
Smart Contract Code

Review And Security

Analysis Report

Customer: Bitlayer

Date: 01/04/2024



We express our gratitude to the Bitlayer team for the collaborative engagement that enabled the execution

of this Smart Contract Security Assessment.

Bitlayer is the layer 2 based on BitVM. It consists an EVM compatible chain/sequencer that can map BTC

ecological assets and facilitate the entry of BTC users.

Platform: EVM

Language: Solidity

Tags: ERC20, Layer2, Staking, Token Factory, MultiSig

Timeline: 06/03/2024 - 01/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/bitlayer-org/bitlayer-contracts

Commit 751c34b1072b7539c1a063b38522cf7606c9268a

2

https://hackenio.cc/sc_methodology
https://github.com/bitlayer-org/bitlayer-contracts


Audit Summary

10/10 8/10 62.5% 7/10
Security Score Code quality score Test coverage Documentation quality score

Total 7.8/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 3 1 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 1

Medium 0

Low 3

Vulnerability Status

F-2024-1566 - Coarse grained access control in Vault contract leads to redundant whitelist feature Accepted

F-2024-1335 - Missing validation of beneficiary address can lead to token locked Fixed

F-2024-1549 - ReStaking() and reDelegation() lead to ERC20 token lock Fixed

F-2024-1554 - Missing address validation for _foundationPool in Staking contract's initialise function Fixed

3

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/42b4e6e7-6be8-4236-bca3-6549cd98edff
https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/0b2bbd38-9b26-46e4-ab45-6816a75f84e7
https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/091f10ca-cd16-4505-84a4-eac6b1639d08
https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/fc4815a4-58b1-4946-9e9f-d694aaee524b


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this

report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Bitlayer

Audited By Niccolò Pozzolini, Kornel Światłowski

Approved By Przemyslaw Swiatowiec

Website https://www.bitlayer.org/

Changelog 21/03/2024 - Preliminary Report

01/04/2024 - Final Report

4

https://www.bitlayer.org/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings  9

Vulnerability Details 9

Observation Details 17

Disclaimers 32

Appendix 1. Severity Definitions 33

Appendix 2. Scope 34



System Overview

The project revolves around a blockchain framework, focusing on staking mechanisms and validator

management to achieve consensus. Central components include a suite of smart contracts for staking

(Staking.sol, Validator.sol), token management (BRC.sol, TokenFactory.sol), and security features

(LockingContract.sol, MultiSigWallet.sol). The system allows for validator registration under a permission-

based approach, transitioning to permission-less to enhance inclusivity. Validators compete for network

consensus roles based on the amount of BRC tokens staked, with mechanisms for reward distribution,

delegation, and penalties for non-compliance embedded within the protocol. 

Privileged roles

TokenFactory.AdminRole: can create and mint ERC20 tokens

TokenFactory.OwnerRole: admin of the role AdminRole

Vault.AdminRole: can add/remove to/from whitelist, release ERC20/native tokens

Vault.OwnerRole: admin of the role AdminRole

Validator.owner is the staking contract. Most user action on Validator need to pass by the Staking

contract

Staking.admin: can make validators registration permissionless, and change the foundation pool address

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed

scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 7 out of 10.

Functional requirements are present, but only at a high-level.

Technical description is not complete.

Code quality

The total Code Quality score is 8 out of 10.

The code duplicates commonly known contracts instead of reusing them.

Best practice violations.

Test coverage

Code coverage of the project is 62.5% (branch coverage).

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 1 low severity issues, leading

to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 7.8. This score reflects

the combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

No additional risks were identified.

8



Findings 

Vulnerability Details

F-2024-1549 - ReStaking() and reDelegation() lead to ERC20 token lock -

High

Description: The Staking contract includes functionalities to transfer staked and delegated

tokens from one validator to another using the reStake() and reDelegate()

functions. Staked BRC tokens are held in the Staking contract, eliminating the

need for additional token ERC20.transfer(). The amounts of staked and

delegated tokens are tracked in variables within each Validator contract:

selfStake: the amount of staked tokens by the validator owner

totalStake: the sum of selfStake and delegated tokens

The sum of the totalStake amounts of each registered validator should

match the BRC balance of the Staking contract. During the execution of

reStake() or reDelegate(), the sender provides an _amount parameter

corresponding to the amount of BRC tokens that will be moved from one

validator to another. Firstly, depending on the context, subStake() or

subDelegation() is executed, an _amount value is deducted from

selfStake and totalStake, but BRC tokens are not returned to the caller.

