/5

Recommendations

29

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/5a4ad7f5-34cc-491c-9c88-fce2cea47b59

Recommendation: To rectify this issue, it is strongly recommended to introduce logic that verifies whether

the signer is pending in any existing signing session before storing its commitment for a

future session. This validation mechanism will enhance the integrity of the ROAST

protocol, mitigating the potential exploitation of the identified vulnerability by malicious

nodes.

30

F-2024-0509 - Lack of Size Limitations on Error Messages in TaskState Storage

Map for Failed Transactions - Low

Description: The tasks pallet in the Substrate runtime utilizes a storage map named TaskState,

which plays a key role in tracking the state of tasks . Within TaskState, when a

transaction fails, in particular pallets/tasks/src/lib.rs:278 pub fn submit_error the

TaskStatus::Failed variant is employed to preserve detailed error information

encapsulated in a message of type String . However, there exists a significant

vulnerability due to the absence of appropriate size limitations on these error messages.

The relevant code sections are as follows:

primitives/src/task.rs:72

pub enum TaskStatus {

Created,

Failed { error: TaskError },

Stopped,

Completed,

}

pub struct TaskError {

pub shard_id: ShardId,

pub msg: String,

pub signature: TssSignature,

}

This issue is briefly mentioned in “F-2023-0313 | Absence of Task Deletion Mechanism”,

and here is a thorough exposition of this concern, pertaining to the lack of size

constraints on error messages within the TaskState storage map.

Currently, there are no constraints on the size of the msg parameter within the

TaskError struct, allowing for the storage of arbitrary-length strings in failed

transactions. This lack of limitation poses a potential risk of memory exhaustion or a

Denial-of-Service (DoS) attack, as malicious actors could intentionally submit

exceptionally large error messages during failed transactions.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 3/5

Likelihood: 1/5

Recommendations

Recommendation: While the current absence of size limitations on the error messages in the TaskState

storage map may not pose a severe threat in the current centralized model, it becomes

a more significant concern when transitioning to a decentralized model, where malicious

actors could exploit this vulnerability to potentially execute memory exhaustion or

Denial-of-Service (DoS) attacks by intentionally submitting excessively large error

messages during failed transactions.

31

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/526c600e-062b-4e9c-be5d-713e04a2da20

To address this vulnerability, it is imperative to implement size constraints on the msg

parameter before storing it in the TaskState storage map. This can be achieved by

incorporating appropriate validations within the TaskStatus::Failed variant, ensuring

that error messages adhere to predefined size limits.

Additionally, consider documenting the maximum allowable size for error messages and

communicate this information to network participants and developers. Thoroughly test

the proposed changes to ensure they effectively mitigate the vulnerability without

introducing regressions.

32

F-2024-0512 - Chronicle Crate Panic Caused by Mishandled `PeerId` - Low

Description: A malicious member within a shard has the potential to induce a panic in the chronicle

by registering an incorrect PeerId.

The vulnerability in question arises from the Tss::new implementation in the

chronicle crate. Specifically, the issue stems from the lack of error handling and the

use of unwrap() in the code snippet below:

chronicle/src/shards/tss.rs:28:

let members: BTreeSet<_> = members

.into_iter()

.map(|peer| PeerId::from_bytes(&peer).unwrap().to_string())

.collect();

The problem lies in the absence of proper error handling, where unwrap() is utilized

without considering potential errors. It's noteworthy that, in this context, peer is

represented as [u8; 32], and p2p::PeerId::from_bytes can return an error if the

passed bytes do not represent a valid ed25519 curve point.

This issue is traceable to the on_finality function, where shard members' data is

queried from the pallet using get_shard_members and get_member_peer_id. The

get_member_peer_id function retrieves the peer_id of the member from the

MemberPeerId storage map in the members pallet. It is crucial to observe that each

member submits its peer_id by calling the register_member extrinsic of the

members pallet, and it is stored as a [u8; 32] array without additional validations.

This scenario opens the possibility for a malicious node to submit an invalid peer_id

during registration. Consequently, when this malicious node enters a shard, other

members of the shard may encounter a panic during the unwrap operation, triggered by

the actions of this one malicious shard member.

