
Smart Contract Code

Review And Security

Analysis Report

Customer: Bitlayer

Date: 22/04/2024



We express our gratitude to the Bitlayer team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Bitlayer leads with its innovative BitVM technology, offering a secure and computationally complete

solution for enhancing Bitcoin's layer 2 capabilities.

Platform: EVM

Language: Solidity

Tags: Fungible Token; Permit Token; Centralization; Upgradable

Timeline: 11/04/2024 - 22/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/bitlayer-org/peg-tokens-contract

Commit f0d2a54

2

https://hackenio.cc/sc_methodology
https://github.com/bitlayer-org/peg-tokens-contract


Audit Summary

10/10 9/10 69.23% 5/10
Security Score Code quality score Test coverage Documentation quality score

Total 8.1/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 2 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 1

Vulnerability Status

F-2024-2131 - Insufficient Check for Blacklisted Users in TransferFrom Function Fixed

F-2024-2154 - Unvalidated Chain ID in crossChainBurn Function Fixed

3

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/aae09dbc-6536-4e98-a7fd-f022c25b88d4
https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/0a200693-bbd7-4b87-9c5d-0643e09c297b


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Bitlayer

Audited By Ivan Bondar

Approved By Grzegorz Trawinski

Website https://www.bitlayer.org/

Changelog 17/04/2024 - Preliminary Report; 22/04/2024 - Final Report

4

https://www.bitlayer.org/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 10

Findings 11

Vulnerability Details 11

Observation Details 16

Disclaimers 23

Appendix 1. Severity Definitions 24

Appendix 2. Scope 25



System Overview

BitLayer introduces PegToken, an innovative system operating on the EVM blockchains. This project,

utilizing a UUPS upgradeable framework, is designed for dynamic token management and control.

The files in the scope: 

PegToken.sol:

This contract is an ERC20 token with extended functionalities. Key features include

pausing/unpausing token transfers, blacklisting addresses, freezing/unfreezing tokens, and

cross-chain burning.

Token minting is controlled, ensuring no pre-minting.

Allows cross-chain token burning, enabling wider ecosystem interoperability.

TokenManager.sol:

Central control unit for creating and managing PegToken instances.

Implements a robust role-based access control system with distinct roles such as Admin,

Operator, Freezer, and Pauser.

Facilitates token creation, upgrade, minting, and management of token state

(pause/unpause, freeze/unfreeze).

Key Functionalities and Roles:

Token Creation and Management: Operators can dynamically create new PegToken instances

with specific attributes and upgrade existing tokens.

Governance and Control: Admins have overarching control over the system, capable of pausing

entire operations (stopTheWorld).

Token Minting and Supply Management: Operators control minting of PegTokens, crucial for

managing the token supply and ecosystem balance.

Pause and Freeze Mechanisms: Pausers can temporarily halt token transactions, while Freezers

can immobilize tokens in specific accounts, adding layers of control and security.

Cross-Chain Functionality: CrossChainBurn feature for PegToken indicates a bridge between

different blockchain networks, enhancing the token's utility and reach.

Privileged roles

TokenManager.sol:

AdminRole:

Role: The AdminRole is a pivotal role with comprehensive control over the entire

contract. Initially granted to the contract creator, this role has the highest level of

authority.

Capabilities:

Authorize upgrades of the contract using _authorizeUpgrade.

Grant or revoke all other roles.

Implement the stopTheWorld feature, impacting the entire system.

Operator:

Role: Operators are responsible for the day-to-day management of the token ecosystem.

They handle critical functions related to token operations.

Capabilities:

6



Create new token instances using createToken.

Upgrade token contracts with upgradeToken.

Set blacklist status for addresses using setBlackList.

Assign or revoke minter roles for each token using setMinter.

FreezeRole:

Role: Holders of the FreezeRole have control over the liquidity of tokens by managing

their availability.

Capabilities:

Freeze or unfreeze tokens for specific addresses using freezeToken and

unfreezeToken.

Recall tokens from one address to another using recall.

PauserRole:

Role: The PauserRole is designated to manage the transactional state of tokens,

providing a control mechanism over their transferability.

Capabilities:

Pause or unpause token transactions on an individual token basis using pauseToken

and unpauseToken.

PegToken.sol:

Minter:

Role: Minters are addresses authorized to create new tokens in the system.