Later, these functions make use of the function addStakeOrDelegation()

which requires the sender to provide additional tokens equal to the provided

_amount, which are transferred to the Staking contract. Normally, approval of

BRC token transfer is required to perform reStake() or reDelegate()

execution, but an unaware sender or unlimited approval in the past will result in

the sender's tokens being locked. The Staking contract lacks the functionality

to withdraw these redundant/unassigned tokens leading to tokens being locked

in the contract.

function doReStake(address _oldVal, address _newVal, uint256 _amount, boo

l _byValidator) private {

require(_amount > 0, "E23");

IValidator oldVal = valMaps[_oldVal];

RankingOp op = RankingOp.Noop;

if (_byValidator) {

doClaimAny(_oldVal, true);

op = oldVal.subStake(_amount, false);

} else {

doClaimAny(_oldVal, false);

op = oldVal.subDelegation(_amount, msg.sender, false);

}

afterLessStake(_oldVal, oldVal, _amount, op);

//@audits additionals funds are require here as it is new stake or delega

tion

addStakeOrDelegation(_newVal, msg.sender, _amount, false);

}

Scenario (same as in Evidences Poc section):

Validator1 stakes 100001 BRC tokens

> selfStake == 100001

> totalStake == 100001

9

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/091f10ca-cd16-4505-84a4-eac6b1639d08


Validator2 stakes 50002 BRC tokens

> selfStake == 50002

> totalStake == 50002

SUM OF STAKED TOKENS == 150003

BALANCE OF STAKING CONTRACT = 150003

Validator1 admin decides to reStake() 50001 BRC tokens to Validator2 cont

ract.

An additional 50001 BRC is taken from Validator1 admin, resulting in:

Validator1 stakes 50000 BRC tokens (100001 - 50001 = 50000)

> selfStake == 50000

> totalStake == 50000

Validator2 stakes 100003 BRC tokens (50002 + 50001 = 100003)

> selfStake == 100003

> totalStake == 100003

SUM OF STAKED TOKENS == 150003

BALANCE OF STAKING CONTRACT = 200004

Assets:
contracts/builtin/Staking.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Fixed

Classification

Severity: High

Impact: Likelihood [1-5]: 4

Impact [1-5]: 4

Exploitability [0-2]: 0

Complexity [0-2]: 1

Final Score: 3.8 (High)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: It is recommended to refactor reStake() and reDelegation() functions flow

so that no additional tokens are needed from the sender and re-staked/re-

dalegated tokens are not locked in Staking contract.

Remediation (commit: 1080bfa):  The function addStakeOrDelegation is

now requiring tokens only when not restaking.

Evidences

PoC

Reproduce:
import { loadFixture } from "@nomicfoundation/hardhat-toolbox/network-hel

pers";

import { expect } from "chai";

import { ethers } from "hardhat";

10



describe("audit staking", function async() {

const epoch = 2;

async function deploySystem() {

const [

admin, fundation, brcHolder,

val1, valAdmin1,

val2, valAdmin2,

val3, valAdmin3,

delegator1, delegator2

] = await ethers.getSigners();

const ERC20 = await ethers.getContractFactory('BRC');

const erc20 = await ERC20.deploy(

[brcHolder.address],

[ethers.parseEther("1000000000")] //10_000_000_00

);

const Staking = await ethers.getContractFactory("Staking");

const staking = await Staking.deploy();

await staking.initialize(

admin.address,

erc20.getAddress(),

epoch,

fundation.address

);

return {

staking, erc20,

admin, fundation, brcHolder,

val1, valAdmin1,

val2, valAdmin2,

val3, valAdmin3,

delegator1, delegator2

};

}

describe("reStaking()", async function () {

it("PASS - staked needed", async function () {

const { admin, brcHolder, erc20, staking, val1, valAdmin1, val2, valAdmin

2} = await loadFixture(deploySystem);

const Validator = await ethers.getContractFactory("Validator");

const rate = 50;

const stakeAmount = ethers.parseEther('100001');

const stakeAmount2 = ethers.parseEther('50002');

const reStakeAmount = ethers.parseEther('50001');