An attacker could potentially escalate the impact by registering multiple malicious

nodes. If these nodes are distributed across several shards, they could induce panics in

the members of these shards almost simultaneously. This situation has the potential to

disrupt the block generation process, posing a serious security concern.

It is crucial to emphasize that the current level of risk is relatively low, relying on the

centralized nature of the chronicles where all shard members are assumed to be non-

malicious. Nonetheless, as the project shifts towards a decentralized model, this

concern gains significance, portraying a vulnerability that could be exploited by any

node, potentially compromising the system's performance and overall security.

Assets:
Cryptography and Keys

Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 1/5

p2p::

33

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/150d7d51-0c3d-46fc-b83f-46f671081bd6

Recommendations

Recommendation: To address this identified concern and further fortify the project's security, it is

recommended to replace the mentioned unwrap instance, along with other occurrences

of unwrap and expect, with robust error-handling mechanisms. This approach involves

returning an error gracefully instead of triggering a panic, unless such behavior aligns

with intentional design decisions. This step will not only contribute to heightened

security but also enhance the overall reliability and resilience of the system.

34

F-2024-0515 - Integration of Custom P2P Networking Library - Low

Description: In our security audit of the Chronicle crate, we have identified a significant concern

regarding its peer-to-peer (P2P) communication functionality. The crate employs an

external library for P2P communication, referenced as follows:

p2p = { git = "https://github.com/dvc94ch/p2p" }

The reliance on this external, non-standard library for a crucial feature like P2P

communication introduces several risks. The primary concern is the library's limited

exposure and validation within the broader development community. Unlike well-

established libraries, which benefit from extensive community scrutiny, continuous

updates, and widespread usage, this particular library has not been as extensively

vetted or adopted. This situation inherently increases the potential for undiscovered

bugs and vulnerabilities, especially in a domain as complex and security-sensitive as

P2P communication.

Assets:
Dependencies

Status: Accepted

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: Given the risks identified, we recommend the following actions:

1. Enhanced Monitoring and Regular Security Audits: If the decision is to continue

using the current p2p library, it is crucial to implement rigorous and continuous

monitoring measures. This should include comprehensive security audits at regular

intervals to promptly identify and address any emerging vulnerabilities or anomalies.

2. Consideration of an Industry-Standard P2P Library: We strongly recommend

evaluating the feasibility of replacing the current p2p library with an established and

widely-recognized P2P library like libp2p. The libp2p framework is renowned in

the industry for its robustness, having been extensively tested in diverse

environments. Its adoption would not only reduce the likelihood of encountering

unknown vulnerabilities but also align the Chronicle crate with industry best

practices for secure P2P communication.

35

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/0357830c-9e76-4a3a-b320-6f47d37e34f2

Observation Details

F-2023-0313 - Memory Exhaustion Risk Due to Absence of Task Deletion

Mechanism - Low

Description: The existing on-chain storage infrastructure lacks a systematic approach for the

removal of data associated with tasks, thereby introducing potential vulnerabilities

leading to memory exhaustion and impeding the performance of nodes.

The fundamental issue resides in the life cycle management of tasks. Following their

inclusion in storage maps such as Tasks, TaskState, TaskPhaseState,

TaskSignature, TaskRetryCounter, TaskCycleState, and TaskResults, tasks

endure indefinitely without a dedicated deletion mechanism. While certain key-value

pairs may exert negligible storage pressure, others possess the capacity to accrue more

substantial data volumes. Malicious entities could exploit this lacuna by deliberately

submitting data of larger magnitudes, resulting in a discernible escalation of on-chain

data.

A notable illustration is the TaskPhaseState storage map, wherein

TaskPhase::Read(Some(hash)) has the ability to store a submitted hash for a

payable task without being subject to proper size constraints. This lack of constraints is

concerning because it solely depends on block size, lacking size constraint and weight

calculations, as discussed in detail in F-2023-0173.

Another pivotal storage map is TaskState, wherein, for failed transactions,

TaskStatus::Failed {error} is preserved, encapsulating a message of type

String devoid of appropriate size limitations (see F-2024-0509).