Capabilities:

Mint new tokens using mint, subject to not being blacklisted and the token not being

paused or the system stopped.

Manager:

Role: The Manager is a central figure with overarching control over critical functionalities

of the token.

Capabilities:

Upgrade the contract using _authorizeUpgrade.

Set or remove addresses from the blacklist using setBlacklist.

Assign or revoke minter status using setMinter.

Pause or unpause token transfers using pause and unpause.

Mint new tokens via mint.

Recall tokens from one account to another using recall.

Freeze or unfreeze tokens in an account using freeze and unfreeze.

7



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 5 out of 10.

Functional requirements are partially missed.

Project overview is basic.

Roles in the system are adequately described.

Use cases are not explicitly described.

For each contract, key features are moderately detailed.

Interactions within the system are basically outlined.

Technical description is not provided.

Run instructions are provided.

Technical specification is not provided.

NatSpec documentation is not included.

Code quality

The total Code Quality score is 9 out of 10.

The development environment is configured.

Solidity Style Guide violations.

Test coverage

Code coverage of the project is 69.23% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases coverage is partially missed.

Interactions by several users are tested.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 1 low severity issues,

leading to a security score of 9 out of 10. After addressing findings during the initial review, the

security score was subsequently raised to 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


The comprehensive audit of the customer's smart contract yields an overall score of 8.1. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

9



Risks

Centralization Risks:

Single Points of Failure and Control: The project is fully or partially centralized, introducing

single points of failure and control. This centralization can lead to vulnerabilities in decision-

making and operational processes, making the system more susceptible to targeted attacks

or manipulation.

Administrative Key Control Risks: The digital contract architecture relies on administrative

keys for critical operations. Centralized control over these keys presents a significant security

risk, as compromise or misuse can lead to unauthorized actions or loss of funds.

Single Entity Upgrade Authority: The token ecosystem grants a single entity the authority to

implement upgrades or changes. This centralization of power risks unilateral decisions that

may not align with the community or stakeholders' interests, undermining trust and security.

Upgradeability Risks:

Flexibility and Risk in Contract Upgrades: The project's contracts are upgradable, allowing

the administrator to update the contract logic at any time. While this provides flexibility in

addressing issues and evolving the project, it also introduces risks if upgrade processes are

not properly managed or secured, potentially allowing for unauthorized changes that could

compromise the project's integrity and security.

Absence of Upgrade Window Constraints: The contract suite allows for immediate upgrades

without a mandatory review or waiting period, increasing the risk of rapid deployment of

malicious or flawed code, potentially compromising the system's integrity and user assets.

Compatibility and Stability Risks with Mixed Contract Imports: The project utilizes a

combination of upgradable and non-upgradable contract imports from OpenZeppelin, which

can lead to compatibility issues and affect the stability of the contract in an upgradeable

context. This mixing may restrict the full advantages of the upgradeable pattern, potentially

leading to inefficiencies and heightening security risks. Proper management and continuous

review are essential to mitigate these risks and ensure consistent functionality across

different contract versions.

10



Findings

Vulnerability Details

F-2024-2131 - Insufficient Check for Blacklisted Users in

TransferFrom Function - Medium

Description: The transferFrom function in the LiquidityBootstrapPool.sol contract

presents a potential security vulnerability related to its handling of

blacklisted addresses. While the function checks to ensure both the 'from'

and 'to' addresses in a transfer are not blacklisted

(notBlacklisted(from) and notBlacklisted(to)), it fails to verify if

the msg.sender executing the transferFrom is blacklisted. This

oversight allows a blacklisted user to circumvent the blacklist restrictions

indirectly.

For example, if a blacklisted user has previously received an approval from

another user to transfer tokens on their behalf, they can still execute

transferFrom to move tokens to another address they control, despite

being blacklisted. This scenario demonstrates how the lack of a

notBlacklisted(msg.sender) check can be exploited, leading to

potential unauthorized token transfers and undermining the effectiveness

of the blacklist mechanism.