//@audit val1Admin stakes 100001 BRC tokens

await staking.connect(admin).removePermission();

await erc20.connect(brcHolder).transfer(valAdmin1.address, stakeAmount);

await erc20.connect(valAdmin1).approve(await stak

See more

Results:
audit staking

reStaking()

BRC balance of Staking before restake(): 150003000000000000000000n

BRC balance of Staking after restake(): 200004000000000000000000n

✔ PASS - staked needed (5060ms)

reDelegation()

BRC balance of Staking before reDelegation(): 110222000000000000000000n

BRC balance of Staking after reDelegation(): 110444000000000000000000n

✔ PASS (375ms)

2 passing (5s)

11

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/091f10ca-cd16-4505-84a4-eac6b1639d08


F-2024-1335 - Missing validation of beneficiary address can lead to

token locked - Low

Description: The constructor() and changeBeneficiary() functions of the

LockingContract contract lack validation of beneficiary address parameter,

permitting the assignment of a vesting schedule to a 0x0 address. This can

lead to a situation where vested tokens assigned to the 0x0 address become

locked within the LockingContract without the possibility of withdrawal.

Assets:
contracts/basic/LockingContract.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 2.5 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: It is recommended to implement input validation within the constructor()

and changeBeneficiary() functions of the LockingContract to ensure

that the vesting schedule can not be assigned to the 0x0 address.

Remediation (commit: e6f3d3d): The provided addresses are now validated

against the zero address.

Evidences

POC

Reproduce:
import { time, loadFixture } from "@nomicfoundation/hardhat-toolbox/netwo

rk-helpers";

import { expect } from "chai";

import { ethers } from "hardhat";

import { getContractAddress } from '@ethersproject/address';

describe("audit locking", function () {

const lockAmount1 = ethers.parseEther("10");

const lockAmount2 = ethers.parseEther("100");

const cliffPeriod1 = 1;

12

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/0b2bbd38-9b26-46e4-ab45-6816a75f84e7


const cliffPeriod2 = 2;

const vestingPeriod1 = 10;

const vestingPeriod2 = 100;

const periodTime = 100;

async function deployLockingContract() {

const [owner, acc1, acc2, acc3] = await ethers.getSigners();

const token = await ethers.deployContract('TestUSDT');

await token.waitForDeployment();

const transactionCount = await ethers.provider.getTransactionCount(owner.

address);

const futureAddress = getContractAddress({

from: owner.address,

nonce: transactionCount+1

});

await token.connect(owner).mint(futureAddress, ethers.parseEther("110"));

const locking = await ethers.deployContract('LockingContract', [

[acc1.address, acc2.address],

[lockAmount1, lockAmount2],

[cliffPeriod1, cliffPeriod2],

[vestingPeriod1, vestingPeriod2],

periodTime,

token.getAddress()

])

await locking.waitForDeployment();

return { locking, token, owner, acc1, acc2, acc3 };

}

describe("changeBeneficiary()", async function () {

it("changeBeneficiary() to zero address", async function () {

const { locking, token, owner, acc1} = await loadFixture(deployLockingCon

tract);

const zeroAddress = '0x0000000000000000000000000000000000000000';

const vestingInfo = await locking.vestingSchedules(acc1.address);

expect(vestingInfo['lockingAmount']).to.be.equals(lockAmount1);

expect(vestingInfo['releasedAmount']).to.be.equ

See more

13

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/0b2bbd38-9b26-46e4-ab45-6816a75f84e7


F-2024-1554 - Missing address validation for _foundationPool in Staking

contract's initialise function - Low

Description: In the initialize function of the Staking.sol contract, the _admin and

_brcAddress parameters are validated to ensure they are not zero addresses.

However, the _foundationPool address is not validated in the same way.

This could potentially lead to a significant issue if the _foundationPool

address is set to the zero address. In such a case, 20% of all block fees would

be sent to the zero address and effectively burnt, which is likely not the

intended behavior.

Assets:
contracts/builtin/Staking.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 4

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 2.3 (Low)

Recommendations

Recommendation: To mitigate this issue, it is suggested to add a validation check for the

_foundationPool address in the initialize function. This check should

ensure that _foundationPool is not the zero address. The same check should

be performed in the setter function changeFoundationPool.