Furthermore, the Tasks storage map encompasses fields devoid of meticulous size

management and weight validations (see F-2023-0159), thereby facilitating the genesis

of tasks exhibiting storage consumption surpassing optimal thresholds. It is imperative

to acknowledge that, unlike preceding maps populated with data supplied by shards or

assigned shard members, the create_task function can be invoked by any account,

amplifying the likelihood of such behavior.

These vulnerabilities empower malicious shards or accounts to intentionally introduce

transactions with voluminous data, precipitating a gradual accumulation leading to

memory depletion and consequent node deceleration. Even in the absence of

malevolent intent, the elimination of redundant and superfluous data is a fundamental

best practice for fortifying overall system stability and dependability.

It is prudent to acknowledge that a task's state can manifest as one of the following

enum options:

pub enum TaskStatus {

Created,

Failed { error: TaskError },

Stopped,

Completed,

}

Upon achieving the Completed state, a task ceases to be processed by any shard,

rendering its continued storage purposeless. While completed tasks do not exert

influence on logic governing task scheduling and shard assignment, they may yet harbor

the potential for memory consumption.

Tasks in a Failed or Stopped state may undergo resumption, making immediate

deletion impractical. Nevertheless, the adoption of validation strategies, such as

introducing a temporal threshold for resumption, offers a feasible avenue. In this

36

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/ce5b5e7f-450c-42d1-9e35-343feaeaeae3

context, tasks would be expunged subsequent to surpassing a predefined temporal

constraint.

Assets:
Runtime & Pallets

Status: Accepted

Classification

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To address this issue, the following recommendations are posited:

Ensure that all on-chain data is subjected to judicious size constraints. Consider

using frame_support::BoundedVec instead of regular vectors and enforce

maximum lengths for String values.

Enhance correct weight logic to render manipulations of data size economically

prohibitive.

Instigate a comprehensive logic for the deletion of tasks from associated maps

upon task completion. Ensure elimination of all superfluous data, retaining only

necessary values of limited size, such as task results or signatures.

Explore the prospect of implementing a structured logic for the deletion of tasks

that have lingered in a Failed or Stopped status for a prolonged period.

Alternatively, enforce stringent limitations on memory consumption to preclude

potential risks in the foreseeable future.

If implementing the task deletion logic proves suboptimal for the project, take

proactive measures to monitor the volume of stored on-chain data. This proactive

monitoring will not only ensure the data size remains reasonable but also enable the

detection of any malicious attempts to overflow the storage, thereby mitigating

potential risks.

37

F-2023-0181 - Test coverage - Info

Description: The project currently boasts a commendable overall test coverage exhibiting strong

coverage across most packages. However, there is a noticeable dip in the chronicle and

tss package, warranting attention.

The table below contains coverage information for crates tss and chronicle:

Name Coverage

chronicle 399/608 (65,6%)

tss 387/545 (71..0%)

When examining the coverage for pallets , the following results can be observed:

Name Coverage

tasks 179/223 (80.3%)

shards 108/145 (74.5%)

members 43/55 (78.2%)

elections 37/38 (97.4%)

Assets:
Test Coverage

Status: Pending Fix

Recommendations

Recommendation: Although the existing test coverage is robust, there is room for improvement. We

propose augmenting the test suite for the tss and chronicle packages,

These actions will not only enhance the overall test coverage but also bring it closer to

the industry-recommended standard of 80% coverage.

38

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/2666e17b-b393-4d6d-a9cc-26e4a8e66227

F-2023-0214 - Behavior of random_signer Function with All Members in

PastSigners - Info

Description: Upon reviewing the random_signer function in your pallet, we've identified a

noteworthy behavior pattern when all members have already signed and are thus listed

in the PastSigners storage.

In such a scenario, where every member of the shard has previously signed, the

function's mechanism for selecting a signer undergoes a subtle shift.

Normally, the function aims to select a member who hasn't signed yet, as determined by

their absence in PastSigners.

It begins by randomly generating an index within the members array and checks if the

member at this index is in PastSigners.