Affected Code:

function transferFrom(address from, address to, uint256 value)

public

override

notBlacklisted(from)

notBlacklisted(to)

whenNotPaused

worldNotStopped

returns (bool)

{

return super.transferFrom(from, to, value);

}

Assets:
contracts/PegToken.sol [https://github.com/bitlayer-org/peg-tokens-

contract  ]

Status: Fixed

Classification

Severity: Medium

Impact: 3/5

11

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/aae09dbc-6536-4e98-a7fd-f022c25b88d4


Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Recommendations

Remediation: To mitigate this risk, implement a notBlacklisted(msg.sender) check

within the transferFrom function. This additional verification step

ensures that not only the sender and receiver of the tokens are compliant

with the blacklist criteria, but also the entity executing the transaction is

not blacklisted, thus providing a more robust security framework against

unauthorized transfers.

Remediation (Revised commit: 35be917): The transferFrom function in

the LiquidityBootstrapPool.sol contract now includes a

notBlacklisted(msg.sender) check, ensuring that the person

initiating the transfer is not blacklisted. This update prevents blacklisted

users from circumventing restrictions by using approvals granted before

their blacklisting.

Evidences

Reproduce:
PoC Steps:

Setup and Token Allocation: Load the necessary contracts and

accounts, then mint tokens for two users, where one of them will be

blacklisted.

Approval Setup: Have a legitimate user (user1) approve a future

blacklisted user to transfer tokens on their behalf.

Blacklisting: Mark the approved account as blacklisted in the contract.

Circumvention Attempt: Use the blacklisted account to execute the

transferFrom function, attempting to transfer tokens from the

legitimate user to a new account.

Validation: Check if the new account received the tokens, which

would indicate the blacklisted user's success in bypassing the

restriction.

PoC Code:

it("TransferFrom Function Vulnerable to Blacklisted User Circumventi

on", async function () {

// Load necessary contracts and accounts

const { tokenManager, operator, pegUSDC, blacklisted, user1, newBlac

klisted } = await loadFixture(deploySys);

// Define token transfer value

const mintValue = ethers.parseEther("200.00");

// Mint tokens for user1 and blacklisted accounts

12



await tokenManager.connect(operator).mint("USDC", user1.address, min

tValue);

await tokenManager.connect(operator).mint("USDC", blacklisted.addres

s, mintValue);

// User1 approves the blacklisted account to transfer their tokens

await pegUSDC.connect(user1).approve(blacklisted.address, mintValue)

;

// Mark the account as blacklisted

await tokenManager.connect(operator).setBlackList("USDC", blackliste

d.address, true);

expect(await pegUSDC.isBlacklist(blacklisted.address)).to.be.true;

// Attempt to transfer tokens from user1 to a new account via the bl

acklisted account

await pegUSDC.connect(blacklisted).transferFrom(user1.address, newBl

acklisted.address, mintValue);

// Verify that the new account received the tokens, indicating a cir

cumvention of blacklist restrictions

expect(await pegUSDC.balanceOf(newBlack

See more

Results:
PegToken

✔ TransferFrom Function Vulnerable to Blacklisted User Circumvention

(1174ms)

1 passing (1s)

Files: Blacklisted.test.ts

13

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/aae09dbc-6536-4e98-a7fd-f022c25b88d4


F-2024-2154 - Unvalidated Chain ID in crossChainBurn Function -

Low

Description: In the crossChainBurn function of the LiquidityBootstrapPool.sol

contract, there is a notable risk due to the absence of validation for the

toChainId parameter. Users can input any chain ID, including non-

existent or unsupported ones, leading to unintentional token burns.

This function allows users to burn tokens on the current chain for use on

another chain. However, without proper checks on the toChainId, there

is a risk that users might accidentally input an incorrect or unsupported

chain ID. Such a mistake would result in the permanent loss of tokens, as

they would be burned without the possibility of recovery or use on the

intended chain.

Affected Code:

function crossChainBurn(uint256 value, address to, uint256 toChainId

)

public

notBlacklisted(msg.sender)

whenNotPaused

worldNotStopped

{

require(toChainId != block.chainid, "burn to same chain");

_burn(msg.sender, value);

emit TokenCrossChainBurned(msg.sender, to, toChainId, value);

}

Status: Fixed

Classification

Severity: Low

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Recommendations

Remediation: To prevent this issue, implement a validation mechanism for toChainId to

ensure that it corresponds to a supported and existing blockchain

network. This could involve maintaining a list of valid chain IDs within the

contract or integrating with an external service that confirms the validity

14

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/0a200693-bbd7-4b87-9c5d-0643e09c297b


of a chain ID. Adding such a check minimizes the risk of accidental token

loss due to user input errors.