This change would prevent the accidental burning of block fees and ensure

that the Staking contract behaves as expected.

Remediation (commit: 68eb9d9): The mentioned parameters are now checked

against the zero address.

14

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/fc4815a4-58b1-4946-9e9f-d694aaee524b


F-2024-1566 - Coarse grained access control in Vault contract leads to

redundant whitelist feature - Low

Description: The current implementation of the Vault contract uses the AdminRole for

both adding addresses to the whitelist and releasing funds to whitelisted

addresses. This could potentially pose a security risk if an admin's address is

compromised. An attacker could add a malicious address to the whitelist and

then release funds to it using the releaseTreasure function.

Assets:
contracts/basic/Vault.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

Status: Accepted

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 5

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: To mitigate this risk, it is suggested to separate these two operations into

different roles. For instance, a WhitelistAdminRole could be used for adding

and removing addresses from the whitelist, and the AdminRole could be used

for releasing funds. This would ensure that even if an admin's address is

compromised, the attacker would not be able to add new addresses to the

whitelist.

15

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/42b4e6e7-6be8-4236-bca3-6549cd98edff


Observation Details

F-2024-1329 - Floating Pragma - Info

Description: The project uses floating pragmas ^0.8.0 and ^0.8.9.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For example,

they might be deployed using an outdated pragma version which may include

bugs that affect the system negatively.

Assets:
contracts/basic/BRC.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

contracts/basic/LockingContract.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/basic/Vault.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

contracts/basic/TokenFactory.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

contracts/basic/MultiSigWallet.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Accepted

Recommendations

Recommendation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the compiler

version that is chosen.

16

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/ef3f67f4-2d23-49d6-ac12-54f1961c2528
https://github.com/ethereum/solidity/releases


F-2024-1330 - State variables only set in the constructor should be

declared immutable - Info

Description: Compared to regular state variables, the Gas costs of constant and immutable

variables are much lower. Immutable variables are evaluated once at

construction time and their value is copied to all the places in the code where

they are accessed.

Variable`s periodTime, LockingToken and startTimestamp values is set in

the constructor of LockingContract. These variables can be declared

immutable.

The same applies for the variables factory and _decimals in CustomERC20

contract.

This will lower the Gas fees during operations.

Assets:
contracts/basic/LockingContract.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/basic/TokenFactory.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Fixed

Recommendations

Recommendation: Consider marking state variables as an immutable that never changes on the

contract.

Remediation (commit: 4d546b1): Mentioned variables are now immutable.

17

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/7fe091cd-ddae-47ce-a905-e306d36c9419


F-2024-1331 - Gas inefficiency due to missing usage of Solidity custom

errors - Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature known as

"custom errors". These custom errors provide a way for developers to define

more descriptive and semantically meaningful error conditions without relying

on string messages. Prior to this version, developers often used the require

statement with string error messages to handle specific conditions or

validations. However, every unique string used as a revert reason consumes

gas, making transactions more expensive.

Custom errors, on the other hand, are identified by their name and the types of

their parameters only, and they do not have the overhead of string storage.

This means that, when using custom errors instead of require statements

with string messages, the gas consumption can be significantly reduced,

leading to more gas-efficient contracts.

Assets:
contracts/builtin/Staking.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

contracts/builtin/Validator.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

contracts/basic/BRC.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

contracts/basic/LockingContract.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/basic/Vault.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

contracts/basic/TokenFactory.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

contracts/basic/MultiSigWallet.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

contracts/builtin/Params.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

contracts/builtin/WithAdmin.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

contracts/builtin/library/SafeSend.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/builtin/library/initializable.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/builtin/library/ReentrancyGuard.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

Status: Accepted

Recommendations

18

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/db2e4de8-4d0b-4d99-bbd7-c5a98f2a04ec


Recommendation: It is recommended to use custom errors instead of reverting strings to reduce

increased Gas usage, especially during contract deployment. Custom errors

can be defined using the error keyword and can include dynamic information.

19



F-2024-1332 - Unchecked transfers of ERC20 tokens - Info

Description: SafeERC20 is a library allows to safely interact with different partially

incompatible ERC20 tokens.

