
Smart Contract Code

Review And Security

Analysis Report

Customer: Bitlayer

Date: 08/04/2024

We express our gratitude to the Bitlayer team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Bitlayer represents a revolutionary integration, melding elite decentralized exchange (DEX)

mechanisms into an innovative, high-efficiency system. This pioneering approach is designed to

streamline token exchanges and cross-chain transactions, ensuring seamless operability and liquidity

management within the crypto ecosystem.

Platform: EVM

Language: Solidity

Tags: Bridge

Timeline: 02/04/2024 - 04/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/bitlayer-org/bitlayer-bridge

Commit 41c7c06

Repository https://github.com/bitlayer-org/getBTC

Commit 345036b

2

https://hackenio.cc/sc_methodology
https://github.com/bitlayer-org/bitlayer-bridge
https://github.com/bitlayer-org/getBTC

Audit Summary

10/10 9/10 86.36% 7/10
Security Score Code quality score Test coverage Documentation quality score

Total 9/10
The system users should acknowledge all the risks summed up in the risks section of the report

5 3 1 1
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 3

Vulnerability Status

F-2024-1925 - Missing return value check on permit function Mitigated

F-2024-1957 - Missing two-step ownership transfer process Accepted

F-2024-1915 - Missing checks for the zero address Fixed

F-2024-1926 - Missing array length cache in for loop Fixed

F-2024-1956 - Missing lock limitations Fixed

3

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/67bdafbc-00a6-4050-bca7-d213ee7b2463
https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/21da8155-4d95-413d-9821-8745d11298f4
https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/d54b8159-80af-4f0e-a2b1-46e58cb6e252
https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/ab7d70c9-67aa-437b-9c7a-c89e5f31f94c
https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/f7ffe600-2407-45dc-a6d7-1052f5bb04a5

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Bitlayer

Audited By Kaan Caglan

Approved By Przemyslaw Swiatowiec

Website https://www.bitlayer.org/

Changelog 04/04/2024 - Preliminary Report

08/04/2024 - Final Report

4

https://www.bitlayer.org/

Table of Contents

System Overview 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 18

Disclaimers 25

Appendix 1. Severity Definitions 26

Appendix 2. Scope 27

System Overview

Bitlayer bridge comprises three main contracts:

TokenExchange: Facilitates the exchange of tokens with rigorous permission and signature

verification mechanisms. It supports operations like swapping tokens under specific conditions,

withdrawing tokens, and modifying contract administrative roles.

BitlayerProxy: Serves as a proxy following the ERC1967 standard, allowing for future upgrades and

changes to the contract logic without affecting the deployed version.

BitlayerBridge: Enables the locking and unlocking of native cryptocurrency transactions across

different blockchain networks, with roles and permissions managed through AccessControl. It

supports liquidity management, fee adjustments, and pausable functionality for emergency stops.

Contracts

TokenExchange

Functionalities:

Facilitates token swaps with ERC20 tokens using EIP712 signatures for permissioned

operations.

Allows the withdrawal of ERC20 tokens and native cryptocurrency (referred to as "BTC" in

comments) by the owner.

Supports owner and operator role management for executing sensitive contract operations.

Manages vaults that designate supported token addresses for swapping.

Attributes:

owner: Address of the contract owner.

operator: Address of the contract operator.

vaults: A mapping of addresses to boolean values, indicating whether a token address is

supported for swaps.

Privileged Roles:

owner: Can transfer ownership, set the operator, manage vaults, and withdraw tokens.

operator: Can execute the permitAndSwap function.

BitlayerProxy

Functionalities: Serves as a minimalistic instance of the ERC1967Proxy, primarily for deployment

purposes without additional specific functionalities.

BitlayerBridge

Functionalities:

Manages cross-chain transactions with functionality to lock and unlock native

cryptocurrency.

Handles liquidity contributions and withdrawals, enabling users to support the bridge's

operations with their assets.