However, when all members are in PastSigners, the function's pre-loop condition —

if PastSigners::<T>::iter_prefix(shard_id).count() < members.len() —

is not met, and as a result, it skips the subsequent loop that would typically filter out

previously signed members.

Consequently, the function defaults to selecting a member purely based on the initially

generated random index, effectively making the selection random from the entire set of

members, irrespective of their signing history.

This means that in such cases, any member, regardless of their previous signing status

in the current cycle, could be chosen again.

It's important to note that this behavior is not inherently problematic but is a

characteristic of the function's design. Depending on the specific requirements of your

application, you might consider this behavior as aligning with your expectations or

decide to modify the function for a different approach.

For instance, if a unique signer is required in each round until all members have signed,

additional logic may be necessary to reset PastSigners or to handle the scenario

differently.

However, if the intention is to allow repeat signers in subsequent rounds regardless of

their past participation, the current implementation meets this criterion.

This observation is crucial for understanding how the random_signer function

operates under all possible scenarios and ensures that its behavior aligns with the

intended logic of your blockchain system.

Assets:
Runtime & Pallets

Status: Fixed

39

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/515101aa-e2de-432f-a2cd-791120052a79

F-2023-0221 - TODO comments in code - Info

Description: The prevailing issue pertains 5 TODO comments interspersed within the codebase, each

functioning as markers for areas necessitating meticulous attention due to potential

security implications, or specific segments meriting enhanced scrutiny for refinement.

This confluence of comments underscores the dynamic and iterative nature inherent in

the ongoing software development process, wherein the identification and resolution of

these flagged aspects assume a crucial role in fortifying the robustness and security

posture of the software project.

TODO comments to be implemented/considered/removed:

pallets/shards/src/lib.rs:150 verify proof of knowledge

pallets/tasks/src/lib.rs:328 update bench, weights

tss/src/lib.rs:342 make rts asynchronous

tss/src/rts.rs:31 delta share probably needs to be encrypted/authenticated

tss/src/rts.rs:272 handle failure somehow. maybe try a different set of random

peers?

Assets:
Documentation and Comments

Status: Pending Fix

Recommendations

Recommendation: We strongly advise addressing all TODO comments within your codebase. These

annotations are more than simple reminders; they often contain crucial functionality or

improvements that have been deferred for later implementation.

Neglecting these areas could potentially make your system vulnerable.

40

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/88c1f5a2-5a79-4610-946c-da267c6928de

F-2023-0222 - Documentation Lacks Comprehensive Coverage - Info

Description: The project's current documentation, along with a supplemental video guide, offers a

basic overview of various modules but falls short in providing comprehensive detail and

clarity.

While the video is a helpful tool, it underscores the existing gaps in the written

documentation and in-code comments.

We appreciate the Analog team's responsiveness and helpful communication, which has

been instrumental in enhancing our understanding of the code base during the audit

process.

Clear and thorough documentation is vital in blockchain projects to assist developers,

contributors, auditors, and users in comprehending and navigating the system's

functionalities. An earnest effort to refine the written documentation and comments will

considerably enhance the project's accessibility and usability, making it more

approachable for all involved parties.

Assets:
Documentation and Comments

Status: Pending Fix

Recommendations

Recommendation: To improve the understanding and accessibility of the code base, we recommend

enhancing the documentation with detailed comments covering:

crates

extrinsics

hooks

storage values

This effort will facilitate internal code comprehension, simplifies debugging, and can

improve security by clearly outlining the intent of each functions.

Developers and contributors can leverage the cargo doc tool to generate a

comprehensive API documentation. This documentation can be viewed in a web

browser, offering an in-depth look at the project’s structure and functionalities.

Enhanced documentation and comments will not only make the code base more

approachable for current developers but also more welcoming for new contributors,

providing a valuable overview of the project and its operational mechanics.