The analysis identified that there are omitted verifications for the return values

of ERC20 transfer functions. This oversight can lead to vulnerabilities since

certain tokens might deviate from the ERC20 standards, either by returning

false upon a transfer failure or by not issuing any return value whatsoever.

Functions that transfer do not use SafeERC20 and do not check return value of

transfers: 

LockingContract: claim(),

Vault: releaseERC20()

Assets:
contracts/basic/LockingContract.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/basic/Vault.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

Status: Fixed

Recommendations

Recommendation: Consider using SafeERC20 library in the aforementioned functions to interact

with tokens safely.

Remediation (commit: f067d8f): The SafeERC20 library has been used in

claim() and releaseERC20() functions.

20

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/8deca1e9-42dd-4994-bdfc-1355a31ce8af


F-2024-1333 - Use of transfer() instead of call() to send native tokens -

Info

Description: The Vault contract uses built-in transfer() function for transferring native

tokens.

The transfer() function was commonly used in earlier versions of Solidity for

its simplicity and automatic reentrancy protection. However, it was identified as

potentially problematic due to its fixed Gas limit of 2300.

The usage of transfer() function can lead to unintended function call revert

when the receiving contract's receive() or fallback() functions require

more than 2300 Gas for processing.

Additionally, the Gas costs are subject to change, so it may happen in future

release that 2300 Gas Limit is not enough to process transfer.

Assets:
contracts/basic/Vault.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

Status: Fixed

Recommendations

Recommendation: It is recommended to use built-in call() function instead of transfer() to

transfer native assets. This method does not impose a gas limit, it provides

greater flexibility and compatibility with contracts having more complex

business logic upon receiving the native tokens. When working with then

call() function ensure that its execution is successful by checking the

returned boolean value. It is also recommended to fallow the Check-Effects-

Interactions (CEI) pattern in every case to prevent reentrancy issues.

Remediation (commit: 0f7afff): The transfer() function has been replaced

with the call() function.

21

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/a39f6b85-2dc7-4bcd-926d-ff04b2b87d3a


F-2024-1334 - Copy of well known contract - Info

Description: The system employs replicated contracts sourced from established projects

such as OpenZeppelin. It is advised that these contracts should be directly

imported from their original source. Given that these projects are currently

under active development, the contracts within them might undergo updates in

the future.

Assets:
contracts/basic/BRC.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

contracts/builtin/library/initializable.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/builtin/library/ReentrancyGuard.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/builtin/library/SafeERC20.sol [https://github.com/bitlayer-

org/bitlayer-contracts ]

contracts/interfaces/IERC20.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Accepted

Recommendations

Recommendation: Direct Source Import: Rather than relying on these copies, it is suggested to

directly import the contracts from their original source repositories. This

approach ensures that the latest updates, bug fixes, and security

enhancements introduced by the project maintainers are seamlessly

incorporated into your system.

Version Pinning: In addition to importing contracts directly from source, it is

prudent to pin the version of the imported contracts. This safeguards your

system against potential compatibility issues that could arise from future

updates to the source contracts. By specifying a precise version, you gain

greater control over the integration process and mitigate the risks associated

with the inadvertent adoption of incompatible changes.

Remediation: The finding is accepted by the Client's team.

22

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/fefb1aba-2664-446d-b8ee-99014dccb916


F-2024-1339 - Readability improvement for totalSupply initialization -

Info

Description: In the BRC.sol contract, the totalSupply variable is initialized with a long

literal value. However, there is a minor issue with this initialization: the long

literal could be hard to read.

Here is the code reference:

totalSupply = 1000000000 ether;

To improve readability, the long literal could be split using the underscore (_)

character. This would make the number easier to read and understand.

Assets:
contracts/basic/BRC.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

Status: Fixed

Recommendations

Recommendation: To fix this issue, the long literal should be split using the underscore character.

The corrected code would look like this:

totalSupply = 1_000_000_000 ether;

Remediation (commit: 05cec62): The totalSupply variable value has been

assigned with underscore characters.