Allows role-based management for pausing and unpausing contract operations, setting fee

addresses, and adjusting fees.

Attributes:

6

feeAddress: Address where transaction fees are collected.

lockFeeAmount: The amount charged as a fee for locking transactions.

liquidityOf: Mapping of addresses to their contributed liquidity amounts.

totalLocked: Total amount of cryptocurrency locked through the bridge.

totalUnlocked: Total amount of cryptocurrency unlocked.

Privileged Roles:

AdminRole: Can upgrade the contract, manage roles, pause/unpause the bridge, and adjust

fees and the fee address.

PauseRole: Can pause contract operations.

UnlockRole: Can unlock transactions, allowing the withdrawal of locked funds.

LiquidityRole: Can manage liquidity withdrawals on behalf of others.

7

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 7 out of 10.

Functional requirements are partially missed.

Technical description is not provided.

Technical flow is not provided.

Code quality

The total Code Quality score is 9 out of 10.

Missing best practices

The development environment is configured.

Test coverage

Code coverage of the project is 86.36% (branch coverage),

Not all branches are covered with tests.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 3 low severity issues.

After remediation part of the audit process 1 medium issue was mitigated, 2 low issues were fixed

and 1 low issue was accepted, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Authorized used can call unlock function anytime to get balances in the contract..

Solidity version 0.8.20 might not work on all chains due to PUSH0 opcode.

There is no upper limit set for lockFeeAmount, allowing the admin to assign any valid integer

value to it.

9

Findings

Vulnerability Details

F-2024-1925 - Missing return value check on permit function -

Medium

Description: The Anyswap hack occurred because the permit() function didn't really

exist, but the fallback function that took its place did not complain.

Consider using safePermit() which ensures that the permit actually

went through.

IERC20Permit(tokenAddress).permit(approver, address(this), amountIn,

deadline, pv, pr, ps);

If a token that lacks a permit function and has a non-reverting fallback

function is passed to the permitAndSwap function, the function will not

revert, even if the signature provided is incorrect.

Assets:
contracts/TokenExchange.sol [https://github.com/bitlayer-org/getBTC]

Status: Mitigated

Classification

Severity: Medium

Impact: Likelihood [1-5]: 2

Impact [1-5]: 5

Exploitability [0-2]: 1

Complexity [0-2]: 0

Final Score: 2.7 (Medium)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: Consider replacing the use of the permit() function with safePermit()

from OpenZeppelin's SafeERC20 library or a similar safe implementation.

safePermit() provides additional safety checks to ensure that the

permit transaction is executed securely, reducing the risk of potential

vulnerabilities.

10

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/67bdafbc-00a6-4050-bca7-d213ee7b2463
https://media.dedaub.com/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49f#ef54
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/5229b75785213541e93fb0a466a3d102a3bf5dbe/contracts/token/ERC20/utils/SafeERC20.sol#L89-L105

Remediation (Revised commit: 8248293): The Bitlayer team accepted

that they are aware of the risk and they will only use tokens that they are

sure.

11

F-2024-1915 - Missing checks for the zero address - Low

Description: In Solidity, the Ethereum address

0x00 is known as the

"zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. The "Missing zero address control" issue

arises when a Solidity smart contract does not properly check or prevent

interactions with the zero address, leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

feeAddress = _feeAddress;

operator = newOp;

Assets:
contracts/TokenExchange.sol [https://github.com/bitlayer-org/getBTC]

contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 1

Impact [1-5]: 5

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Recommendations

12

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/d54b8159-80af-4f0e-a2b1-46e58cb6e252

Recommendation: It is strongly recommended to implement checks to prevent the zero

address from being set during the initialization of contracts. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Remediation (Revised commit: 8248293): The Bitlayer team fixed the

issue by adding zero checks.