41

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/5c3ab433-09c9-4743-a115-80bf65f714de

F-2023-0223 - Employment of Sudo Pallet - Info

Description: The runtime configuration incorporates the sudo-pallet.

runtime/src/lib.rs:1187:

construct_runtime!(

pub struct Runtime

{

/* ... */

Sudo: pallet_sudo,

/* ... */

}

);

The root account, initially set at genesis, is defined as follows:

node/src/chain_spec.rs:318:

generate_analog_genesis(

wasm_binary,

// Sudo account

hex!["1260c29b59a365f07ac449e109cdf8f95905296af0707db9f3da0254e5db5741"].into(),

/* ... */

)

The root user possesses the authority to call the following extrinsics, irrespective of

ownership:

set_shard_config pallets/elections/src/lib.rs:93
create_task pallets/tasks/src/lib.rs:186
stop_task pallets/tasks/src/lib.rs:215
resume_task pallets/tasks/src/lib.rs:229

While the use of the Sudo pallet is often perceived as a challenge to decentralization, in

the context of this project, its deployment during the development phase is standard

practice.

This approach allows for streamlined management and testing until the application

reaches a stable state.

Assets:
Runtime & Pallets

Status: Pending Fix

Recommendations

Recommendation: Short-Term: At present, no immediate action is required regarding the Sudo pallet. The

project team has already acknowledged in their README.md file the plan for "Enabling

governance, and removing the sudo pallet" as an upcoming feature. This indicates a

proactive approach towards evolving the project's governance structure.

Long-Term: In line with the project's roadmap, the implementation of a comprehensive

governance system for protocol management is advisable. This step will be crucial for

transitioning from a development-focused framework to a more decentralized and

community-driven model, aligning with the long-term objectives of the project.

External References:
Sudo removal procedure outlined by Polkadot

42

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/bb9a8eaa-43b3-4ed4-8182-17aa930a2495
https://polkadot.network/launch-roadmap/governance/

F-2024-0513 - Unsafe arithmetics - Info

Description: During the security audit of the Analog project, a comprehensive list of unsafe

arithmetic operations was compiled. These operations, as they currently stand, do not

pose any known issues, as all potential scenarios have been thoroughly checked. This

list is provided for informational purposes, ensuring transparency and awareness of

these arithmetic operations within the project.

Run the following command to view the complete list of unsafe arithmetic operations:

cargo clippy -- -W clippy::arithmetic_side_effects

Members pallet

pallets/members/src/lib.rs:89

if heart.is_online && n.saturating_sub(heart.block) >= T::HeartbeatTimeout::get()

{

Heartbeat::<T>::insert(&member, heart.set_offline());

Self::member_offline(&member);

writes += 1;

}

Shards pallet

pallets/shards/src/lib.rs:160

*group_commitment = VerifyingKey::new(

VerifyingKey::from_bytes(*group_commitment).unwrap().to_element()

+ VerifyingKey::from_bytes(*commitment).unwrap().to_element(),

)

pallets/shards/src/lib.rs:210

if n.saturating_sub(created_block) >= T::DkgTimeout::get() {

Self::remove_shard_offline(shard_id);

Self::deposit_event(Event::ShardKeyGenTimedOut(shard_id));

writes += 5;

}

pallets/shards/src/lib.rs:311

fn create_shard(network: Network, members: Vec<AccountId>, threshold: u16) {

let shard_id = <ShardIdCounter<T>>::get();

<ShardIdCounter<T>>::put(shard_id + 1);

pallets/shards/src/lib.rs:343

if signer_index == members.len() - 1 { 0 } else { signer_index + 1 };

Tasks pallet

pallets/tasks/src/lib.rs:357

if let Some(shard_id) = TaskShard::<T>::get(task_id) {

Self::start_write_phase(task_id, shard_id);

writes += 2;

}

TSS

tss/src/dkg.rs:92:36

if self.round2_packages.len() != self.members.len() - 1 {

return None;

}

43

https://portal.hacken.io/App/Projects/Details/6624b25e-e92f-4019-9247-d617bf2986a9/Finding/cb4e8fac-5080-4b60-8231-4acb965219cc

tss/src/dkg.rs:105:23

SigningShare::new(acc.to_scalar() + e.to_scalar())

tss/src/roast.rs:129:3

let session_id = self.session_id;

self.session_id += 1;

tss/src/rts.rs:107:24

if deltas.len() != self.threshold as usize - 1 {

anyhow::bail!("invalid deltas");