23

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/4c01d0d2-bcc5-41ab-8e22-85fac73af97c


F-2024-1340 - Redundant constructor visibility - Info

Description: Starting solidity compiler version 0.7 there is no need to declare the

constructor visibility anymore because it is ignored. constructor() of BRC

contract has declared public visibility.

constructor (

address[] memory accounts,

uint256[] memory amounts

) public {

// constructor logic

}

Assets:
contracts/basic/BRC.sol [https://github.com/bitlayer-org/bitlayer-contracts ]

Status: Fixed

Recommendations

Recommendation: It is recommended to remove constructor() visibility of BRC contract.

Remediation (commit: 3fa576d): Constructor visibility has been removed.

24

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/7186c864-0376-4e44-8aef-0396897642dc


F-2024-1550 - Add supply cap feature to CustomERC20 contract for

enhanced security - Info

Description: In the current implementation of the CustomERC20 contract, the minting of

tokens is controlled by the administrators of the TokenFactory contract. This

could potentially pose a security risk if an administrator's address is

compromised, as the attacker could arbitrarily mint a large number of tokens,

potentially destabilizing the token's value and liquidity pools.

Assets:
contracts/basic/TokenFactory.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Accepted

Recommendations

Recommendation: To mitigate this risk, it is suggested to add an optional supply cap feature to the

CustomERC20 contract. This would limit the total number of tokens that can be

minted, providing an additional layer of security for users.

This feature could be implemented as an immutable variable set in the

constructor of the CustomERC20 contract, and a check could be added in the

mint function to ensure that the total supply doesn't exceed this cap.

This enhancement would provide users with greater confidence in the stability

of the token's value and the integrity of its liquidity pools.

Remediation: The finding is accepted by the Client's team with following

reason: “We don’t know the max supply of tokens deployed by 3rd party.”.

25

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/7d87dc50-3acb-4540-bd77-35a00d4bdcfc


F-2024-1552 - Missing decimal check for brcToken in the Staking

contract - Info

Description: In the Staking.sol contract, the brcToken is assumed to have 18 decimals

as per the code comment. However, there is no validation in the code to ensure

this.

This could potentially lead to issues if a token with a different number of

decimals is used. For instance, calculations involving this token could yield

incorrect results, leading to imbalances in the contract's state.

Assets:
contracts/builtin/Staking.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Accepted

Recommendations

Recommendation: To mitigate this risk, it is suggested to add a requirement statement in the

initialize function where the brcToken variable is set. This requirement

should check that the decimals function of the brcToken returns 18.

This change would ensure that only tokens with the correct number of decimals

are used with the Staking contract, preventing potential issues and enhancing

the contract's robustness.

Remediation: The finding is accepted by the Client's team with following

reason: “The BRC-token contract would have not been deployed when the

Staking contract initialize”.

26

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/f95ffeb3-2ddd-4b8d-8b7e-e78fa9e40fc2


F-2024-1556 - The updateActiveValidatorSet function in Staking.sol

contract can be optimised - Info

Description: In the updateActiveValidatorSet function of the Staking.sol contract,

the for loops use activeValidators.length in the iteration condition.

activeValidators is a storage variable, and accessing its length in each

iteration results in a storage read, which is more costly in terms of gas than a

memory read.

Assets:
contracts/builtin/Staking.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Fixed

Recommendations

Recommendation: To optimize this function and reduce gas costs, it is suggested to cache the

length of the activeValidators array to a memory variable at the start of the

function, and use this variable in the for loop conditions.

This change would involve adding a line of code at the start of the function to

cache the length of activeValidators, and replacing

activeValidators.length with this new variable in the for loop conditions.

This optimization would reduce the gas costs of the

updateActiveValidatorSet function, making it more efficient.

Remediation (commit: 138eb9c): The activeValidatorsLen variable has

been introduced and stores the length of activeValidators. The

activeValidatorsLen variable has been used in the for loop.

27

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/f9134824-3ede-48ac-8d9c-29bdfe3eb69b


F-2024-1557 - The LazyPunishRecord struct in Staking.sol contract can

be optimized - Info

Description: In the Staking.sol contract, the lazyPunishRecords mapping maps a

validator address to a LazyPunishRecord struct. This struct contains a

boolean field exist to check if a validator is in the set.

Assets:
contracts/builtin/Staking.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Accepted

Recommendations

Recommendation: However, this exist field could be removed to optimize the struct. Instead of

using exist, a +1 offset could be added to the index field, and index > 0

could be used to check if a validator is in the set.