13

F-2024-1956 - Missing lock limitations - Low

Description: Lock and unlock amounts are currently unrestricted, with a minimum value

requirement for locking that applies only to fees and no limitations on

either action. For safety purposes, an upper limit for locks should be

introduced.

function lock(string memory to) external whenNotPaused payable {

require(msg.value > lockFeeAmount, "not enough fee");

(bool success, bytes memory returndata) = feeAddress.call{value: loc

kFeeAmount}("");

require(success, string(returndata));

uint256 lockedAmount = msg.value - lockFeeAmount;

totalLocked += lockedAmount;

emit NativeLocked(msg.sender, to, lockedAmount, lockFeeAmount);

}

function unlock(string memory _txHash, address payable to, uint256 a

mount)

external

onlyRole(UnlockRole)

whenNotPaused

{

bytes32 txHash = keccak256(abi.encode(_txHash));

require(!txUnlocked[txHash], "txHash already unlocked");

txUnlocked[txHash] = true;

(bool success, bytes memory returndata) = payable(to).call{value: am

ount}("");

require(success, string(returndata));

totalUnlocked += amount;

emit NativeUnlocked(_txHash, to, amount);

}

Assets:
contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 1

Impact [1-5]: 5

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

14

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/f7ffe600-2407-45dc-a6d7-1052f5bb04a5

Recommendations

Recommendation: A state variable should be implemented, modifiable by an administrator, to

facilitate comparison between locked and unlocked amounts.

Remediation (Revised commit: 1c4f70e): The Bitlayer team fixed the

issue by adding min-max lock amount controls.

15

F-2024-1957 - Missing two-step ownership transfer process - Low

Description: Ownable2Step and Ownable2StepUpgradeable prevent the contract

ownership from mistakenly being transferred to an address that cannot

handle it (e.g. due to a typo in the address), by requiring that the recipient

of the owner permissions actively accept via a contract call of its own.

function transferOwnership(address newOwner) external onlyOwner {

require(newOwner != address(0),"Owner_Should_Not_Zero_Address");

owner = newOwner;

emit TransferOwnership(newOwner);

}

Assets:
contracts/TokenExchange.sol [https://github.com/bitlayer-org/getBTC]

Status: Accepted

Classification

Severity: Low

Impact: Likelihood [1-5]: 1

Impact [1-5]: 5

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: Consider using Ownable2Step or Ownable2StepUpgradeable from

OpenZeppelin Contracts to enhance the security of your contract

ownership management. These contracts prevent the accidental transfer

of ownership to an address that cannot handle it, such as due to a typo,

by requiring the recipient of owner permissions to actively accept

ownership via a contract call. This two-step ownership transfer process

adds an additional layer of security to your contract's ownership

management.

Remediation (Revised commit: 752b04b): The Bitlayer team accepted

the issue.

16

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/21da8155-4d95-413d-9821-8745d11298f4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3d7a93876a2e5e1d7fe29b5a0e96e222afdc4cfa/contracts/access/Ownable2Step.sol#L31-L56
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/25aabd286e002a1526c345c8db259d57bdf0ad28/contracts/access/Ownable2StepUpgradeable.sol#L47-L63

F-2024-1926 - Missing array length cache in for loop - Info

Description: Failing to cache the array length when iterating through arrays in Solidity

can have significant performance and gas cost implications. In Solidity,

array lengths can change during execution due to external calls or storage

modifications. When the array length is not cached before entering a loop,

it is recomputed with each iteration, leading to unnecessary gas

consumption.

for (uint256 i = 0; i < pausers.length;) {

for (uint256 i = 0; i < unlockers.length;) {

for (uint256 i = 0; i < liquiditiers.length;) {

Assets:
contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: To enhance performance and reduce gas costs, cache the array length

before entering a for loop in Solidity. This approach prevents repeated

computation of the array length and mitigates the risk of reentrancy

attacks due to array length changes during loop execution.

Remediation (Revised commit: 5b3eb75): The Bitlayer team fixed the

issue by caching the array lengths.