}

tss/src/rts.rs:151:22

if deltas.len() != self.helpers.len() - 1 {

return false;

}

tss/src/rts.rs:240:3

self.session_id += 1;

tss/src/lib.rs:197:33

let coordinators: BTreeSet<_> =

members.iter().copied().take(members.len() - threshold as usize + 1).collect();

Chronicle

chronicle/src/shards/service.rs:352

let heartbeat_time = (self.substrate.get_heartbeat_timeout().unwrap() / 2) * min_

block_time;

chronicle/src/shards/service.rs:355

let mut heartbeat_tick =

interval_at(Instant::now() + heartbeat_duration, heartbeat_duration);

Assets:
Runtime & Pallets

Status: Pending Fix

Recommendations

Recommendation: As part of our commitment to maintaining high standards in Rust programming, we

recognize the current stability and effectiveness of the arithmetic operations within the

Analog project. At present, no immediate action is required as the operations are

performing reliably.

However, to further enhance the robustness of the code and mitigate any potential

issues in the future, we suggest considering the adoption of safer arithmetic methods

provided by the Rust Standard Library. These methods include those in the categories

of checked_*, saturating_*, and overflowing_*, arithmetic.

44

Appendix 1. Severity Definitions

Severity Description

Critical

Vulnerabilities that can lead to a complete breakdown of the blockchain network's security, privacy,

integrity, or availability fall under this category. They can disrupt the consensus mechanism, enabling a

malicious entity to take control of the majority of nodes or facilitate 51% attacks. In addition, issues that

could lead to widespread crashing of nodes, leading to a complete breakdown or significant halt of the

network, are also considered critical along with issues that can lead to a massive theft of assets. Immediate

attention and mitigation are required.

High

High severity vulnerabilities are those that do not immediately risk the complete security or integrity of the

network but can cause substantial harm. These are issues that could cause the crashing of several nodes,

leading to temporary disruption of the network, or could manipulate the consensus mechanism to a certain

extent, but not enough to execute a 51% attack. Partial breaches of privacy, unauthorized but limited access

to sensitive information, and affecting the reliable execution of smart contracts also fall under this category.

Medium

Medium severity vulnerabilities could negatively affect the blockchain protocol but are usually not capable

of causing catastrophic damage. These could include vulnerabilities that allow minor breaches of user

privacy, can slow down transaction processing, or can lead to relatively small financial losses. It may be

possible to exploit these vulnerabilities under specific circumstances, or they may require a high level of

access to exploit effectively.

Low

Low severity vulnerabilities are minor flaws in the blockchain protocol that might not have a direct impact on

security but could cause minor inefficiencies in transaction processing or slight delays in block propagation.

They might include vulnerabilities that allow attackers to cause nuisance-level disruptions or are only

exploitable under extremely rare and specific conditions. These vulnerabilities should be corrected but do

not represent an immediate threat to the system.

45

Appendix 2. Scope

The scope of the project includes the following components from the provided repository:

Scope Details

Repository https://github.com/Analog-Labs/testnet/

Commit 3ba97bde46eac298fd61eba7ff5b5ef0078a3ebe

Whitepaper https://www.analog.one/Analog-Timepaper.pdf

Components in Scope

Cryptography and Keys

Cryptography Libraries

Keys Generation

Keystore storage

Asymmetric (Signing and Verification)

Substrate fork review

Review of all code changes and missing updates since Substrate clone date

Substrate client configuration review

Genesis & chain spec review

Consensus configuration

Substrate FRAME pallets usage review

chronicle crate review

tss crate review

Standard attacks review (replay, malleability,...)

Runtime & Pallets

Runtime implementation review

pallet-elections review

pallet-members review

pallet-shards review

pallet-tasks review

Attack scenarios analysis (Weight, race, stack, DoS, state implosion, access control bypass, overflow...)

Weights & Benchmarks

Weight values & benchmarks review

Substrate RPC

RPC implementation review

Attack scenarios analysis (defaults,DoS, overflows, ..)

Testing

Environment Setup

E2E sync tests

Fuzz tests

46

https://github.com/Analog-Labs/testnet/
https://www.analog.one/Analog-Timepaper.pdf