Remediation (Revised commit: 645e4ba): The issue with the

crossChainBurn function in the LiquidityBootstrapPool.sol contract was

resolved by its removal. The decision to eliminate this function mitigates

the risk of accidental token loss due to improper chain ID inputs by users.

Going forward, cross-chain operations will be managed by a dedicated

cross-chain bridge contract, enhancing security and ensuring that tokens

are transferred or burned in a controlled and verified manner.

15



Observation Details

F-2024-2124 - Floating Pragma - Info

Description: A "floating pragma" in Solidity refers to the practice of using a pragma

statement that does not specify a fixed compiler version but instead

allows the contract to be compiled with any compatible compiler version.

This issue arises when pragma statements like pragma solidity

^0.8.23; are used without a specific version number, allowing the

contract to be compiled with the latest available compiler version. This

can lead to various compatibility and stability issues.

Assets:
contracts/TokenManager.sol [https://github.com/bitlayer-org/peg-

tokens-contract  ]

contracts/PegToken.sol [https://github.com/bitlayer-org/peg-tokens-

contract  ]

Status: Accepted

Recommendations

Remediation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the

compiler version that is chosen.

Remediation (Revised commit: 35be917): The recommendation to lock

the pragma version for Solidity contracts was not implemented. The

project team has decided to continue using a floating pragma.

16

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/8246907a-edda-4420-80eb-353f0b2ed6a9
https://github.com/ethereum/solidity/releases


F-2024-2125 - Public functions not called by the contract should be

declared external instead - Info

Description: In Solidity, function visibility is an important aspect that determines how

and where a function can be called from. Two commonly used visibilities

are public and external. A public function can be called both from

other functions inside the same contract and from outside transactions,

while an external function can only be called from outside the contract.

A potential pitfall in smart contract development is the misuse of the

public keyword for functions that are only meant to be accessed

externally. When a function is not used internally within a contract and is

only intended for external calls, it should be labeled as external rather

than public.

Affected Function:

187: function crossChainBurn(uint256 value, address to, uint256 toCh

ainId)

Assets:
contracts/PegToken.sol [https://github.com/bitlayer-org/peg-tokens-

contract  ]

Status: Fixed

Recommendations

Remediation: Declare functions that are not called internally within the contract and are

intended for external access as external rather than public.

Remediation (Revised commit: 35be917): The crossChainBurn function

was removed from the contract, fixing the issue with its visibility setting.

17

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/281a5be0-5058-49f9-8b5c-0a47bd9d25cc


F-2024-2127 - Unused Import - Info

Description: In the TokenManager.sol contract, there is an import statement for

Create2 from OpenZeppelin’s contracts package, but the Create2

functionality is not utilized anywhere in the contract. The specific import

statement is:

import "@openzeppelin/contracts/utils/Create2.sol";.

The presence of an unused import statement, like Create2, contributes to

unnecessary clutter in the code, potentially leading to confusion or

misunderstanding about the contract’s functionality.

Assets:
contracts/TokenManager.sol [https://github.com/bitlayer-org/peg-

tokens-contract  ]

Status: Fixed

Recommendations

Remediation: Remove the unused import statement for Create2 to clean up the

contract, making it more straightforward and reducing potential confusion

for readers.

Remediation (Revised commit: 35be917): The unused import of Create2

was removed from the TokenManager.sol contract.

18

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/f91e21e7-e02e-4bab-b0f6-56b53574a69f


F-2024-2128 - Inconsistent Use of Upgradable and Non-Upgradable

OpenZeppelin Contracts - Info

Description: The TokenManager.sol contract is importing a mix of upgradable

(UUPSUpgradeable) and non-upgradable (AccessControlEnumerable)

OpenZeppelin contracts. This mixture can lead to compatibility issues in

an upgradable contract context.

Affected Imports:

import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradea

ble.sol";

import "@openzeppelin/contracts/access/extensions/AccessControlEnume

rable.sol";

The contract might not fully benefit from the upgradeable pattern, leading

to inefficiencies and potential security risks.