17

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/ab7d70c9-67aa-437b-9c7a-c89e5f31f94c

Observation Details

F-2024-1918 - TODO comments left in the code - Info

Description: TODO comments are mark areas of code that need attention or completion.

These comments serve as reminders for unfinished tasks and can be

helpful during the development phase. However, if left untouched in

production code, these TODO statements can introduce security

vulnerabilities and impact the overall security of a smart contract.

// TODO max btc outAomunt is 0.05 BTC

Assets:
contracts/TokenExchange.sol [https://github.com/bitlayer-org/getBTC]

Status: Accepted

Recommendations

Recommendation: It is important to remove TODO comments from production code to avoid

potential security vulnerabilities. These comments should be addressed

and resolved during the development phase.

Remediation (Revised commit: 752b04b): The Bitlayer team accepted

the issue.

18

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/c8632cdf-c403-4a06-aa9d-6155acf18f34

F-2024-1919 - Floating Pragma - Info

Description: The project uses floating pragmas ^0.8.0 and ^0.8.23.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Assets:
contracts/TokenExchange.sol [https://github.com/bitlayer-org/getBTC]

contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

contracts/BitlayerProxy.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Accepted

Recommendations

Recommendation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the

compiler version that is chosen.

Remediation (Revised commit: 752b04b): The Bitlayer team accepted

the issue.

19

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/dcaf9e30-86e3-46c2-992b-395d951eada2
https://github.com/ethereum/solidity/releases

F-2024-1924 - Typos in the code - Info

Description: Any typos encountered in the provided documentation/code should be

addressed.

function setVaults(address valut, bool status) external onlyOwner {

// `vault` instead of `valut`

function verifySignture(// `Signature` instead of `Signture`

Assets:
contracts/TokenExchange.sol [https://github.com/bitlayer-org/getBTC]

Status: Accepted

Recommendations

Recommendation: Fix typos.

Remediation (Revised commit: 752b04b): The Bitlayer team accepted

the issue.

20

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/775c4161-b6ad-4fed-9eac-8294afe93575

F-2024-1927 - Avoid using state variables directly in `emit` for Gas

efficiency - Info

Description: In Solidity, emitting events is a common way to log contract activity and

changes, especially for off-chain monitoring and interfacing. However,

using state variables directly in emit statements can lead to increased

gas costs. Each access to a state variable incurs gas due to storage

reading operations. When these variables are used directly in emit

statements, especially within functions that perform multiple operations,

the cumulative gas cost can become significant. Instead, caching state

variables in memory and using these local copies in emit statements can

optimize gas usage.

emit NativeLocked(msg.sender, to, lockedAmount, lockFeeAmount); // @

audit-issue: `lockFeeAmount` is a state variable and used on line(s)

: ['139', '142', '137']

lockFeeAmount can be cached since it is being called more than one

time.

Assets:
contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Fixed

Recommendations

Recommendation: To optimize gas efficiency, cache state variables in memory when they are

used multiple times within a function, including in emit statements.

Remediation (Revised commit: 065a0a3): The Bitlayer team fixed the

issue by caching the state variable.

21

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/6edaccd6-d9e2-4070-8364-893004b1c7f5

F-2024-1929 - Unneeded initializations of uint256 and bool variable

to 0/false - Info

Description: In Solidity, it is common practice to initialize variables with default values

when declaring them. However, initializing uint256 variables to 0 and

bool variables to false when they are not subsequently used in the code

can lead to unnecessary gas consumption and code clutter. This issue

points out instances where such initializations are present but serve no

functional purpose.

for (uint256 i = 0; i < pausers.length;) {

for (uint256 i = 0; i < unlockers.length;) {

for (uint256 i = 0; i < liquiditiers.length;) {

Assets:
contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Fixed

Recommendations

Recommendation: It is recommended not to initialize integer variables to 0 to and boolean

variables to false to save some Gas.