This change would involve removing the exist field from the

LazyPunishRecord struct, adding 1 to the index field when it is set, and

replacing checks for !exist with checks for index == 0. The function

decreaseMissedBlocksCounter would also need to be revised.

This optimization would reduce the storage requirements of the

LazyPunishRecord struct, making the contract more efficient.

Remediation: The finding is accepted by the Client's team with following

reason: “this optimization involves a lot of changes, it is not considered to avoid

introducing new problems.”

28

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/0c38c054-0179-45cb-8730-20f5e5e6bfc1


F-2024-1558 - Public function should be external - Info

Description: Functions that are meant to be exclusively invoked from external sources

should be designated as external rather than public. Changing the visibility

of anyClaimable function from public to external would optimize its gas

consumption.

Assets:
contracts/builtin/Staking.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Fixed

Recommendations

Recommendation: To optimize gas usage and improve code clarity, declare functions that are not

called internally within the contract and are intended for external access as

external rather than public. This ensures that these functions are only

callable externally, reducing unnecessary gas consumption and potential

security risks.

Remediation (commit: b878811): The visibility of anyClaimable() function

has been changed to external.

29

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/5d23dfa1-39be-4ba8-ba6f-5a0508db1263


F-2024-1562 - CEI violation in validatorClaimAny function in Validator.sol

contract - Info

Description: In the validatorClaimAny and delegatorClaimAny functions of the

Validator.sol contract, there is a Checks-Effects-Interactions (CEI) pattern

violation. The sendValue function, which performs an external call, is invoked

before state variables are updated.

This could potentially lead to reentrancy attacks if the external call is to a

malicious contract that calls back into validatorClaimAny before the original

call has finished.

Assets:
contracts/builtin/Validator.sol [https://github.com/bitlayer-org/bitlayer-

contracts ]

Status: Fixed

Recommendations

Recommendation: To mitigate this risk, it is suggested to move the sendValue call to after all

state changes have been made. This would involve moving the sendValue call

and the associated if statement to after the state variables update.

This change would ensure that the validatorClaimAny and

delegatorClaimAny functions follow the Checks-Effects-Interactions pattern,

reducing the risk of reentrancy attacks and enhancing the contract's security.

Remediation (commit: 9862935): sendValue() function has been moved after

all state changes, validatorClaimAny() and delegatorClaimAny()

functions follow the Checks-Effects-Interactions pattern.

30

https://portal.hacken.io/App/Projects/Details/0a66bd0e-1925-4a09-8bec-81bddd05c0d1/Finding/ed8014e5-7ae0-452c-8398-6dff7511154f


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details

of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and

functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the

code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications.

Do not consider this report as a final and sufficient assessment regarding the utility and safety of the code,

bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to note

that you should not rely on this report only — we recommend proceeding with several independent audits

and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to hacks.

Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

31



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user

funds or contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead

to asset loss. Contradictions and requirements violations. Major deviations from best practices

are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality

score.

32

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/bitlayer-org/bitlayer-contracts

Commit 751c34b1072b7539c1a063b38522cf7606c9268a

Whitepaper -

Requirements
File name: Audit content description.pdf; SHA3:

8b659ffa690b7fa2733a7d9ab557b8d41892fd82fb96fa514f771ba6a7e64b40

Technical

Requirements

File name: Audit content description.pdf; SHA3:

8b659ffa690b7fa2733a7d9ab557b8d41892fd82fb96fa514f771ba6a7e64b40

Contracts in Scope

contracts/builtin/Staking.sol

contracts/builtin/Validator.sol

contracts/basic/BRC.sol

contracts/basic/LockingContract.sol

contracts/basic/Vault.sol

contracts/basic/TokenFactory.sol

contracts/basic/MultiSigWallet.sol

contracts/builtin/Params.sol

contracts/builtin/library/SortedList.sol

contracts/builtin/WithAdmin.sol

contracts/builtin/library/SafeSend.sol

contracts/builtin/library/initializable.sol

contracts/builtin/library/ReentrancyGuard.sol

contracts/builtin/library/SafeERC20.sol

contracts/builtin/interfaces/IValidator.sol

contracts/builtin/interfaces/types.sol

contracts/interfaces/IERC20.sol

33

https://github.com/bitlayer-org/bitlayer-contracts