Assets:
contracts/TokenManager.sol [https://github.com/bitlayer-org/peg-

tokens-contract  ]

Status: Accepted

Recommendations

Remediation:
Replace non-upgradeable OpenZeppelin contract imports with their

upgradeable counterparts. Specifically, substitute

AccessControlEnumerable and UUPSUpgradeable with their

respective versions from the @openzeppelin/contracts-

upgradeable package.

Update the initialize function to include initializers for the

upgradable contracts, such as __AccessControl_init() and

__UUPSUpgradeable_init(), to properly initialize their state.

Ensure that these initializers are called in the correct order in the

initialize function to set up the contract state correctly for

upgradeable deployments.

Remediation (Revised commit: 35be917): The recommendation to switch

all contract imports in the TokenManager.sol to upgradeable versions from

OpenZeppelin was not implemented. The project team has decided to

retain the current mix of upgradeable and non-upgradeable imports.

19

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/a9d7a506-f8fa-44ac-b03b-b212418cc9a5


F-2024-2129 - Shadowing of State Variables in initialize Function -

Info

Description: The initialize function in the PegToken contract shadows the name and

symbol parameters which are also state variables defined in the inherited

ERC20Upgradeable contract. Shadowing occurs when a local variable

(function parameter in this case) has the same name as a state variable,

potentially leading to confusion or errors.

While this is not a functional issue in itself, it is considered a bad practice

as it can cause readability and maintenance problems.

Assets:
contracts/PegToken.sol [https://github.com/bitlayer-org/peg-tokens-

contract  ]

Status: Fixed

Recommendations

Remediation:
Rename the parameters in the initialize function to avoid

shadowing. Common practices include using an underscore prefix

(e.g., _name, _symbol) or a different naming convention.

Ensure that the new parameter names clearly convey their purpose

and do not conflict with any existing variables or functions in the

contract.

Remediation (Revised commit: 35be917): The initialize function in the

PegToken contract was updated to use distinct parameter names (name_,

symbol_, decimals_), effectively eliminating variable shadowing and

improving code clarity and maintainability.

20

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/f5a9af48-e8c1-48eb-bf95-45feefaa47af


F-2024-2130 - Hardcoded EIP712 Domain Name in PegToken

Initialization - Info

Description: In PegToken.sol, the initialize function is designed to set up the

newly created token instance with specific characteristics like name,

symbol, and decimals.

The __ERC20Permit_init function is invoked with a hardcoded string

"PegToken":

__ERC20Permit_init("PegToken");

This approach does not align the EIP712 domain name with the token's

actual name. The EIP712 signature protection, part of the permit

functionality, includes the contract address and the domain name in its

calculation. Here, every token generated by the factory will use

"PegToken" as their domain name, irrespective of their individual name

and symbol.

All tokens created share the same domain name for EIP712 signatures,

leading to potential confusion, as the domain name does not reflect the

actual token identity. While the contract address in the EIP712 domain

separator ensures uniqueness, the uniform domain name might not be the

most transparent or intuitive approach.

Users interacting with these tokens might face confusion, especially when

dealing with multiple tokens, since the EIP712 domain name does not

match the actual token name.

Assets:
contracts/PegToken.sol [https://github.com/bitlayer-org/peg-tokens-

contract  ]

Status: Fixed

Recommendations

Remediation: Update the initialize method to dynamically set the EIP712 domain

name to match the actual token name:

__ERC20Permit_init(name);

Ensuring that the EIP712 domain name reflects the actual token name

enhances clarity and alignment with token identity.

Remediation (Revised commit: 35be917): The initialize function in the

PegToken contract now dynamically sets the EIP712 domain name to

21

https://portal.hacken.io/App/Projects/Details/c70b35e3-157d-42f8-a687-7d4a996f2a4f/Finding/f7812b32-c537-4110-9f6e-01f2f9f8bc75


match the actual token name during initialization, enhancing clarity and

ensuring the token identity aligns with its EIP712 signature protection.

22



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

23



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

24

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/bitlayer-org/peg-tokens-contract

Commit f0d2a54db1648ec76b55c1dcd227a9af16de4c8b

Whitepaper

Requirements AUDIT.md

Technical Requirements README.md

Contracts in Scope

./contracts/PegToken.sol

./contracts/TokenManager.sol

25

https://github.com/bitlayer-org/peg-tokens-contract