Remediation (Revised commit: 5b3eb75): The Bitlayer team fixed the

issue by adding zero checks.

22

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/030837a6-ad86-40cf-ad0a-3dd8add3afe1

F-2024-1930 - Possible Gas optimization by using unchecked

subtractions - Info

Description: The unchecked {} keyword can be added for subtractions where the

operands cannot underflow because of a previous require() or if-

statement. Example scenario:

require(a <= b); x = b - a => require(a <= b); unchecked {

x = b - a }

require(liquidityOf[to] >= amount, "liquidity not enough");

liquidityOf[to] -= amount;

require(msg.value > lockFeeAmount, "not enough fee");

(bool success, bytes memory returndata) = feeAddress.call{value: loc

kFeeAmount}("");

require(success, string(returndata));

uint256 lockedAmount = msg.value - lockFeeAmount;

Assets:
contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Fixed

Recommendations

Recommendation: In scenarios where subtraction cannot result in underflow due to prior

require() or if-statements, wrap these operations in an unchecked

block to save gas. This optimization should only be applied when the

safety of the operation is assured. Carefully analyze each case to confirm

that underflow is impossible before implementing unchecked blocks, as

incorrect usage can lead to vulnerabilities in the contract.

Remediation (Revised commit: 1f2b25e): The Bitlayer team fixed the

issue by adding unchecked keywords.

23

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/139f5c92-9b96-416f-9ccb-5cd411ec5f8a

F-2024-1984 - Unnecessary payable usage - Info

Description: The use of the payable keyword to convert addresses before sending

Ether in Solidity can sometimes be redundant, particularly when the target

address (to) could be defined as payable in the function parameters.

This redundancy not only adds unnecessary complexity to the code but

also obscures the function's intention of transferring Ether to a specific

address. Defining the address as payable from the outset clarifies that

the function is intended to perform Ether transfers and ensures that the

address type is correctly specified for such transactions.

function unlock(string memory _txHash, address to, uint256 amount)

external

onlyRole(UnlockRole)

whenNotPaused

{

bytes32 txHash = keccak256(abi.encode(_txHash));

require(!txUnlocked[txHash], "txHash already unlocked");

txUnlocked[txHash] = true;

(bool success, bytes memory returndata) = payable(to).call{value: am

ount}("");

Assets:
contracts/BitlayerBridge.sol [https://github.com/bitlayer-org/bitlayer-

bridge]

Status: Fixed

Recommendations

Recommendation: Review your contract's functions to identify instances where the payable

keyword is used to convert addresses just before making a call to transfer

Ether. Refactor these functions by specifying the payable keyword in the

function parameters for addresses intended to receive Ether. This practice

enhances code clarity, reduces unnecessary conversions, and explicitly

indicates which addresses are expected to participate in Ether

transactions.

Remediation (Revised commit: 7b72e52): The Bitlayer team fixed the

issue by removing unnecessary keyword.

24

https://portal.hacken.io/App/Projects/Details/cdadb1c8-6155-4fa8-928a-2a2ff869b85a/Finding/f82b5d36-d105-4615-bac2-277314c9aab2

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

25

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

26

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/bitlayer-org/bitlayer-bridge

Commit 41c7c064117218eef147f4ae7e7052708846273d

Remediation 1f2b25eb3d7f8afef937bdd57be188fbe063abb3

Repository https://github.com/bitlayer-org/getBTC

Commit 345036b3d5ce868347e5c46ab8a6fe2a071d78df

Remediation 752b04b9b2856cc5f187c2190a07b0a26cf0cead

Whitepaper Not provided

Requirements Not provided

Technical Requirements Not provided

Contracts in Scope

./contracts/TokenExchange.sol

./contracts/BitlayerProxy.sol

./contracts/BitlayerBridge.sol

27

https://github.com/bitlayer-org/bitlayer-bridge
https://github.com/bitlayer-org/getBTC

